Merge branch 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[pandora-kernel.git] / arch / s390 / include / asm / pgtable.h
1 /*
2  *  include/asm-s390/pgtable.h
3  *
4  *  S390 version
5  *    Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
6  *    Author(s): Hartmut Penner (hp@de.ibm.com)
7  *               Ulrich Weigand (weigand@de.ibm.com)
8  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
9  *
10  *  Derived from "include/asm-i386/pgtable.h"
11  */
12
13 #ifndef _ASM_S390_PGTABLE_H
14 #define _ASM_S390_PGTABLE_H
15
16 /*
17  * The Linux memory management assumes a three-level page table setup. For
18  * s390 31 bit we "fold" the mid level into the top-level page table, so
19  * that we physically have the same two-level page table as the s390 mmu
20  * expects in 31 bit mode. For s390 64 bit we use three of the five levels
21  * the hardware provides (region first and region second tables are not
22  * used).
23  *
24  * The "pgd_xxx()" functions are trivial for a folded two-level
25  * setup: the pgd is never bad, and a pmd always exists (as it's folded
26  * into the pgd entry)
27  *
28  * This file contains the functions and defines necessary to modify and use
29  * the S390 page table tree.
30  */
31 #ifndef __ASSEMBLY__
32 #include <linux/sched.h>
33 #include <linux/mm_types.h>
34 #include <asm/bitops.h>
35 #include <asm/bug.h>
36 #include <asm/processor.h>
37
38 extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
39 extern void paging_init(void);
40 extern void vmem_map_init(void);
41 extern void fault_init(void);
42
43 /*
44  * The S390 doesn't have any external MMU info: the kernel page
45  * tables contain all the necessary information.
46  */
47 #define update_mmu_cache(vma, address, ptep)     do { } while (0)
48
49 /*
50  * ZERO_PAGE is a global shared page that is always zero; used
51  * for zero-mapped memory areas etc..
52  */
53
54 extern unsigned long empty_zero_page;
55 extern unsigned long zero_page_mask;
56
57 #define ZERO_PAGE(vaddr) \
58         (virt_to_page((void *)(empty_zero_page + \
59          (((unsigned long)(vaddr)) &zero_page_mask))))
60
61 #define is_zero_pfn is_zero_pfn
62 static inline int is_zero_pfn(unsigned long pfn)
63 {
64         extern unsigned long zero_pfn;
65         unsigned long offset_from_zero_pfn = pfn - zero_pfn;
66         return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
67 }
68
69 #define my_zero_pfn(addr)       page_to_pfn(ZERO_PAGE(addr))
70
71 #endif /* !__ASSEMBLY__ */
72
73 /*
74  * PMD_SHIFT determines the size of the area a second-level page
75  * table can map
76  * PGDIR_SHIFT determines what a third-level page table entry can map
77  */
78 #ifndef __s390x__
79 # define PMD_SHIFT      20
80 # define PUD_SHIFT      20
81 # define PGDIR_SHIFT    20
82 #else /* __s390x__ */
83 # define PMD_SHIFT      20
84 # define PUD_SHIFT      31
85 # define PGDIR_SHIFT    42
86 #endif /* __s390x__ */
87
88 #define PMD_SIZE        (1UL << PMD_SHIFT)
89 #define PMD_MASK        (~(PMD_SIZE-1))
90 #define PUD_SIZE        (1UL << PUD_SHIFT)
91 #define PUD_MASK        (~(PUD_SIZE-1))
92 #define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
93 #define PGDIR_MASK      (~(PGDIR_SIZE-1))
94
95 /*
96  * entries per page directory level: the S390 is two-level, so
97  * we don't really have any PMD directory physically.
98  * for S390 segment-table entries are combined to one PGD
99  * that leads to 1024 pte per pgd
100  */
101 #define PTRS_PER_PTE    256
102 #ifndef __s390x__
103 #define PTRS_PER_PMD    1
104 #define PTRS_PER_PUD    1
105 #else /* __s390x__ */
106 #define PTRS_PER_PMD    2048
107 #define PTRS_PER_PUD    2048
108 #endif /* __s390x__ */
109 #define PTRS_PER_PGD    2048
110
111 #define FIRST_USER_ADDRESS  0
112
113 #define pte_ERROR(e) \
114         printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
115 #define pmd_ERROR(e) \
116         printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
117 #define pud_ERROR(e) \
118         printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
119 #define pgd_ERROR(e) \
120         printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
121
122 #ifndef __ASSEMBLY__
123 /*
124  * The vmalloc area will always be on the topmost area of the kernel
125  * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc,
126  * which should be enough for any sane case.
127  * By putting vmalloc at the top, we maximise the gap between physical
128  * memory and vmalloc to catch misplaced memory accesses. As a side
129  * effect, this also makes sure that 64 bit module code cannot be used
130  * as system call address.
131  */
132
133 extern unsigned long VMALLOC_START;
134
135 #ifndef __s390x__
136 #define VMALLOC_SIZE    (96UL << 20)
137 #define VMALLOC_END     0x7e000000UL
138 #define VMEM_MAP_END    0x80000000UL
139 #else /* __s390x__ */
140 #define VMALLOC_SIZE    (128UL << 30)
141 #define VMALLOC_END     0x3e000000000UL
142 #define VMEM_MAP_END    0x40000000000UL
143 #endif /* __s390x__ */
144
145 /*
146  * VMEM_MAX_PHYS is the highest physical address that can be added to the 1:1
147  * mapping. This needs to be calculated at compile time since the size of the
148  * VMEM_MAP is static but the size of struct page can change.
