Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[pandora-kernel.git] / arch / powerpc / platforms / iseries / setup.c
1 /*
2  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3  *    Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
4  *
5  *    Description:
6  *      Architecture- / platform-specific boot-time initialization code for
7  *      the IBM iSeries LPAR.  Adapted from original code by Grant Erickson and
8  *      code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
9  *      <dan@net4x.com>.
10  *
11  *      This program is free software; you can redistribute it and/or
12  *      modify it under the terms of the GNU General Public License
13  *      as published by the Free Software Foundation; either version
14  *      2 of the License, or (at your option) any later version.
15  */
16
17 #undef DEBUG
18
19 #include <linux/init.h>
20 #include <linux/threads.h>
21 #include <linux/smp.h>
22 #include <linux/param.h>
23 #include <linux/string.h>
24 #include <linux/export.h>
25 #include <linux/seq_file.h>
26 #include <linux/kdev_t.h>
27 #include <linux/kexec.h>
28 #include <linux/major.h>
29 #include <linux/root_dev.h>
30 #include <linux/kernel.h>
31 #include <linux/hrtimer.h>
32 #include <linux/tick.h>
33
34 #include <asm/processor.h>
35 #include <asm/machdep.h>
36 #include <asm/page.h>
37 #include <asm/mmu.h>
38 #include <asm/pgtable.h>
39 #include <asm/mmu_context.h>
40 #include <asm/cputable.h>
41 #include <asm/sections.h>
42 #include <asm/iommu.h>
43 #include <asm/firmware.h>
44 #include <asm/system.h>
45 #include <asm/time.h>
46 #include <asm/paca.h>
47 #include <asm/cache.h>
48 #include <asm/abs_addr.h>
49 #include <asm/iseries/hv_lp_config.h>
50 #include <asm/iseries/hv_call_event.h>
51 #include <asm/iseries/hv_call_xm.h>
52 #include <asm/iseries/it_lp_queue.h>
53 #include <asm/iseries/mf.h>
54 #include <asm/iseries/hv_lp_event.h>
55 #include <asm/iseries/lpar_map.h>
56 #include <asm/udbg.h>
57 #include <asm/irq.h>
58
59 #include "naca.h"
60 #include "setup.h"
61 #include "irq.h"
62 #include "vpd_areas.h"
63 #include "processor_vpd.h"
64 #include "it_lp_naca.h"
65 #include "main_store.h"
66 #include "call_sm.h"
67 #include "call_hpt.h"
68 #include "pci.h"
69
70 #ifdef DEBUG
71 #define DBG(fmt...) udbg_printf(fmt)
72 #else
73 #define DBG(fmt...)
74 #endif
75
76 /* Function Prototypes */
77 static unsigned long build_iSeries_Memory_Map(void);
78 static void iseries_shared_idle(void);
79 static void iseries_dedicated_idle(void);
80
81
82 struct MemoryBlock {
83         unsigned long absStart;
84         unsigned long absEnd;
85         unsigned long logicalStart;
86         unsigned long logicalEnd;
87 };
88
89 /*
90  * Process the main store vpd to determine where the holes in memory are
91  * and return the number of physical blocks and fill in the array of
92  * block data.
93  */
94 static unsigned long iSeries_process_Condor_mainstore_vpd(
95                 struct MemoryBlock *mb_array, unsigned long max_entries)
96 {
97         unsigned long holeFirstChunk, holeSizeChunks;
98         unsigned long numMemoryBlocks = 1;
99         struct IoHriMainStoreSegment4 *msVpd =
100                 (struct IoHriMainStoreSegment4 *)xMsVpd;
101         unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
102         unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
103         unsigned long holeSize = holeEnd - holeStart;
104
105         printk("Mainstore_VPD: Condor\n");
106         /*
107          * Determine if absolute memory has any
108          * holes so that we can interpret the
109          * access map we get back from the hypervisor
110          * correctly.
