Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-2.6
[pandora-kernel.git] / arch / powerpc / platforms / iseries / setup.c
1 /*
2  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3  *    Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
4  *
5  *    Description:
6  *      Architecture- / platform-specific boot-time initialization code for
7  *      the IBM iSeries LPAR.  Adapted from original code by Grant Erickson and
8  *      code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
9  *      <dan@net4x.com>.
10  *
11  *      This program is free software; you can redistribute it and/or
12  *      modify it under the terms of the GNU General Public License
13  *      as published by the Free Software Foundation; either version
14  *      2 of the License, or (at your option) any later version.
15  */
16
17 #undef DEBUG
18
19 #include <linux/init.h>
20 #include <linux/threads.h>
21 #include <linux/smp.h>
22 #include <linux/param.h>
23 #include <linux/string.h>
24 #include <linux/seq_file.h>
25 #include <linux/kdev_t.h>
26 #include <linux/kexec.h>
27 #include <linux/major.h>
28 #include <linux/root_dev.h>
29 #include <linux/kernel.h>
30 #include <linux/hrtimer.h>
31 #include <linux/tick.h>
32
33 #include <asm/processor.h>
34 #include <asm/machdep.h>
35 #include <asm/page.h>
36 #include <asm/mmu.h>
37 #include <asm/pgtable.h>
38 #include <asm/mmu_context.h>
39 #include <asm/cputable.h>
40 #include <asm/sections.h>
41 #include <asm/iommu.h>
42 #include <asm/firmware.h>
43 #include <asm/system.h>
44 #include <asm/time.h>
45 #include <asm/paca.h>
46 #include <asm/cache.h>
47 #include <asm/abs_addr.h>
48 #include <asm/iseries/hv_lp_config.h>
49 #include <asm/iseries/hv_call_event.h>
50 #include <asm/iseries/hv_call_xm.h>
51 #include <asm/iseries/it_lp_queue.h>
52 #include <asm/iseries/mf.h>
53 #include <asm/iseries/hv_lp_event.h>
54 #include <asm/iseries/lpar_map.h>
55 #include <asm/udbg.h>
56 #include <asm/irq.h>
57
58 #include "naca.h"
59 #include "setup.h"
60 #include "irq.h"
61 #include "vpd_areas.h"
62 #include "processor_vpd.h"
63 #include "it_lp_naca.h"
64 #include "main_store.h"
65 #include "call_sm.h"
66 #include "call_hpt.h"
67 #include "pci.h"
68
69 #ifdef DEBUG
70 #define DBG(fmt...) udbg_printf(fmt)
71 #else
72 #define DBG(fmt...)
73 #endif
74
75 /* Function Prototypes */
76 static unsigned long build_iSeries_Memory_Map(void);
77 static void iseries_shared_idle(void);
78 static void iseries_dedicated_idle(void);
79
80
81 struct MemoryBlock {
82         unsigned long absStart;
83         unsigned long absEnd;
84         unsigned long logicalStart;
85         unsigned long logicalEnd;
86 };
87
88 /*
89  * Process the main store vpd to determine where the holes in memory are
90  * and return the number of physical blocks and fill in the array of
91  * block data.
92  */
93 static unsigned long iSeries_process_Condor_mainstore_vpd(
94                 struct MemoryBlock *mb_array, unsigned long max_entries)
95 {
96         unsigned long holeFirstChunk, holeSizeChunks;
97         unsigned long numMemoryBlocks = 1;
98         struct IoHriMainStoreSegment4 *msVpd =
99                 (struct IoHriMainStoreSegment4 *)xMsVpd;
100         unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
101         unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
102         unsigned long holeSize = holeEnd - holeStart;
103
104         printk("Mainstore_VPD: Condor\n");
105         /*
106          * Determine if absolute memory has any
107          * holes so that we can interpret the
108          * access map we get back from the hypervisor
109          * correctly.