149  */
150 #define VMEM_MAX_PAGES  ((VMEM_MAP_END - VMALLOC_END) / sizeof(struct page))
151 #define VMEM_MAX_PFN    min(VMALLOC_START >> PAGE_SHIFT, VMEM_MAX_PAGES)
152 #define VMEM_MAX_PHYS   ((VMEM_MAX_PFN << PAGE_SHIFT) & ~((16 << 20) - 1))
153 #define vmemmap         ((struct page *) VMALLOC_END)
154
155 /*
156  * A 31 bit pagetable entry of S390 has following format:
157  *  |   PFRA          |    |  OS  |
158  * 0                   0IP0
159  * 00000000001111111111222222222233
160  * 01234567890123456789012345678901
161  *
162  * I Page-Invalid Bit:    Page is not available for address-translation
163  * P Page-Protection Bit: Store access not possible for page
164  *
165  * A 31 bit segmenttable entry of S390 has following format:
166  *  |   P-table origin      |  |PTL
167  * 0                         IC
168  * 00000000001111111111222222222233
169  * 01234567890123456789012345678901
170  *
171  * I Segment-Invalid Bit:    Segment is not available for address-translation
172  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
173  * PTL Page-Table-Length:    Page-table length (PTL+1*16 entries -> up to 256)
174  *
175  * The 31 bit segmenttable origin of S390 has following format:
176  *
177  *  |S-table origin   |     | STL |
178  * X                   **GPS
179  * 00000000001111111111222222222233
180  * 01234567890123456789012345678901
181  *
182  * X Space-Switch event:
183  * G Segment-Invalid Bit:     *
184  * P Private-Space Bit:       Segment is not private (PoP 3-30)
185  * S Storage-Alteration:
186  * STL Segment-Table-Length:  Segment-table length (STL+1*16 entries -> up to 2048)
187  *
188  * A 64 bit pagetable entry of S390 has following format:
189  * |                     PFRA                         |0IPC|  OS  |
190  * 0000000000111111111122222222223333333333444444444455555555556666
191  * 0123456789012345678901234567890123456789012345678901234567890123
192  *
193  * I Page-Invalid Bit:    Page is not available for address-translation
194  * P Page-Protection Bit: Store access not possible for page
195  * C Change-bit override: HW is not required to set change bit
196  *
197  * A 64 bit segmenttable entry of S390 has following format:
198  * |        P-table origin                              |      TT
199  * 0000000000111111111122222222223333333333444444444455555555556666
200  * 0123456789012345678901234567890123456789012345678901234567890123
201  *
202  * I Segment-Invalid Bit:    Segment is not available for address-translation
203  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
204  * P Page-Protection Bit: Store access not possible for page
205  * TT Type 00
206  *
207  * A 64 bit region table entry of S390 has following format:
208  * |        S-table origin                             |   TF  TTTL
209  * 0000000000111111111122222222223333333333444444444455555555556666
210  * 0123456789012345678901234567890123456789012345678901234567890123
211  *
212  * I Segment-Invalid Bit:    Segment is not available for address-translation
213  * TT Type 01
214  * TF
215  * TL Table length
216  *
217  * The 64 bit regiontable origin of S390 has following format:
218  * |      region table origon                          |       DTTL
219  * 0000000000111111111122222222223333333333444444444455555555556666
220  * 0123456789012345678901234567890123456789012345678901234567890123
221  *
222  * X Space-Switch event:
223  * G Segment-Invalid Bit:  
224  * P Private-Space Bit:    
225  * S Storage-Alteration:
226  * R Real space
227  * TL Table-Length:
228  *
229  * A storage key has the following format:
230  * | ACC |F|R|C|0|
231  *  0   3 4 5 6 7
232  * ACC: access key
233  * F  : fetch protection bit
234  * R  : referenced bit
235  * C  : changed bit
236  */
237
238 /* Hardware bits in the page table entry */
239 #define _PAGE_CO        0x100           /* HW Change-bit override */
240 #define _PAGE_RO        0x200           /* HW read-only bit  */
241 #define _PAGE_INVALID   0x400           /* HW invalid bit    */
242
243 /* Software bits in the page table entry */
244 #define _PAGE_SWT       0x001           /* SW pte type bit t */
245 #define _PAGE_SWX       0x002           /* SW pte type bit x */
246 #define _PAGE_SPECIAL   0x004           /* SW associated with special page */
247 #define __HAVE_ARCH_PTE_SPECIAL
248
249 /* Set of bits not changed in pte_modify */
250 #define _PAGE_CHG_MASK  (PAGE_MASK | _PAGE_SPECIAL)
251
252 /* Six different types of pages. */
253 #define _PAGE_TYPE_EMPTY        0x400
254 #define _PAGE_TYPE_NONE         0x401
255 #define _PAGE_TYPE_SWAP         0x403
256 #define _PAGE_TYPE_FILE         0x601   /* bit 0x002 is used for offset !! */
257 #define _PAGE_TYPE_RO           0x200
258 #define _PAGE_TYPE_RW           0x000
259 #define _PAGE_TYPE_EX_RO        0x202
260 #define _PAGE_TYPE_EX_RW        0x002
261
262 /*
263  * Only four types for huge pages, using the invalid bit and protection bit
264  * of a segment table entry.