111          */
112         mb_array[0].logicalStart = 0;
113         mb_array[0].logicalEnd = 0x100000000UL;
114         mb_array[0].absStart = 0;
115         mb_array[0].absEnd = 0x100000000UL;
116
117         if (holeSize) {
118                 numMemoryBlocks = 2;
119                 holeStart = holeStart & 0x000fffffffffffffUL;
120                 holeStart = addr_to_chunk(holeStart);
121                 holeFirstChunk = holeStart;
122                 holeSize = addr_to_chunk(holeSize);
123                 holeSizeChunks = holeSize;
124                 printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
125                                 holeFirstChunk, holeSizeChunks );
126                 mb_array[0].logicalEnd = holeFirstChunk;
127                 mb_array[0].absEnd = holeFirstChunk;
128                 mb_array[1].logicalStart = holeFirstChunk;
129                 mb_array[1].logicalEnd = 0x100000000UL - holeSizeChunks;
130                 mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
131                 mb_array[1].absEnd = 0x100000000UL;
132         }
133         return numMemoryBlocks;
134 }
135
136 #define MaxSegmentAreas                 32
137 #define MaxSegmentAdrRangeBlocks        128
138 #define MaxAreaRangeBlocks              4
139
140 static unsigned long iSeries_process_Regatta_mainstore_vpd(
141                 struct MemoryBlock *mb_array, unsigned long max_entries)
142 {
143         struct IoHriMainStoreSegment5 *msVpdP =
144                 (struct IoHriMainStoreSegment5 *)xMsVpd;
145         unsigned long numSegmentBlocks = 0;
146         u32 existsBits = msVpdP->msAreaExists;
147         unsigned long area_num;
148
149         printk("Mainstore_VPD: Regatta\n");
150
151         for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
152                 unsigned long numAreaBlocks;
153                 struct IoHriMainStoreArea4 *currentArea;
154
155                 if (existsBits & 0x80000000) {
156                         unsigned long block_num;
157
158                         currentArea = &msVpdP->msAreaArray[area_num];
159                         numAreaBlocks = currentArea->numAdrRangeBlocks;
160                         printk("ms_vpd: processing area %2ld  blocks=%ld",
161                                         area_num, numAreaBlocks);
162                         for (block_num = 0; block_num < numAreaBlocks;
163                                         ++block_num ) {
164                                 /* Process an address range block */
165                                 struct MemoryBlock tempBlock;
166                                 unsigned long i;
167
168                                 tempBlock.absStart =
169                                         (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
170                                 tempBlock.absEnd =
171                                         (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
172                                 tempBlock.logicalStart = 0;
173                                 tempBlock.logicalEnd   = 0;
174                                 printk("\n          block %ld absStart=%016lx absEnd=%016lx",
175                                                 block_num, tempBlock.absStart,
176                                                 tempBlock.absEnd);
177
178                                 for (i = 0; i < numSegmentBlocks; ++i) {
179                                         if (mb_array[i].absStart ==
180                                                         tempBlock.absStart)
181                                                 break;
182                                 }
183                                 if (i == numSegmentBlocks) {
184                                         if (numSegmentBlocks == max_entries)
185                                                 panic("iSeries_process_mainstore_vpd: too many memory blocks");
186                                         mb_array[numSegmentBlocks] = tempBlock;
187                                         ++numSegmentBlocks;
188                                 } else
189                                         printk(" (duplicate)");
190                         }
191                         printk("\n");
192                 }
193                 existsBits <<= 1;
194         }
195         /* Now sort the blocks found into ascending sequence */
196         if (numSegmentBlocks > 1) {
197                 unsigned long m, n;
198
199                 for (m = 0; m < numSegmentBlocks - 1; ++m) {
200                         for (n = numSegmentBlocks - 1; m < n; --n) {
201                                 if (mb_array[n].absStart <
202                                                 mb_array[n-1].absStart) {
203                                         struct MemoryBlock tempBlock;
204
205                                         tempBlock = mb_array[n];
206                                         mb_array[n] = mb_array[n-1];
207                                         mb_array[n-1] = tempBlock;
208                                 }
209                         }
210                 }
211         }
212         /*
213          * Assign "logical" addresses to each block.  These
214          * addresses correspond to the hypervisor "bitmap" space.
215          * Convert all addresses into units of 256K chunks.