110          */
111         mb_array[0].logicalStart = 0;
112         mb_array[0].logicalEnd = 0x100000000UL;
113         mb_array[0].absStart = 0;
114         mb_array[0].absEnd = 0x100000000UL;
115
116         if (holeSize) {
117                 numMemoryBlocks = 2;
118                 holeStart = holeStart & 0x000fffffffffffffUL;
119                 holeStart = addr_to_chunk(holeStart);
120                 holeFirstChunk = holeStart;
121                 holeSize = addr_to_chunk(holeSize);
122                 holeSizeChunks = holeSize;
123                 printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
124                                 holeFirstChunk, holeSizeChunks );
125                 mb_array[0].logicalEnd = holeFirstChunk;
126                 mb_array[0].absEnd = holeFirstChunk;
127                 mb_array[1].logicalStart = holeFirstChunk;
128                 mb_array[1].logicalEnd = 0x100000000UL - holeSizeChunks;
129                 mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
130                 mb_array[1].absEnd = 0x100000000UL;
131         }
132         return numMemoryBlocks;
133 }
134
135 #define MaxSegmentAreas                 32
136 #define MaxSegmentAdrRangeBlocks        128
137 #define MaxAreaRangeBlocks              4
138
139 static unsigned long iSeries_process_Regatta_mainstore_vpd(
140                 struct MemoryBlock *mb_array, unsigned long max_entries)
141 {
142         struct IoHriMainStoreSegment5 *msVpdP =
143                 (struct IoHriMainStoreSegment5 *)xMsVpd;
144         unsigned long numSegmentBlocks = 0;
145         u32 existsBits = msVpdP->msAreaExists;
146         unsigned long area_num;
147
148         printk("Mainstore_VPD: Regatta\n");
149
150         for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
151                 unsigned long numAreaBlocks;
152                 struct IoHriMainStoreArea4 *currentArea;
153
154                 if (existsBits & 0x80000000) {
155                         unsigned long block_num;
156
157                         currentArea = &msVpdP->msAreaArray[area_num];
158                         numAreaBlocks = currentArea->numAdrRangeBlocks;
159                         printk("ms_vpd: processing area %2ld  blocks=%ld",
160                                         area_num, numAreaBlocks);
161                         for (block_num = 0; block_num < numAreaBlocks;
162                                         ++block_num ) {
163                                 /* Process an address range block */
164                                 struct MemoryBlock tempBlock;
165                                 unsigned long i;
166
167                                 tempBlock.absStart =
168                                         (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
169                                 tempBlock.absEnd =
170                                         (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
171                                 tempBlock.logicalStart = 0;
172                                 tempBlock.logicalEnd   = 0;
173                                 printk("\n          block %ld absStart=%016lx absEnd=%016lx",
174                                                 block_num, tempBlock.absStart,
175                                                 tempBlock.absEnd);
176
177                                 for (i = 0; i < numSegmentBlocks; ++i) {
178                                         if (mb_array[i].absStart ==
179                                                         tempBlock.absStart)
180                                                 break;
181                                 }
182                                 if (i == numSegmentBlocks) {
183                                         if (numSegmentBlocks == max_entries)
184                                                 panic("iSeries_process_mainstore_vpd: too many memory blocks");
185                                         mb_array[numSegmentBlocks] = tempBlock;
186                                         ++numSegmentBlocks;
187                                 } else
188                                         printk(" (duplicate)");
189                         }
190                         printk("\n");
191                 }
192                 existsBits <<= 1;
193         }
194         /* Now sort the blocks found into ascending sequence */
195         if (numSegmentBlocks > 1) {
196                 unsigned long m, n;
197
198                 for (m = 0; m < numSegmentBlocks - 1; ++m) {
199                         for (n = numSegmentBlocks - 1; m < n; --n) {
200                                 if (mb_array[n].absStart <
201                                                 mb_array[n-1].absStart) {
202                                         struct MemoryBlock tempBlock;
203
204                                         tempBlock = mb_array[n];
205                                         mb_array[n] = mb_array[n-1];
206                                         mb_array[n-1] = tempBlock;
207                                 }
208                         }
209                 }
210         }
211         /*
212          * Assign "logical" addresses to each block.  These
213          * addresses correspond to the hypervisor "bitmap" space.
214          * Convert all addresses into units of 256K chunks.