265  */
266 #define _HPAGE_TYPE_EMPTY       0x020   /* _SEGMENT_ENTRY_INV */
267 #define _HPAGE_TYPE_NONE        0x220
268 #define _HPAGE_TYPE_RO          0x200   /* _SEGMENT_ENTRY_RO  */
269 #define _HPAGE_TYPE_RW          0x000
270
271 /*
272  * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
273  * pte_none and pte_file to find out the pte type WITHOUT holding the page
274  * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
275  * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
276  * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
277  * This change is done while holding the lock, but the intermediate step
278  * of a previously valid pte with the hw invalid bit set can be observed by
279  * handle_pte_fault. That makes it necessary that all valid pte types with
280  * the hw invalid bit set must be distinguishable from the four pte types
281  * empty, none, swap and file.
282  *
283  *                      irxt  ipte  irxt
284  * _PAGE_TYPE_EMPTY     1000   ->   1000
285  * _PAGE_TYPE_NONE      1001   ->   1001
286  * _PAGE_TYPE_SWAP      1011   ->   1011
287  * _PAGE_TYPE_FILE      11?1   ->   11?1
288  * _PAGE_TYPE_RO        0100   ->   1100
289  * _PAGE_TYPE_RW        0000   ->   1000
290  * _PAGE_TYPE_EX_RO     0110   ->   1110
291  * _PAGE_TYPE_EX_RW     0010   ->   1010
292  *
293  * pte_none is true for bits combinations 1000, 1010, 1100, 1110
294  * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
295  * pte_file is true for bits combinations 1101, 1111
296  * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
297  */
298
299 /* Page status table bits for virtualization */
300 #define RCP_PCL_BIT     55
301 #define RCP_HR_BIT      54
302 #define RCP_HC_BIT      53
303 #define RCP_GR_BIT      50
304 #define RCP_GC_BIT      49
305
306 /* User dirty bit for KVM's migration feature */
307 #define KVM_UD_BIT      47
308
309 #ifndef __s390x__
310
311 /* Bits in the segment table address-space-control-element */
312 #define _ASCE_SPACE_SWITCH      0x80000000UL    /* space switch event       */
313 #define _ASCE_ORIGIN_MASK       0x7ffff000UL    /* segment table origin     */
314 #define _ASCE_PRIVATE_SPACE     0x100   /* private space control            */
315 #define _ASCE_ALT_EVENT         0x80    /* storage alteration event control */
316 #define _ASCE_TABLE_LENGTH      0x7f    /* 128 x 64 entries = 8k            */
317
318 /* Bits in the segment table entry */
319 #define _SEGMENT_ENTRY_ORIGIN   0x7fffffc0UL    /* page table origin        */
320 #define _SEGMENT_ENTRY_RO       0x200   /* page protection bit              */
321 #define _SEGMENT_ENTRY_INV      0x20    /* invalid segment table entry      */
322 #define _SEGMENT_ENTRY_COMMON   0x10    /* common segment bit               */
323 #define _SEGMENT_ENTRY_PTL      0x0f    /* page table length                */
324
325 #define _SEGMENT_ENTRY          (_SEGMENT_ENTRY_PTL)
326 #define _SEGMENT_ENTRY_EMPTY    (_SEGMENT_ENTRY_INV)
327
328 #else /* __s390x__ */
329
330 /* Bits in the segment/region table address-space-control-element */
331 #define _ASCE_ORIGIN            ~0xfffUL/* segment table origin             */
332 #define _ASCE_PRIVATE_SPACE     0x100   /* private space control            */
333 #define _ASCE_ALT_EVENT         0x80    /* storage alteration event control */
334 #define _ASCE_SPACE_SWITCH      0x40    /* space switch event               */
335 #define _ASCE_REAL_SPACE        0x20    /* real space control               */
336 #define _ASCE_TYPE_MASK         0x0c    /* asce table type mask             */
337 #define _ASCE_TYPE_REGION1      0x0c    /* region first table type          */
338 #define _ASCE_TYPE_REGION2      0x08    /* region second table type         */
339 #define _ASCE_TYPE_REGION3      0x04    /* region third table type          */
340 #define _ASCE_TYPE_SEGMENT      0x00    /* segment table type               */
341 #define _ASCE_TABLE_LENGTH      0x03    /* region table length              */
342
343 /* Bits in the region table entry */
344 #define _REGION_ENTRY_ORIGIN    ~0xfffUL/* region/segment table origin      */
345 #define _REGION_ENTRY_INV       0x20    /* invalid region table entry       */
346 #define _REGION_ENTRY_TYPE_MASK 0x0c    /* region/segment table type mask   */
347 #define _REGION_ENTRY_TYPE_R1   0x0c    /* region first table type          */
348 #define _REGION_ENTRY_TYPE_R2   0x08    /* region second table type         */
349 #define _REGION_ENTRY_TYPE_R3   0x04    /* region third table type          */
350 #define _REGION_ENTRY_LENGTH    0x03    /* region third length              */
351
352 #define _REGION1_ENTRY          (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
353 #define _REGION1_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
354 #define _REGION2_ENTRY          (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
355 #define _REGION2_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
356 #define _REGION3_ENTRY          (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
357 #define _REGION3_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
358
359 /* Bits in the segment table entry */
360 #define _SEGMENT_ENTRY_ORIGIN   ~0x7ffUL/* segment table origin             */
361 #define _SEGMENT_ENTRY_RO       0x200   /* page protection bit              */
362 #define _SEGMENT_ENTRY_INV      0x20    /* invalid segment table entry      */
363
364 #define _SEGMENT_ENTRY          (0)
365 #define _SEGMENT_ENTRY_EMPTY    (_SEGMENT_ENTRY_INV)
366
367 #define _SEGMENT_ENTRY_LARGE    0x400   /* STE-format control, large page   */
368 #define _SEGMENT_ENTRY_CO       0x100   /* change-recording override   */
369
370 #endif /* __s390x__ */
371
372 /*
373  * A user page table pointer has the space-switch-event bit, the
374  * private-space-control bit and the storage-alteration-event-control
375  * bit set. A kernel page table pointer doesn't need them.