216          */
217         {
218         unsigned long i, nextBitmapAddress;
219
220         printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
221         nextBitmapAddress = 0;
222         for (i = 0; i < numSegmentBlocks; ++i) {
223                 unsigned long length = mb_array[i].absEnd -
224                         mb_array[i].absStart;
225
226                 mb_array[i].logicalStart = nextBitmapAddress;
227                 mb_array[i].logicalEnd = nextBitmapAddress + length;
228                 nextBitmapAddress += length;
229                 printk("          Bitmap range: %016lx - %016lx\n"
230                                 "        Absolute range: %016lx - %016lx\n",
231                                 mb_array[i].logicalStart,
232                                 mb_array[i].logicalEnd,
233                                 mb_array[i].absStart, mb_array[i].absEnd);
234                 mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
235                                 0x000fffffffffffffUL);
236                 mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
237                                 0x000fffffffffffffUL);
238                 mb_array[i].logicalStart =
239                         addr_to_chunk(mb_array[i].logicalStart);
240                 mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
241         }
242         }
243
244         return numSegmentBlocks;
245 }
246
247 static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
248                 unsigned long max_entries)
249 {
250         unsigned long i;
251         unsigned long mem_blocks = 0;
252
253         if (mmu_has_feature(MMU_FTR_SLB))
254                 mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
255                                 max_entries);
256         else
257                 mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
258                                 max_entries);
259
260         printk("Mainstore_VPD: numMemoryBlocks = %ld\n", mem_blocks);
261         for (i = 0; i < mem_blocks; ++i) {
262                 printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
263                        "                             abs chunks %016lx - %016lx\n",
264                         i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
265                         mb_array[i].absStart, mb_array[i].absEnd);
266         }
267         return mem_blocks;
268 }
269
270 static void __init iSeries_get_cmdline(void)
271 {
272         char *p, *q;
273
274         /* copy the command line parameter from the primary VSP  */
275         HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
276                         HvLpDma_Direction_RemoteToLocal);
277
278         p = cmd_line;
279         q = cmd_line + 255;
280         while(p < q) {
281                 if (!*p || *p == '\n')
282                         break;
283                 ++p;
284         }
285         *p = 0;
286 }
287
288 static void __init iSeries_init_early(void)
289 {
290         DBG(" -> iSeries_init_early()\n");
291
292         /* Snapshot the timebase, for use in later recalibration */
293         iSeries_time_init_early();
294
295         /*
296          * Initialize the DMA/TCE management
297          */
298         iommu_init_early_iSeries();
299
300         /* Initialize machine-dependency vectors */
301 #ifdef CONFIG_SMP
302         smp_init_iSeries();
303 #endif
304
305         /* Associate Lp Event Queue 0 with processor 0 */
306         HvCallEvent_setLpEventQueueInterruptProc(0, 0);
307
308         mf_init();
309
310         DBG(" <- iSeries_init_early()\n");
311 }
312
313 struct mschunks_map mschunks_map = {
314         /* XXX We don't use these, but Piranha might need them. */
315         .chunk_size  = MSCHUNKS_CHUNK_SIZE,
316         .chunk_shift = MSCHUNKS_CHUNK_SHIFT,
317         .chunk_mask  = MSCHUNKS_OFFSET_MASK,
318 };
319 EXPORT_SYMBOL(mschunks_map);
320
321 static void mschunks_alloc(unsigned long num_chunks)
322 {
323         klimit = _ALIGN(klimit, sizeof(u32));
324         mschunks_map.mapping = (u32 *)klimit;
325         klimit += num_chunks * sizeof(u32);
326         mschunks_map.num_chunks = num_chunks;
327 }
328
329 /*
330  * The iSeries may have very large memories ( > 128 GB ) and a partition
331  * may get memory in "chunks" that may be anywhere in the 2**52 real
332  * address space.  The chunks are 256K in size.  To map this to the
333  * memory model Linux expects, the AS/400 specific code builds a
334  * translation table to translate what Linux thinks are "physical"
335  * addresses to the actual real addresses.  This allows us to make
336  * it appear to Linux that we have contiguous memory starting at
337  * physical address zero while in fact this could be far from the truth.