215          */
216         {
217         unsigned long i, nextBitmapAddress;
218
219         printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
220         nextBitmapAddress = 0;
221         for (i = 0; i < numSegmentBlocks; ++i) {
222                 unsigned long length = mb_array[i].absEnd -
223                         mb_array[i].absStart;
224
225                 mb_array[i].logicalStart = nextBitmapAddress;
226                 mb_array[i].logicalEnd = nextBitmapAddress + length;
227                 nextBitmapAddress += length;
228                 printk("          Bitmap range: %016lx - %016lx\n"
229                                 "        Absolute range: %016lx - %016lx\n",
230                                 mb_array[i].logicalStart,
231                                 mb_array[i].logicalEnd,
232                                 mb_array[i].absStart, mb_array[i].absEnd);
233                 mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
234                                 0x000fffffffffffffUL);
235                 mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
236                                 0x000fffffffffffffUL);
237                 mb_array[i].logicalStart =
238                         addr_to_chunk(mb_array[i].logicalStart);
239                 mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
240         }
241         }
242
243         return numSegmentBlocks;
244 }
245
246 static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
247                 unsigned long max_entries)
248 {
249         unsigned long i;
250         unsigned long mem_blocks = 0;
251
252         if (cpu_has_feature(CPU_FTR_SLB))
253                 mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
254                                 max_entries);
255         else
256                 mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
257                                 max_entries);
258
259         printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
260         for (i = 0; i < mem_blocks; ++i) {
261                 printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
262                        "                             abs chunks %016lx - %016lx\n",
263                         i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
264                         mb_array[i].absStart, mb_array[i].absEnd);
265         }
266         return mem_blocks;
267 }
268
269 static void __init iSeries_get_cmdline(void)
270 {
271         char *p, *q;
272
273         /* copy the command line parameter from the primary VSP  */
274         HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
275                         HvLpDma_Direction_RemoteToLocal);
276
277         p = cmd_line;
278         q = cmd_line + 255;
279         while(p < q) {
280                 if (!*p || *p == '\n')
281                         break;
282                 ++p;
283         }
284         *p = 0;
285 }
286
287 static void __init iSeries_init_early(void)
288 {
289         DBG(" -> iSeries_init_early()\n");
290
291         /* Snapshot the timebase, for use in later recalibration */
292         iSeries_time_init_early();
293
294         /*
295          * Initialize the DMA/TCE management
296          */
297         iommu_init_early_iSeries();
298
299         /* Initialize machine-dependency vectors */
300 #ifdef CONFIG_SMP
301         smp_init_iSeries();
302 #endif
303
304         /* Associate Lp Event Queue 0 with processor 0 */
305         HvCallEvent_setLpEventQueueInterruptProc(0, 0);
306
307         mf_init();
308
309         DBG(" <- iSeries_init_early()\n");
310 }
311
312 struct mschunks_map mschunks_map = {
313         /* XXX We don't use these, but Piranha might need them. */
314         .chunk_size  = MSCHUNKS_CHUNK_SIZE,
315         .chunk_shift = MSCHUNKS_CHUNK_SHIFT,
316         .chunk_mask  = MSCHUNKS_OFFSET_MASK,
317 };
318 EXPORT_SYMBOL(mschunks_map);
319
320 static void mschunks_alloc(unsigned long num_chunks)
321 {
322         klimit = _ALIGN(klimit, sizeof(u32));
323         mschunks_map.mapping = (u32 *)klimit;
324         klimit += num_chunks * sizeof(u32);
325         mschunks_map.num_chunks = num_chunks;
326 }
327
328 /*
329  * The iSeries may have very large memories ( > 128 GB ) and a partition
330  * may get memory in "chunks" that may be anywhere in the 2**52 real
331  * address space.  The chunks are 256K in size.  To map this to the
332  * memory model Linux expects, the AS/400 specific code builds a
333  * translation table to translate what Linux thinks are "physical"
334  * addresses to the actual real addresses.  This allows us to make
335  * it appear to Linux that we have contiguous memory starting at
336  * physical address zero while in fact this could be far from the truth.