376  */
377 #define _ASCE_USER_BITS         (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
378                                  _ASCE_ALT_EVENT)
379
380 /* Bits int the storage key */
381 #define _PAGE_CHANGED    0x02          /* HW changed bit                   */
382 #define _PAGE_REFERENCED 0x04          /* HW referenced bit                */
383
384 /*
385  * Page protection definitions.
386  */
387 #define PAGE_NONE       __pgprot(_PAGE_TYPE_NONE)
388 #define PAGE_RO         __pgprot(_PAGE_TYPE_RO)
389 #define PAGE_RW         __pgprot(_PAGE_TYPE_RW)
390 #define PAGE_EX_RO      __pgprot(_PAGE_TYPE_EX_RO)
391 #define PAGE_EX_RW      __pgprot(_PAGE_TYPE_EX_RW)
392
393 #define PAGE_KERNEL     PAGE_RW
394 #define PAGE_COPY       PAGE_RO
395
396 /*
397  * Dependent on the EXEC_PROTECT option s390 can do execute protection.
398  * Write permission always implies read permission. In theory with a
399  * primary/secondary page table execute only can be implemented but
400  * it would cost an additional bit in the pte to distinguish all the
401  * different pte types. To avoid that execute permission currently
402  * implies read permission as well.
403  */
404          /*xwr*/
405 #define __P000  PAGE_NONE
406 #define __P001  PAGE_RO
407 #define __P010  PAGE_RO
408 #define __P011  PAGE_RO
409 #define __P100  PAGE_EX_RO
410 #define __P101  PAGE_EX_RO
411 #define __P110  PAGE_EX_RO
412 #define __P111  PAGE_EX_RO
413
414 #define __S000  PAGE_NONE
415 #define __S001  PAGE_RO
416 #define __S010  PAGE_RW
417 #define __S011  PAGE_RW
418 #define __S100  PAGE_EX_RO
419 #define __S101  PAGE_EX_RO
420 #define __S110  PAGE_EX_RW
421 #define __S111  PAGE_EX_RW
422
423 #ifndef __s390x__
424 # define PxD_SHADOW_SHIFT       1
425 #else /* __s390x__ */
426 # define PxD_SHADOW_SHIFT       2
427 #endif /* __s390x__ */
428
429 static inline void *get_shadow_table(void *table)
430 {
431         unsigned long addr, offset;
432         struct page *page;
433
434         addr = (unsigned long) table;
435         offset = addr & ((PAGE_SIZE << PxD_SHADOW_SHIFT) - 1);
436         page = virt_to_page((void *)(addr ^ offset));
437         return (void *)(addr_t)(page->index ? (page->index | offset) : 0UL);
438 }
439
440 /*
441  * Certain architectures need to do special things when PTEs
442  * within a page table are directly modified.  Thus, the following
443  * hook is made available.
444  */
445 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
446                               pte_t *ptep, pte_t entry)
447 {
448         *ptep = entry;
449         if (mm->context.noexec) {
450                 if (!(pte_val(entry) & _PAGE_INVALID) &&
451                     (pte_val(entry) & _PAGE_SWX))
452                         pte_val(entry) |= _PAGE_RO;
453                 else
454                         pte_val(entry) = _PAGE_TYPE_EMPTY;
455                 ptep[PTRS_PER_PTE] = entry;
456         }
457 }
458
459 /*
460  * pgd/pmd/pte query functions
461  */
462 #ifndef __s390x__
463
464 static inline int pgd_present(pgd_t pgd) { return 1; }
465 static inline int pgd_none(pgd_t pgd)    { return 0; }
466 static inline int pgd_bad(pgd_t pgd)     { return 0; }
467
468 static inline int pud_present(pud_t pud) { return 1; }
469 static inline int pud_none(pud_t pud)    { return 0; }
470 static inline int pud_bad(pud_t pud)     { return 0; }
471
472 #else /* __s390x__ */
473
474 static inline int pgd_present(pgd_t pgd)
475 {
476         if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
477                 return 1;
478         return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
479 }
480
481 static inline int pgd_none(pgd_t pgd)
482 {
483         if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
484                 return 0;
485         return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL;
486 }
487
488 static inline int pgd_bad(pgd_t pgd)
489 {
490         /*
491          * With dynamic page table levels the pgd can be a region table
492          * entry or a segment table entry. Check for the bit that are
493          * invalid for either table entry.