338  * To avoid confusion, I'll let the words physical and/or real address
339  * apply to the Linux addresses while I'll use "absolute address" to
340  * refer to the actual hardware real address.
341  *
342  * build_iSeries_Memory_Map gets information from the Hypervisor and
343  * looks at the Main Store VPD to determine the absolute addresses
344  * of the memory that has been assigned to our partition and builds
345  * a table used to translate Linux's physical addresses to these
346  * absolute addresses.  Absolute addresses are needed when
347  * communicating with the hypervisor (e.g. to build HPT entries)
348  *
349  * Returns the physical memory size
350  */
351
352 static unsigned long __init build_iSeries_Memory_Map(void)
353 {
354         u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
355         u32 nextPhysChunk;
356         u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
357         u32 totalChunks,moreChunks;
358         u32 currChunk, thisChunk, absChunk;
359         u32 currDword;
360         u32 chunkBit;
361         u64 map;
362         struct MemoryBlock mb[32];
363         unsigned long numMemoryBlocks, curBlock;
364
365         /* Chunk size on iSeries is 256K bytes */
366         totalChunks = (u32)HvLpConfig_getMsChunks();
367         mschunks_alloc(totalChunks);
368
369         /*
370          * Get absolute address of our load area
371          * and map it to physical address 0
372          * This guarantees that the loadarea ends up at physical 0
373          * otherwise, it might not be returned by PLIC as the first
374          * chunks
375          */
376
377         loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
378         loadAreaSize =  itLpNaca.xLoadAreaChunks;
379
380         /*
381          * Only add the pages already mapped here.
382          * Otherwise we might add the hpt pages
383          * The rest of the pages of the load area
384          * aren't in the HPT yet and can still
385          * be assigned an arbitrary physical address
386          */
387         if ((loadAreaSize * 64) > HvPagesToMap)
388                 loadAreaSize = HvPagesToMap / 64;
389
390         loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
391
392         /*
393          * TODO Do we need to do something if the HPT is in the 64MB load area?
394          * This would be required if the itLpNaca.xLoadAreaChunks includes
395          * the HPT size
396          */
397
398         printk("Mapping load area - physical addr = 0000000000000000\n"
399                 "                    absolute addr = %016lx\n",
400                 chunk_to_addr(loadAreaFirstChunk));
401         printk("Load area size %dK\n", loadAreaSize * 256);
402
403         for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
404                 mschunks_map.mapping[nextPhysChunk] =
405                         loadAreaFirstChunk + nextPhysChunk;
406
407         /*
408          * Get absolute address of our HPT and remember it so
409          * we won't map it to any physical address
410          */
411         hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
412         hptSizePages = (u32)HvCallHpt_getHptPages();
413         hptSizeChunks = hptSizePages >>
414                 (MSCHUNKS_CHUNK_SHIFT - HW_PAGE_SHIFT);
415         hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
416
417         printk("HPT absolute addr = %016lx, size = %dK\n",
418                         chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
419
420         /*
421          * Determine if absolute memory has any
422          * holes so that we can interpret the
423          * access map we get back from the hypervisor
424          * correctly.
425          */
426         numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
427
428         /*
429          * Process the main store access map from the hypervisor
430          * to build up our physical -> absolute translation table
431          */
432         curBlock = 0;
433         currChunk = 0;
434         currDword = 0;
435         moreChunks = totalChunks;
436
437         while (moreChunks) {
438                 map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
439                                 currDword);
440                 thisChunk = currChunk;
441                 while (map) {
442                         chunkBit = map >> 63;
443                         map <<= 1;
444                         if (chunkBit) {
445                                 --moreChunks;
446                                 while (thisChunk >= mb[curBlock].logicalEnd) {
447                                         ++curBlock;
448                                         if (curBlock >= numMemoryBlocks)
449                                                 panic("out of memory blocks");
450                                 }
451                                 if (thisChunk < mb[curBlock].logicalStart)
452                                         panic("memory block error");
453
454                                 absChunk = mb[curBlock].absStart +
455                                         (thisChunk - mb[curBlock].logicalStart);
456                                 if (((absChunk < hptFirstChunk) ||
457                                      (absChunk > hptLastChunk)) &&
458                                     ((absChunk < loadAreaFirstChunk) ||
459                                      (absChunk > loadAreaLastChunk))) {
460                                         mschunks_map.mapping[nextPhysChunk] =
461                                                 absChunk;
462                                         ++nextPhysChunk;
463                                 }
464                         }
465                         ++thisChunk;
466                 }
467                 ++currDword;
468                 currChunk += 64;
469         }
470
471         /*
472          * main store size (in chunks) is
473          *   totalChunks - hptSizeChunks
474          * which should be equal to
475          *   nextPhysChunk
476          */
477         return chunk_to_addr(nextPhysChunk);
478 }
479
480 /*
481  * Document me.