337  * To avoid confusion, I'll let the words physical and/or real address
338  * apply to the Linux addresses while I'll use "absolute address" to
339  * refer to the actual hardware real address.
340  *
341  * build_iSeries_Memory_Map gets information from the Hypervisor and
342  * looks at the Main Store VPD to determine the absolute addresses
343  * of the memory that has been assigned to our partition and builds
344  * a table used to translate Linux's physical addresses to these
345  * absolute addresses.  Absolute addresses are needed when
346  * communicating with the hypervisor (e.g. to build HPT entries)
347  *
348  * Returns the physical memory size
349  */
350
351 static unsigned long __init build_iSeries_Memory_Map(void)
352 {
353         u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
354         u32 nextPhysChunk;
355         u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
356         u32 totalChunks,moreChunks;
357         u32 currChunk, thisChunk, absChunk;
358         u32 currDword;
359         u32 chunkBit;
360         u64 map;
361         struct MemoryBlock mb[32];
362         unsigned long numMemoryBlocks, curBlock;
363
364         /* Chunk size on iSeries is 256K bytes */
365         totalChunks = (u32)HvLpConfig_getMsChunks();
366         mschunks_alloc(totalChunks);
367
368         /*
369          * Get absolute address of our load area
370          * and map it to physical address 0
371          * This guarantees that the loadarea ends up at physical 0
372          * otherwise, it might not be returned by PLIC as the first
373          * chunks
374          */
375
376         loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
377         loadAreaSize =  itLpNaca.xLoadAreaChunks;
378
379         /*
380          * Only add the pages already mapped here.
381          * Otherwise we might add the hpt pages
382          * The rest of the pages of the load area
383          * aren't in the HPT yet and can still
384          * be assigned an arbitrary physical address
385          */
386         if ((loadAreaSize * 64) > HvPagesToMap)
387                 loadAreaSize = HvPagesToMap / 64;
388
389         loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
390
391         /*
392          * TODO Do we need to do something if the HPT is in the 64MB load area?
393          * This would be required if the itLpNaca.xLoadAreaChunks includes
394          * the HPT size
395          */
396
397         printk("Mapping load area - physical addr = 0000000000000000\n"
398                 "                    absolute addr = %016lx\n",
399                 chunk_to_addr(loadAreaFirstChunk));
400         printk("Load area size %dK\n", loadAreaSize * 256);
401
402         for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
403                 mschunks_map.mapping[nextPhysChunk] =
404                         loadAreaFirstChunk + nextPhysChunk;
405
406         /*
407          * Get absolute address of our HPT and remember it so
408          * we won't map it to any physical address
409          */
410         hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
411         hptSizePages = (u32)HvCallHpt_getHptPages();
412         hptSizeChunks = hptSizePages >>
413                 (MSCHUNKS_CHUNK_SHIFT - HW_PAGE_SHIFT);
414         hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
415
416         printk("HPT absolute addr = %016lx, size = %dK\n",
417                         chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
418
419         /*
420          * Determine if absolute memory has any
421          * holes so that we can interpret the
422          * access map we get back from the hypervisor
423          * correctly.
424          */
425         numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
426
427         /*
428          * Process the main store access map from the hypervisor
429          * to build up our physical -> absolute translation table
430          */
431         curBlock = 0;
432         currChunk = 0;
433         currDword = 0;
434         moreChunks = totalChunks;
435
436         while (moreChunks) {
437                 map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
438                                 currDword);
439                 thisChunk = currChunk;
440                 while (map) {
441                         chunkBit = map >> 63;
442                         map <<= 1;
443                         if (chunkBit) {
444                                 --moreChunks;
445                                 while (thisChunk >= mb[curBlock].logicalEnd) {
446                                         ++curBlock;
447                                         if (curBlock >= numMemoryBlocks)
448                                                 panic("out of memory blocks");
449                                 }
450                                 if (thisChunk < mb[curBlock].logicalStart)
451                                         panic("memory block error");
452
453                                 absChunk = mb[curBlock].absStart +
454                                         (thisChunk - mb[curBlock].logicalStart);
455                                 if (((absChunk < hptFirstChunk) ||
456                                      (absChunk > hptLastChunk)) &&
457                                     ((absChunk < loadAreaFirstChunk) ||
458                                      (absChunk > loadAreaLastChunk))) {
459                                         mschunks_map.mapping[nextPhysChunk] =
460                                                 absChunk;
461                                         ++nextPhysChunk;
462                                 }
463                         }
464                         ++thisChunk;
465                 }
466                 ++currDword;
467                 currChunk += 64;
468         }
469
470         /*
471          * main store size (in chunks) is
472          *   totalChunks - hptSizeChunks
473          * which should be equal to
474          *   nextPhysChunk
475          */
476         return chunk_to_addr(nextPhysChunk);
477 }
478
479 /*
480  * Document me.