494          */
495         unsigned long mask =
496                 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
497                 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
498         return (pgd_val(pgd) & mask) != 0;
499 }
500
501 static inline int pud_present(pud_t pud)
502 {
503         if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
504                 return 1;
505         return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
506 }
507
508 static inline int pud_none(pud_t pud)
509 {
510         if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
511                 return 0;
512         return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
513 }
514
515 static inline int pud_bad(pud_t pud)
516 {
517         /*
518          * With dynamic page table levels the pud can be a region table
519          * entry or a segment table entry. Check for the bit that are
520          * invalid for either table entry.
521          */
522         unsigned long mask =
523                 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
524                 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
525         return (pud_val(pud) & mask) != 0;
526 }
527
528 #endif /* __s390x__ */
529
530 static inline int pmd_present(pmd_t pmd)
531 {
532         return (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) != 0UL;
533 }
534
535 static inline int pmd_none(pmd_t pmd)
536 {
537         return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) != 0UL;
538 }
539
540 static inline int pmd_bad(pmd_t pmd)
541 {
542         unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
543         return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
544 }
545
546 static inline int pte_none(pte_t pte)
547 {
548         return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
549 }
550
551 static inline int pte_present(pte_t pte)
552 {
553         unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
554         return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
555                 (!(pte_val(pte) & _PAGE_INVALID) &&
556                  !(pte_val(pte) & _PAGE_SWT));
557 }
558
559 static inline int pte_file(pte_t pte)
560 {
561         unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
562         return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
563 }
564
565 static inline int pte_special(pte_t pte)
566 {
567         return (pte_val(pte) & _PAGE_SPECIAL);
568 }
569
570 #define __HAVE_ARCH_PTE_SAME
571 #define pte_same(a,b)  (pte_val(a) == pte_val(b))
572
573 static inline void rcp_lock(pte_t *ptep)
574 {
575 #ifdef CONFIG_PGSTE
576         unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
577         preempt_disable();
578         while (test_and_set_bit(RCP_PCL_BIT, pgste))
579                 ;
580 #endif
581 }
582
583 static inline void rcp_unlock(pte_t *ptep)
584 {
585 #ifdef CONFIG_PGSTE
586         unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
587         clear_bit(RCP_PCL_BIT, pgste);
588         preempt_enable();
589 #endif
590 }
591
592 /* forward declaration for SetPageUptodate in page-flags.h*/
593 static inline void page_clear_dirty(struct page *page, int mapped);
594 #include <linux/page-flags.h>
595
596 static inline void ptep_rcp_copy(pte_t *ptep)
597 {
598 #ifdef CONFIG_PGSTE
599         struct page *page = virt_to_page(pte_val(*ptep));
600         unsigned int skey;
601         unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
602
603         skey = page_get_storage_key(page_to_phys(page));
604         if (skey & _PAGE_CHANGED) {
605                 set_bit_simple(RCP_GC_BIT, pgste);
606                 set_bit_simple(KVM_UD_BIT, pgste);
607         }
608         if (skey & _PAGE_REFERENCED)
609                 set_bit_simple(RCP_GR_BIT, pgste);
610         if (test_and_clear_bit_simple(RCP_HC_BIT, pgste)) {
611                 SetPageDirty(page);
612                 set_bit_simple(KVM_UD_BIT, pgste);
613         }
614         if (test_and_clear_bit_simple(RCP_HR_BIT, pgste))
615                 SetPageReferenced(page);
616 #endif
617 }
618
619 /*
620  * query functions pte_write/pte_dirty/pte_young only work if
621  * pte_present() is true. Undefined behaviour if not..
622  */
623 static inline int pte_write(pte_t pte)
624 {
625         return (pte_val(pte) & _PAGE_RO) == 0;
626 }
627
628 static inline int pte_dirty(pte_t pte)
629 {
630         /* A pte is neither clean nor dirty on s/390. The dirty bit
631          * is in the storage key. See page_test_and_clear_dirty for
632          * details.
633          */
634         return 0;
635 }
636
637 static inline int pte_young(pte_t pte)
638 {
639         /* A pte is neither young nor old on s/390. The young bit
640          * is in the storage key. See page_test_and_clear_young for
641          * details.
642          */
643         return 0;
644 }
645
646 /*
647  * pgd/pmd/pte modification functions
648  */
649
650 #ifndef __s390x__
651
652 #define pgd_clear(pgd)          do { } while (0)
653 #define pud_clear(pud)          do { } while (0)
654
655 #else /* __s390x__ */
656
657 static inline void pgd_clear_kernel(pgd_t * pgd)
658 {
659         if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
660                 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
661 }
662
663 static inline void pgd_clear(pgd_t * pgd)
664 {
665         pgd_t *shadow = get_shadow_table(pgd);
666
667         pgd_clear_kernel(pgd);
668         if (shadow)
669                 pgd_clear_kernel(shadow);
670 }
671
672 static inline void pud_clear_kernel(pud_t *pud)
673 {
674         if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
675                 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
676 }
677
678 static inline void pud_clear(pud_t *pud)
679 {
680         pud_t *shadow = get_shadow_table(pud);
681
682         pud_clear_kernel(pud);
683         if (shadow)
684                 pud_clear_kernel(shadow);
685 }
686
687 #endif /* __s390x__ */
688
689 static inline void pmd_clear_kernel(pmd_t * pmdp)
690 {
691         pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
692 }
693
694 static inline void pmd_clear(pmd_t *pmd)
695 {
696         pmd_t *shadow = get_shadow_table(pmd);
697
698         pmd_clear_kernel(pmd);
699         if (shadow)
700                 pmd_clear_kernel(shadow);
701 }
702
703 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
704 {
705         pte_val(*ptep) = _PAGE_TYPE_EMPTY;
706         if (mm->context.noexec)
707                 pte_val(ptep[PTRS_PER_PTE]) = _PAGE_TYPE_EMPTY;
708 }
709
710 /*
711  * The following pte modification functions only work if
712  * pte_present() is true. Undefined behaviour if not..