482  */
483 static void __init iSeries_setup_arch(void)
484 {
485         if (get_lppaca()->shared_proc) {
486                 ppc_md.idle_loop = iseries_shared_idle;
487                 printk(KERN_DEBUG "Using shared processor idle loop\n");
488         } else {
489                 ppc_md.idle_loop = iseries_dedicated_idle;
490                 printk(KERN_DEBUG "Using dedicated idle loop\n");
491         }
492
493         /* Setup the Lp Event Queue */
494         setup_hvlpevent_queue();
495
496         printk("Max  logical processors = %d\n",
497                         itVpdAreas.xSlicMaxLogicalProcs);
498         printk("Max physical processors = %d\n",
499                         itVpdAreas.xSlicMaxPhysicalProcs);
500
501         iSeries_pcibios_init();
502 }
503
504 static void iSeries_show_cpuinfo(struct seq_file *m)
505 {
506         seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
507 }
508
509 static void __init iSeries_progress(char * st, unsigned short code)
510 {
511         printk("Progress: [%04x] - %s\n", (unsigned)code, st);
512         mf_display_progress(code);
513 }
514
515 static void __init iSeries_fixup_klimit(void)
516 {
517         /*
518          * Change klimit to take into account any ram disk
519          * that may be included
520          */
521         if (naca.xRamDisk)
522                 klimit = KERNELBASE + (u64)naca.xRamDisk +
523                         (naca.xRamDiskSize * HW_PAGE_SIZE);
524 }
525
526 static int __init iSeries_src_init(void)
527 {
528         /* clear the progress line */
529         if (firmware_has_feature(FW_FEATURE_ISERIES))
530                 ppc_md.progress(" ", 0xffff);
531         return 0;
532 }
533
534 late_initcall(iSeries_src_init);
535
536 static inline void process_iSeries_events(void)
537 {
538         asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
539 }
540
541 static void yield_shared_processor(void)
542 {
543         unsigned long tb;
544
545         HvCall_setEnabledInterrupts(HvCall_MaskIPI |
546                                     HvCall_MaskLpEvent |
547                                     HvCall_MaskLpProd |
548                                     HvCall_MaskTimeout);
549
550         tb = get_tb();
551         /* Compute future tb value when yield should expire */
552         HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
553
554         /*
555          * The decrementer stops during the yield.  Force a fake decrementer
556          * here and let the timer_interrupt code sort out the actual time.