481  */
482 static void __init iSeries_setup_arch(void)
483 {
484         if (get_lppaca()->shared_proc) {
485                 ppc_md.idle_loop = iseries_shared_idle;
486                 printk(KERN_DEBUG "Using shared processor idle loop\n");
487         } else {
488                 ppc_md.idle_loop = iseries_dedicated_idle;
489                 printk(KERN_DEBUG "Using dedicated idle loop\n");
490         }
491
492         /* Setup the Lp Event Queue */
493         setup_hvlpevent_queue();
494
495         printk("Max  logical processors = %d\n",
496                         itVpdAreas.xSlicMaxLogicalProcs);
497         printk("Max physical processors = %d\n",
498                         itVpdAreas.xSlicMaxPhysicalProcs);
499
500         iSeries_pcibios_init();
501 }
502
503 static void iSeries_show_cpuinfo(struct seq_file *m)
504 {
505         seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
506 }
507
508 static void __init iSeries_progress(char * st, unsigned short code)
509 {
510         printk("Progress: [%04x] - %s\n", (unsigned)code, st);
511         mf_display_progress(code);
512 }
513
514 static void __init iSeries_fixup_klimit(void)
515 {
516         /*
517          * Change klimit to take into account any ram disk
518          * that may be included
519          */
520         if (naca.xRamDisk)
521                 klimit = KERNELBASE + (u64)naca.xRamDisk +
522                         (naca.xRamDiskSize * HW_PAGE_SIZE);
523 }
524
525 static int __init iSeries_src_init(void)
526 {
527         /* clear the progress line */
528         if (firmware_has_feature(FW_FEATURE_ISERIES))
529                 ppc_md.progress(" ", 0xffff);
530         return 0;
531 }
532
533 late_initcall(iSeries_src_init);
534
535 static inline void process_iSeries_events(void)
536 {
537         asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
538 }
539
540 static void yield_shared_processor(void)
541 {
542         unsigned long tb;
543
544         HvCall_setEnabledInterrupts(HvCall_MaskIPI |
545                                     HvCall_MaskLpEvent |
546                                     HvCall_MaskLpProd |
547                                     HvCall_MaskTimeout);
548
549         tb = get_tb();
550         /* Compute future tb value when yield should expire */
551         HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
552
553         /*
554          * The decrementer stops during the yield.  Force a fake decrementer
555          * here and let the timer_interrupt code sort out the actual time.