713  */
714 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
715 {
716         pte_val(pte) &= _PAGE_CHG_MASK;
717         pte_val(pte) |= pgprot_val(newprot);
718         return pte;
719 }
720
721 static inline pte_t pte_wrprotect(pte_t pte)
722 {
723         /* Do not clobber _PAGE_TYPE_NONE pages!  */
724         if (!(pte_val(pte) & _PAGE_INVALID))
725                 pte_val(pte) |= _PAGE_RO;
726         return pte;
727 }
728
729 static inline pte_t pte_mkwrite(pte_t pte)
730 {
731         pte_val(pte) &= ~_PAGE_RO;
732         return pte;
733 }
734
735 static inline pte_t pte_mkclean(pte_t pte)
736 {
737         /* The only user of pte_mkclean is the fork() code.
738            We must *not* clear the *physical* page dirty bit
739            just because fork() wants to clear the dirty bit in
740            *one* of the page's mappings.  So we just do nothing. */
741         return pte;
742 }
743
744 static inline pte_t pte_mkdirty(pte_t pte)
745 {
746         /* We do not explicitly set the dirty bit because the
747          * sske instruction is slow. It is faster to let the
748          * next instruction set the dirty bit.
749          */
750         return pte;
751 }
752
753 static inline pte_t pte_mkold(pte_t pte)
754 {
755         /* S/390 doesn't keep its dirty/referenced bit in the pte.
756          * There is no point in clearing the real referenced bit.
757          */
758         return pte;
759 }
760
761 static inline pte_t pte_mkyoung(pte_t pte)
762 {
763         /* S/390 doesn't keep its dirty/referenced bit in the pte.
764          * There is no point in setting the real referenced bit.
765          */
766         return pte;
767 }
768
769 static inline pte_t pte_mkspecial(pte_t pte)
770 {
771         pte_val(pte) |= _PAGE_SPECIAL;
772         return pte;
773 }
774
775 #ifdef CONFIG_HUGETLB_PAGE
776 static inline pte_t pte_mkhuge(pte_t pte)
777 {
778         /*
779          * PROT_NONE needs to be remapped from the pte type to the ste type.
780          * The HW invalid bit is also different for pte and ste. The pte
781          * invalid bit happens to be the same as the ste _SEGMENT_ENTRY_LARGE
782          * bit, so we don't have to clear it.
783          */
784         if (pte_val(pte) & _PAGE_INVALID) {
785                 if (pte_val(pte) & _PAGE_SWT)
786                         pte_val(pte) |= _HPAGE_TYPE_NONE;
787                 pte_val(pte) |= _SEGMENT_ENTRY_INV;
788         }
789         /*
790          * Clear SW pte bits SWT and SWX, there are no SW bits in a segment
791          * table entry.
792          */
793         pte_val(pte) &= ~(_PAGE_SWT | _PAGE_SWX);
794         /*
795          * Also set the change-override bit because we don't need dirty bit
796          * tracking for hugetlbfs pages.
797          */
798         pte_val(pte) |= (_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_CO);
799         return pte;
800 }
801 #endif
802
803 #ifdef CONFIG_PGSTE
804 /*
805  * Get (and clear) the user dirty bit for a PTE.
806  */
807 static inline int kvm_s390_test_and_clear_page_dirty(struct mm_struct *mm,
808                                                      pte_t *ptep)
809 {
810         int dirty;
811         unsigned long *pgste;
812         struct page *page;
813         unsigned int skey;
814
815         if (!mm->context.has_pgste)
816                 return -EINVAL;
817         rcp_lock(ptep);
818         pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
819         page = virt_to_page(pte_val(*ptep));
820         skey = page_get_storage_key(page_to_phys(page));
821         if (skey & _PAGE_CHANGED) {
822                 set_bit_simple(RCP_GC_BIT, pgste);
823                 set_bit_simple(KVM_UD_BIT, pgste);
824         }
825         if (test_and_clear_bit_simple(RCP_HC_BIT, pgste)) {
826                 SetPageDirty(page);
827                 set_bit_simple(KVM_UD_BIT, pgste);
828         }
829         dirty = test_and_clear_bit_simple(KVM_UD_BIT, pgste);
830         if (skey & _PAGE_CHANGED)
831                 page_clear_dirty(page, 1);
832         rcp_unlock(ptep);
833         return dirty;
834 }
835 #endif
836
837 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
838 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
839                                             unsigned long addr, pte_t *ptep)
840 {
841 #ifdef CONFIG_PGSTE
842         unsigned long physpage;
843         int young;
844         unsigned long *pgste;
845
846         if (!vma->vm_mm->context.has_pgste)
847                 return 0;
848         physpage = pte_val(*ptep) & PAGE_MASK;
849         pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
850
851         young = ((page_get_storage_key(physpage) & _PAGE_REFERENCED) != 0);
852         rcp_lock(ptep);
853         if (young)
854                 set_bit_simple(RCP_GR_BIT, pgste);
855         young |= test_and_clear_bit_simple(RCP_HR_BIT, pgste);
856         rcp_unlock(ptep);
857         return young;
858 #endif
859         return 0;
860 }
861
862 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
863 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
864                                          unsigned long address, pte_t *ptep)
865 {
866         /* No need to flush TLB
867          * On s390 reference bits are in storage key and never in TLB
868          * With virtualization we handle the reference bit, without we
869          * we can simply return */
870 #ifdef CONFIG_PGSTE
871         return ptep_test_and_clear_young(vma, address, ptep);
872 #endif
873         return 0;
874 }
875
876 static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
877 {
878         if (!(pte_val(*ptep) & _PAGE_INVALID)) {
879 #ifndef __s390x__
880                 /* pto must point to the start of the segment table */
881                 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
882 #else
883                 /* ipte in zarch mode can do the math */
