Merge git://git.kernel.org/pub/scm/linux/kernel/git/steve/gfs2-2.6-fixes
[pandora-kernel.git] / arch / powerpc / platforms / pseries / ras.c
1 /*
2  * Copyright (C) 2001 Dave Engebretsen IBM Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
17  */
18
19 /* Change Activity:
20  * 2001/09/21 : engebret : Created with minimal EPOW and HW exception support.
21  * End Change Activity
22  */
23
24 #include <linux/errno.h>
25 #include <linux/threads.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/signal.h>
28 #include <linux/sched.h>
29 #include <linux/ioport.h>
30 #include <linux/interrupt.h>
31 #include <linux/timex.h>
32 #include <linux/init.h>
33 #include <linux/delay.h>
34 #include <linux/irq.h>
35 #include <linux/random.h>
36 #include <linux/sysrq.h>
37 #include <linux/bitops.h>
38
39 #include <asm/uaccess.h>
40 #include <asm/system.h>
41 #include <asm/io.h>
42 #include <asm/pgtable.h>
43 #include <asm/irq.h>
44 #include <asm/cache.h>
45 #include <asm/prom.h>
46 #include <asm/ptrace.h>
47 #include <asm/machdep.h>
48 #include <asm/rtas.h>
49 #include <asm/udbg.h>
50 #include <asm/firmware.h>
51
52 #include "pseries.h"
53
54 static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX];
55 static DEFINE_SPINLOCK(ras_log_buf_lock);
56
57 static char mce_data_buf[RTAS_ERROR_LOG_MAX];
58
59 static int ras_get_sensor_state_token;
60 static int ras_check_exception_token;
61
62 #define EPOW_SENSOR_TOKEN       9
63 #define EPOW_SENSOR_INDEX       0
64 #define RAS_VECTOR_OFFSET       0x500
65
66 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id);
67 static irqreturn_t ras_error_interrupt(int irq, void *dev_id);
68
69
70 /*
71  * Initialize handlers for the set of interrupts caused by hardware errors
72  * and power system events.
73  */
74 static int __init init_ras_IRQ(void)
75 {
76         struct device_node *np;
77
78         ras_get_sensor_state_token = rtas_token("get-sensor-state");
79         ras_check_exception_token = rtas_token("check-exception");
80
81         /* Internal Errors */
82         np = of_find_node_by_path("/event-sources/internal-errors");
83         if (np != NULL) {
84                 request_event_sources_irqs(np, ras_error_interrupt,
85                                            "RAS_ERROR");
86                 of_node_put(np);
87         }
88
89         /* EPOW Events */
90         np = of_find_node_by_path("/event-sources/epow-events");
91         if (np != NULL) {
92                 request_event_sources_irqs(np, ras_epow_interrupt, "RAS_EPOW");
93                 of_node_put(np);
94         }
95
96         return 0;
97 }
98 __initcall(init_ras_IRQ);
99
100 /*
101  * Handle power subsystem events (EPOW).
102  *
103  * Presently we just log the event has occurred.  This should be fixed
104  * to examine the type of power failure and take appropriate action where
105  * the time horizon permits something useful to be done.
106  */
107 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id)
108 {
109         int status = 0xdeadbeef;
110         int state = 0;
111         int critical;
112
113         status = rtas_call(ras_get_sensor_state_token, 2, 2, &state,
114                            EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX);
115
116         if (state > 3)
117                 critical = 1;  /* Time Critical */
118         else
119                 critical = 0;
120
121         spin_lock(&ras_log_buf_lock);
122
123         status = rtas_call(ras_check_exception_token, 6, 1, NULL,
124                            RAS_VECTOR_OFFSET,
125                            irq_map[irq].hwirq,
126                            RTAS_EPOW_WARNING | RTAS_POWERMGM_EVENTS,
127                            critical, __pa(&ras_log_buf),
128                                 rtas_get_error_log_max());
129
130         udbg_printf("EPOW <0x%lx 0x%x 0x%x>\n",
131                     *((unsigned long *)&ras_log_buf), status, state);
132         printk(KERN_WARNING "EPOW <0x%lx 0x%x 0x%x>\n",
133                *((unsigned long *)&ras_log_buf), status, state);
134
135         /* format and print the extended information */
136         log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
137
138         spin_unlock(&ras_log_buf_lock);
139         return IRQ_HANDLED;
140 }
141
142 /*
143  * Handle hardware error interrupts.
144  *
145  * RTAS check-exception is called to collect data on the exception.  If
146  * the error is deemed recoverable, we log a warning and return.
147  * For nonrecoverable errors, an error is logged and we stop all processing
148  * as quickly as possible in order to prevent propagation of the failure.
149  */
150 static irqreturn_t ras_error_interrupt(int irq, void *dev_id)
151 {
152         struct rtas_error_log *rtas_elog;
153         int status = 0xdeadbeef;
154         int fatal;
155
156         spin_lock(&ras_log_buf_lock);
157
158         status = rtas_call(ras_check_exception_token, 6, 1, NULL,
159                            RAS_VECTOR_OFFSET,
160                            irq_map[irq].hwirq,
161                            RTAS_INTERNAL_ERROR, 1 /*Time Critical */,
162                            __pa(&ras_log_buf),
163                                 rtas_get_error_log_max());
164
165         rtas_elog = (struct rtas_error_log *)ras_log_buf;
166
167         if ((status == 0) && (rtas_elog->severity >= RTAS_SEVERITY_ERROR_SYNC))
168                 fatal = 1;
169         else
170                 fatal = 0;
171
172         /* format and print the extended information */
173         log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal);
174
175         if (fatal) {
176                 udbg_printf("Fatal HW Error <0x%lx 0x%x>\n",
177                             *((unsigned long *)&ras_log_buf), status);
178                 printk(KERN_EMERG "Error: Fatal hardware error <0x%lx 0x%x>\n",
179                        *((unsigned long *)&ras_log_buf), status);
180
181 #ifndef DEBUG_RTAS_POWER_OFF
182                 /* Don't actually power off when debugging so we can test
183                  * without actually failing while injecting errors.