557          */
558         get_lppaca()->int_dword.fields.decr_int = 1;
559         ppc64_runlatch_on();
560         process_iSeries_events();
561 }
562
563 static void iseries_shared_idle(void)
564 {
565         while (1) {
566                 tick_nohz_stop_sched_tick(1);
567                 while (!need_resched() && !hvlpevent_is_pending()) {
568                         local_irq_disable();
569                         ppc64_runlatch_off();
570
571                         /* Recheck with irqs off */
572                         if (!need_resched() && !hvlpevent_is_pending())
573                                 yield_shared_processor();
574
575                         HMT_medium();
576                         local_irq_enable();
577                 }
578
579                 ppc64_runlatch_on();
580                 tick_nohz_restart_sched_tick();
581
582                 if (hvlpevent_is_pending())
583                         process_iSeries_events();
584
585                 preempt_enable_no_resched();
586                 schedule();
587                 preempt_disable();
588         }
589 }
590
591 static void iseries_dedicated_idle(void)
592 {
593         set_thread_flag(TIF_POLLING_NRFLAG);
594
595         while (1) {
596                 tick_nohz_stop_sched_tick(1);
597                 if (!need_resched()) {
598                         while (!need_resched()) {
599                                 ppc64_runlatch_off();
600                                 HMT_low();
601
602                                 if (hvlpevent_is_pending()) {
603                                         HMT_medium();
604                                         ppc64_runlatch_on();
605                                         process_iSeries_events();
606                                 }
607                         }
608
609                         HMT_medium();
610                 }
611
612                 ppc64_runlatch_on();
613                 tick_nohz_restart_sched_tick();
614                 preempt_enable_no_resched();
615                 schedule();
616                 preempt_disable();
617         }
618 }
619
620 static void __iomem *iseries_ioremap(phys_addr_t address, unsigned long size,
621                                      unsigned long flags, void *caller)
622 {
623         return (void __iomem *)address;
624 }
625
626 static void iseries_iounmap(volatile void __iomem *token)
627 {
628 }
629
630 static int __init iseries_probe(void)
631 {
632         unsigned long root = of_get_flat_dt_root();
633         if (!of_flat_dt_is_compatible(root, "IBM,iSeries"))
634                 return 0;
635
636         hpte_init_iSeries();
637         /* iSeries does not support 16M pages */
638         cur_cpu_spec->mmu_features &= ~MMU_FTR_16M_PAGE;
639
640         return 1;
641 }
642
643 #ifdef CONFIG_KEXEC
644 static int iseries_kexec_prepare(struct kimage *image)
645 {
646         return -ENOSYS;
647 }
648 #endif
649
650 define_machine(iseries) {
651         .name                   = "iSeries",
652         .setup_arch             = iSeries_setup_arch,
653         .show_cpuinfo           = iSeries_show_cpuinfo,
654         .init_IRQ               = iSeries_init_IRQ,
655         .get_irq                = iSeries_get_irq,
656         .init_early             = iSeries_init_early,
657         .pcibios_fixup          = iSeries_pci_final_fixup,
658         .pcibios_fixup_resources= iSeries_pcibios_fixup_resources,
659         .restart                = mf_reboot,
660         .power_off              = mf_power_off,
661         .halt                   = mf_power_off,
662         .get_boot_time          = iSeries_get_boot_time,
663         .set_rtc_time           = iSeries_set_rtc_time,
664         .get_rtc_time           = iSeries_get_rtc_time,
665         .calibrate_decr         = generic_calibrate_decr,
666         .progress               = iSeries_progress,
667         .probe                  = iseries_probe,
668         .ioremap                = iseries_ioremap,
669         .iounmap                = iseries_iounmap,
670 #ifdef CONFIG_KEXEC
671         .machine_kexec_prepare  = iseries_kexec_prepare,
672 #endif
673         /* XXX Implement enable_pmcs for iSeries */
674 };
675
676 void * __init iSeries_early_setup(void)
677 {
678         unsigned long phys_mem_size;
679
680         /* Identify CPU type. This is done again by the common code later
681          * on but calling this function multiple times is fine.
682          */
683         identify_cpu(0, mfspr(SPRN_PVR));
684         initialise_paca(&boot_paca, 0);
685
686         powerpc_firmware_features |= FW_FEATURE_ISERIES;
687         powerpc_firmware_features |= FW_FEATURE_LPAR;
688
689 #ifdef CONFIG_SMP
690         /* On iSeries we know we can never have more than 64 cpus */
691         nr_cpu_ids = max(nr_cpu_ids, 64);
692 #endif
693
694         iSeries_fixup_klimit();
695
696         /*
697          * Initialize the table which translate Linux physical addresses to
698          * AS/400 absolute addresses
699          */
700         phys_mem_size = build_iSeries_Memory_Map();
701
702         iSeries_get_cmdline();
703
704         return (void *) __pa(build_flat_dt(phys_mem_size));
705 }
706
707 static void hvputc(char c)
708 {
709         if (c == '\n')
710                 hvputc('\r');
711
712         HvCall_writeLogBuffer(&c, 1);
713 }
714
715 void __init udbg_init_iseries(void)
716 {
717         udbg_putc = hvputc;
718 }