556          */
557         get_lppaca()->int_dword.fields.decr_int = 1;
558         ppc64_runlatch_on();
559         process_iSeries_events();
560 }
561
562 static void iseries_shared_idle(void)
563 {
564         while (1) {
565                 tick_nohz_stop_sched_tick(1);
566                 while (!need_resched() && !hvlpevent_is_pending()) {
567                         local_irq_disable();
568                         ppc64_runlatch_off();
569
570                         /* Recheck with irqs off */
571                         if (!need_resched() && !hvlpevent_is_pending())
572                                 yield_shared_processor();
573
574                         HMT_medium();
575                         local_irq_enable();
576                 }
577
578                 ppc64_runlatch_on();
579                 tick_nohz_restart_sched_tick();
580
581                 if (hvlpevent_is_pending())
582                         process_iSeries_events();
583
584                 preempt_enable_no_resched();
585                 schedule();
586                 preempt_disable();
587         }
588 }
589
590 static void iseries_dedicated_idle(void)
591 {
592         set_thread_flag(TIF_POLLING_NRFLAG);
593
594         while (1) {
595                 tick_nohz_stop_sched_tick(1);
596                 if (!need_resched()) {
597                         while (!need_resched()) {
598                                 ppc64_runlatch_off();
599                                 HMT_low();
600
601                                 if (hvlpevent_is_pending()) {
602                                         HMT_medium();
603                                         ppc64_runlatch_on();
604                                         process_iSeries_events();
605                                 }
606                         }
607
608                         HMT_medium();
609                 }
610
611                 ppc64_runlatch_on();
612                 tick_nohz_restart_sched_tick();
613                 preempt_enable_no_resched();
614                 schedule();
615                 preempt_disable();
616         }
617 }
618
619 static void __iomem *iseries_ioremap(phys_addr_t address, unsigned long size,
620                                      unsigned long flags, void *caller)
621 {
622         return (void __iomem *)address;
623 }
624
625 static void iseries_iounmap(volatile void __iomem *token)
626 {
627 }
628
629 static int __init iseries_probe(void)
630 {
631         unsigned long root = of_get_flat_dt_root();
632         if (!of_flat_dt_is_compatible(root, "IBM,iSeries"))
633                 return 0;
634
635         hpte_init_iSeries();
636         /* iSeries does not support 16M pages */
637         cur_cpu_spec->cpu_features &= ~CPU_FTR_16M_PAGE;
638
639         return 1;
640 }
641
642 #ifdef CONFIG_KEXEC
643 static int iseries_kexec_prepare(struct kimage *image)
644 {
645         return -ENOSYS;
646 }
647 #endif
648
649 define_machine(iseries) {
650         .name                   = "iSeries",
651         .setup_arch             = iSeries_setup_arch,
652         .show_cpuinfo           = iSeries_show_cpuinfo,
653         .init_IRQ               = iSeries_init_IRQ,
654         .get_irq                = iSeries_get_irq,
655         .init_early             = iSeries_init_early,
656         .pcibios_fixup          = iSeries_pci_final_fixup,
657         .pcibios_fixup_resources= iSeries_pcibios_fixup_resources,
658         .restart                = mf_reboot,
659         .power_off              = mf_power_off,
660         .halt                   = mf_power_off,
661         .get_boot_time          = iSeries_get_boot_time,
662         .set_rtc_time           = iSeries_set_rtc_time,
663         .get_rtc_time           = iSeries_get_rtc_time,
664         .calibrate_decr         = generic_calibrate_decr,
665         .progress               = iSeries_progress,
666         .probe                  = iseries_probe,
667         .ioremap                = iseries_ioremap,
668         .iounmap                = iseries_iounmap,
669 #ifdef CONFIG_KEXEC
670         .machine_kexec_prepare  = iseries_kexec_prepare,
671 #endif
672         /* XXX Implement enable_pmcs for iSeries */
673 };
674
675 void * __init iSeries_early_setup(void)
676 {
677         unsigned long phys_mem_size;
678
679         /* Identify CPU type. This is done again by the common code later
680          * on but calling this function multiple times is fine.
681          */
682         identify_cpu(0, mfspr(SPRN_PVR));
683
684         powerpc_firmware_features |= FW_FEATURE_ISERIES;
685         powerpc_firmware_features |= FW_FEATURE_LPAR;
686
687         iSeries_fixup_klimit();
688
689         /*
690          * Initialize the table which translate Linux physical addresses to
691          * AS/400 absolute addresses
692          */
693         phys_mem_size = build_iSeries_Memory_Map();
694
695         iSeries_get_cmdline();
696
697         return (void *) __pa(build_flat_dt(phys_mem_size));
698 }
699
700 static void hvputc(char c)
701 {
702         if (c == '\n')
703                 hvputc('\r');
704
705         HvCall_writeLogBuffer(&c, 1);
706 }
707
708 void __init udbg_init_iseries(void)
709 {
710         udbg_putc = hvputc;
711 }