884                 pte_t *pto = ptep;
885 #endif
886                 asm volatile(
887                         "       ipte    %2,%3"
888                         : "=m" (*ptep) : "m" (*ptep),
889                           "a" (pto), "a" (address));
890         }
891 }
892
893 static inline void ptep_invalidate(struct mm_struct *mm,
894                                    unsigned long address, pte_t *ptep)
895 {
896         if (mm->context.has_pgste) {
897                 rcp_lock(ptep);
898                 __ptep_ipte(address, ptep);
899                 ptep_rcp_copy(ptep);
900                 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
901                 rcp_unlock(ptep);
902                 return;
903         }
904         __ptep_ipte(address, ptep);
905         pte_val(*ptep) = _PAGE_TYPE_EMPTY;
906         if (mm->context.noexec) {
907                 __ptep_ipte(address, ptep + PTRS_PER_PTE);
908                 pte_val(*(ptep + PTRS_PER_PTE)) = _PAGE_TYPE_EMPTY;
909         }
910 }
911
912 /*
913  * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
914  * both clear the TLB for the unmapped pte. The reason is that
915  * ptep_get_and_clear is used in common code (e.g. change_pte_range)
916  * to modify an active pte. The sequence is
917  *   1) ptep_get_and_clear
918  *   2) set_pte_at
919  *   3) flush_tlb_range
920  * On s390 the tlb needs to get flushed with the modification of the pte
921  * if the pte is active. The only way how this can be implemented is to
922  * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
923  * is a nop.
924  */
925 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
926 #define ptep_get_and_clear(__mm, __address, __ptep)                     \
927 ({                                                                      \
928         pte_t __pte = *(__ptep);                                        \
929         (__mm)->context.flush_mm = 1;                                   \
930         if (atomic_read(&(__mm)->context.attach_count) > 1 ||           \
931             (__mm) != current->active_mm)                               \
932                 ptep_invalidate(__mm, __address, __ptep);               \
933         else                                                            \
934                 pte_clear((__mm), (__address), (__ptep));               \
935         __pte;                                                          \
936 })
937
938 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
939 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
940                                      unsigned long address, pte_t *ptep)
941 {
942         pte_t pte = *ptep;
943         ptep_invalidate(vma->vm_mm, address, ptep);
944         return pte;
945 }
946
947 /*
948  * The batched pte unmap code uses ptep_get_and_clear_full to clear the
949  * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
950  * tlbs of an mm if it can guarantee that the ptes of the mm_struct
951  * cannot be accessed while the batched unmap is running. In this case
952  * full==1 and a simple pte_clear is enough. See tlb.h.
953  */
954 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
955 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
956                                             unsigned long addr,
957                                             pte_t *ptep, int full)
958 {
959         pte_t pte = *ptep;
960
961         if (full)
962                 pte_clear(mm, addr, ptep);
963         else
964                 ptep_invalidate(mm, addr, ptep);
965         return pte;
966 }
967
968 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
969 #define ptep_set_wrprotect(__mm, __addr, __ptep)                        \
970 ({                                                                      \
971         pte_t __pte = *(__ptep);                                        \
972         if (pte_write(__pte)) {                                         \
973                 (__mm)->context.flush_mm = 1;                           \
974                 if (atomic_read(&(__mm)->context.attach_count) > 1 ||   \
975                     (__mm) != current->active_mm)                       \
976                         ptep_invalidate(__mm, __addr, __ptep);          \
977                 set_pte_at(__mm, __addr, __ptep, pte_wrprotect(__pte)); \
978         }                                                               \
979 })
980
981 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
982 #define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __dirty)  \
983 ({                                                                      \
984         int __changed = !pte_same(*(__ptep), __entry);                  \
985         if (__changed) {                                                \
986                 ptep_invalidate((__vma)->vm_mm, __addr, __ptep);        \
987                 set_pte_at((__vma)->vm_mm, __addr, __ptep, __entry);    \
988         }                                                               \
989         __changed;                                                      \
990 })
991
992 /*
993  * Test and clear dirty bit in storage key.
994  * We can't clear the changed bit atomically. This is a potential
995  * race against modification of the referenced bit. This function
996  * should therefore only be called if it is not mapped in any
997  * address space.
998  */
999 #define __HAVE_ARCH_PAGE_TEST_DIRTY
1000 static inline int page_test_dirty(struct page *page)
1001 {
1002         return (page_get_storage_key(page_to_phys(page)) & _PAGE_CHANGED) != 0;
1003 }
1004
1005 #define __HAVE_ARCH_PAGE_CLEAR_DIRTY
1006 static inline void page_clear_dirty(struct page *page, int mapped)
1007 {
1008         page_set_storage_key(page_to_phys(page), PAGE_DEFAULT_KEY, mapped);
1009 }
1010
1011 /*
1012  * Test and clear referenced bit in storage key.