184                  * Error data will not be logged to syslog.
185                  */
186                 ppc_md.power_off();
187 #endif
188         } else {
189                 udbg_printf("Recoverable HW Error <0x%lx 0x%x>\n",
190                             *((unsigned long *)&ras_log_buf), status);
191                 printk(KERN_WARNING
192                        "Warning: Recoverable hardware error <0x%lx 0x%x>\n",
193                        *((unsigned long *)&ras_log_buf), status);
194         }
195
196         spin_unlock(&ras_log_buf_lock);
197         return IRQ_HANDLED;
198 }
199
200 /* Get the error information for errors coming through the
201  * FWNMI vectors.  The pt_regs' r3 will be updated to reflect
202  * the actual r3 if possible, and a ptr to the error log entry
203  * will be returned if found.
204  *
205  * The mce_data_buf does not have any locks or protection around it,
206  * if a second machine check comes in, or a system reset is done
207  * before we have logged the error, then we will get corruption in the
208  * error log.  This is preferable over holding off on calling
209  * ibm,nmi-interlock which would result in us checkstopping if a
210  * second machine check did come in.
211  */
212 static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs)
213 {
214         unsigned long errdata = regs->gpr[3];
215         struct rtas_error_log *errhdr = NULL;
216         unsigned long *savep;
217
218         if ((errdata >= 0x7000 && errdata < 0x7fff0) ||
219             (errdata >= rtas.base && errdata < rtas.base + rtas.size - 16)) {
220                 savep = __va(errdata);
221                 regs->gpr[3] = savep[0];        /* restore original r3 */
222                 memset(mce_data_buf, 0, RTAS_ERROR_LOG_MAX);
223                 memcpy(mce_data_buf, (char *)(savep + 1), RTAS_ERROR_LOG_MAX);
224                 errhdr = (struct rtas_error_log *)mce_data_buf;
225         } else {
226                 printk("FWNMI: corrupt r3\n");
227         }
228         return errhdr;
229 }
230
231 /* Call this when done with the data returned by FWNMI_get_errinfo.
232  * It will release the saved data area for other CPUs in the
233  * partition to receive FWNMI errors.
234  */
235 static void fwnmi_release_errinfo(void)
236 {
237         int ret = rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL);
238         if (ret != 0)
239                 printk("FWNMI: nmi-interlock failed: %d\n", ret);
240 }
241
242 int pSeries_system_reset_exception(struct pt_regs *regs)
243 {
244         if (fwnmi_active) {
245                 struct rtas_error_log *errhdr = fwnmi_get_errinfo(regs);
246                 if (errhdr) {
247                         /* XXX Should look at FWNMI information */
248                 }
249                 fwnmi_release_errinfo();
250         }
251         return 0; /* need to perform reset */
252 }
253
254 /*
255  * See if we can recover from a machine check exception.
256  * This is only called on power4 (or above) and only via
257  * the Firmware Non-Maskable Interrupts (fwnmi) handler
258  * which provides the error analysis for us.
259  *
260  * Return 1 if corrected (or delivered a signal).
261  * Return 0 if there is nothing we can do.
262  */
263 static int recover_mce(struct pt_regs *regs, struct rtas_error_log * err)
264 {
265         int nonfatal = 0;
266
267         if (err->disposition == RTAS_DISP_FULLY_RECOVERED) {
268                 /* Platform corrected itself */
269                 nonfatal = 1;
270         } else if ((regs->msr & MSR_RI) &&
271                    user_mode(regs) &&
272                    err->severity == RTAS_SEVERITY_ERROR_SYNC &&
273                    err->disposition == RTAS_DISP_NOT_RECOVERED &&
274                    err->target == RTAS_TARGET_MEMORY &&
275                    err->type == RTAS_TYPE_ECC_UNCORR &&
276                    !(current->pid == 0 || is_global_init(current))) {
277                 /* Kill off a user process with an ECC error */
278                 printk(KERN_ERR "MCE: uncorrectable ecc error for pid %d\n",
279                        current->pid);
280                 /* XXX something better for ECC error? */
281                 _exception(SIGBUS, regs, BUS_ADRERR, regs->nip);
282                 nonfatal = 1;
283         }
284
285         log_error((char *)err, ERR_TYPE_RTAS_LOG, !nonfatal);
286
287         return nonfatal;
288 }
289
290 /*
291  * Handle a machine check.
292  *
293  * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
294  * should be present.  If so the handler which called us tells us if the
295  * error was recovered (never true if RI=0).
296  *
297  * On hardware prior to Power 4 these exceptions were asynchronous which
298  * means we can't tell exactly where it occurred and so we can't recover.
299  */
300 int pSeries_machine_check_exception(struct pt_regs *regs)
301 {
302         struct rtas_error_log *errp;
303
304         if (fwnmi_active) {
305                 errp = fwnmi_get_errinfo(regs);
306                 fwnmi_release_errinfo();
307                 if (errp && recover_mce(regs, errp))
308                         return 1;
309         }
310
311         return 0;
312 }