1013  */
1014 #define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
1015 static inline int page_test_and_clear_young(struct page *page)
1016 {
1017         unsigned long physpage = page_to_phys(page);
1018         int ccode;
1019
1020         asm volatile(
1021                 "       rrbe    0,%1\n"
1022                 "       ipm     %0\n"
1023                 "       srl     %0,28\n"
1024                 : "=d" (ccode) : "a" (physpage) : "cc" );
1025         return ccode & 2;
1026 }
1027
1028 /*
1029  * Conversion functions: convert a page and protection to a page entry,
1030  * and a page entry and page directory to the page they refer to.
1031  */
1032 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1033 {
1034         pte_t __pte;
1035         pte_val(__pte) = physpage + pgprot_val(pgprot);
1036         return __pte;
1037 }
1038
1039 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1040 {
1041         unsigned long physpage = page_to_phys(page);
1042
1043         return mk_pte_phys(physpage, pgprot);
1044 }
1045
1046 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1047 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1048 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1049 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1050
1051 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1052 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1053
1054 #ifndef __s390x__
1055
1056 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1057 #define pud_deref(pmd) ({ BUG(); 0UL; })
1058 #define pgd_deref(pmd) ({ BUG(); 0UL; })
1059
1060 #define pud_offset(pgd, address) ((pud_t *) pgd)
1061 #define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1062
1063 #else /* __s390x__ */
1064
1065 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1066 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1067 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1068
1069 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1070 {
1071         pud_t *pud = (pud_t *) pgd;
1072         if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1073                 pud = (pud_t *) pgd_deref(*pgd);
1074         return pud  + pud_index(address);
1075 }
1076
1077 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1078 {
1079         pmd_t *pmd = (pmd_t *) pud;
1080         if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1081                 pmd = (pmd_t *) pud_deref(*pud);
1082         return pmd + pmd_index(address);
1083 }
1084
1085 #endif /* __s390x__ */
1086
1087 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1088 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1089 #define pte_page(x) pfn_to_page(pte_pfn(x))
1090
1091 #define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
1092
1093 /* Find an entry in the lowest level page table.. */
1094 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1095 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1096 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1097 #define pte_unmap(pte) do { } while (0)
1098
1099 /*
1100  * 31 bit swap entry format:
1101  * A page-table entry has some bits we have to treat in a special way.
1102  * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1103  * exception will occur instead of a page translation exception. The
1104  * specifiation exception has the bad habit not to store necessary
1105  * information in the lowcore.
1106  * Bit 21 and bit 22 are the page invalid bit and the page protection
1107  * bit. We set both to indicate a swapped page.
1108  * Bit 30 and 31 are used to distinguish the different page types. For
1109  * a swapped page these bits need to be zero.
1110  * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1111  * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1112  * plus 24 for the offset.
1113  * 0|     offset        |0110|o|type |00|
1114  * 0 0000000001111111111 2222 2 22222 33
1115  * 0 1234567890123456789 0123 4 56789 01
1116  *
1117  * 64 bit swap entry format:
1118  * A page-table entry has some bits we have to treat in a special way.
1119  * Bits 52 and bit 55 have to be zero, otherwise an specification
1120  * exception will occur instead of a page translation exception. The
1121  * specifiation exception has the bad habit not to store necessary
1122  * information in the lowcore.
1123  * Bit 53 and bit 54 are the page invalid bit and the page protection
1124  * bit. We set both to indicate a swapped page.
1125  * Bit 62 and 63 are used to distinguish the different page types. For
1126  * a swapped page these bits need to be zero.
1127  * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1128  * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1129  * plus 56 for the offset.
1130  * |                      offset                        |0110|o|type |00|
1131  *  0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1132  *  0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1133  */
1134 #ifndef __s390x__
1135 #define __SWP_OFFSET_MASK (~0UL >> 12)
1136 #else
1137 #define __SWP_OFFSET_MASK (~0UL >> 11)
1138 #endif
1139 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1140 {
1141         pte_t pte;
1142         offset &= __SWP_OFFSET_MASK;
1143         pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
1144                 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1145         return pte;
1146 }
1147
1148 #define __swp_type(entry)       (((entry).val >> 2) & 0x1f)
1149 #define __swp_offset(entry)     (((entry).val >> 11) | (((entry).val >> 7) & 1))
1150 #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1151
1152 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1153 #define __swp_entry_to_pte(x)   ((pte_t) { (x).val })
1154
1155 #ifndef __s390x__
1156 # define PTE_FILE_MAX_BITS      26
1157 #else /* __s390x__ */
1158 # define PTE_FILE_MAX_BITS      59
1159 #endif /* __s390x__ */
1160
1161 #define pte_to_pgoff(__pte) \
1162         ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1163
1164 #define pgoff_to_pte(__off) \
1165         ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
1166                    | _PAGE_TYPE_FILE })
1167
1168 #endif /* !__ASSEMBLY__ */
1169
1170 #define kern_addr_valid(addr)   (1)
1171
1172 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1173 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1174 extern int s390_enable_sie(void);
1175
1176 /*
1177  * No page table caches to initialise
1178  */
1179 #define pgtable_cache_init()    do { } while (0)
1180
1181 #include <asm-generic/pgtable.h>
1182
1183 #endif /* _S390_PAGE_H */