Merge ../linus
[pandora-kernel.git] / arch / powerpc / platforms / cell / spufs / switch.c
1 /*
2  * spu_switch.c
3  *
4  * (C) Copyright IBM Corp. 2005
5  *
6  * Author: Mark Nutter <mnutter@us.ibm.com>
7  *
8  * Host-side part of SPU context switch sequence outlined in
9  * Synergistic Processor Element, Book IV.
10  *
11  * A fully premptive switch of an SPE is very expensive in terms
12  * of time and system resources.  SPE Book IV indicates that SPE
13  * allocation should follow a "serially reusable device" model,
14  * in which the SPE is assigned a task until it completes.  When
15  * this is not possible, this sequence may be used to premptively
16  * save, and then later (optionally) restore the context of a
17  * program executing on an SPE.
18  *
19  *
20  * This program is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2, or (at your option)
23  * any later version.
24  *
25  * This program is distributed in the hope that it will be useful,
26  * but WITHOUT ANY WARRANTY; without even the implied warranty of
27  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28  * GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with this program; if not, write to the Free Software
32  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33  */
34
35 #include <linux/config.h>
36 #include <linux/module.h>
37 #include <linux/errno.h>
38 #include <linux/sched.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <linux/smp.h>
43 #include <linux/smp_lock.h>
44 #include <linux/stddef.h>
45 #include <linux/unistd.h>
46
47 #include <asm/io.h>
48 #include <asm/spu.h>
49 #include <asm/spu_priv1.h>
50 #include <asm/spu_csa.h>
51 #include <asm/mmu_context.h>
52
53 #include "spu_save_dump.h"
54 #include "spu_restore_dump.h"
55
56 #if 0
57 #define POLL_WHILE_TRUE(_c) {                           \
58     do {                                                \
59     } while (_c);                                       \
60   }
61 #else
62 #define RELAX_SPIN_COUNT                                1000
63 #define POLL_WHILE_TRUE(_c) {                           \
64     do {                                                \
65         int _i;                                         \
66         for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
67             cpu_relax();                                \
68         }                                               \
69         if (unlikely(_c)) yield();                      \
70         else break;                                     \
71     } while (_c);                                       \
72   }
73 #endif                          /* debug */
74
75 #define POLL_WHILE_FALSE(_c)    POLL_WHILE_TRUE(!(_c))
76
77 static inline void acquire_spu_lock(struct spu *spu)
78 {
79         /* Save, Step 1:
80          * Restore, Step 1:
81          *    Acquire SPU-specific mutual exclusion lock.
82          *    TBD.
83          */
84 }
85
86 static inline void release_spu_lock(struct spu *spu)
87 {
88         /* Restore, Step 76:
89          *    Release SPU-specific mutual exclusion lock.
90          *    TBD.
91          */
92 }
93
94 static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
95 {
96         struct spu_problem __iomem *prob = spu->problem;
97         u32 isolate_state;
98
99         /* Save, Step 2:
100          * Save, Step 6:
101          *     If SPU_Status[E,L,IS] any field is '1', this
102          *     SPU is in isolate state and cannot be context
103          *     saved at this time.
104          */
105         isolate_state = SPU_STATUS_ISOLATED_STATE |
106             SPU_STATUS_ISOLATED_LOAD_STAUTUS | SPU_STATUS_ISOLATED_EXIT_STAUTUS;
107         return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
108 }
109
110 static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
111 {
112         /* Save, Step 3:
113          * Restore, Step 2:
114          *     Save INT_Mask_class0 in CSA.
115          *     Write INT_MASK_class0 with value of 0.
116          *     Save INT_Mask_class1 in CSA.
117          *     Write INT_MASK_class1 with value of 0.
118          *     Save INT_Mask_class2 in CSA.
119          *     Write INT_MASK_class2 with value of 0.
120          */
121         spin_lock_irq(&spu->register_lock);
122         if (csa) {
123                 csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
124                 csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
125                 csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
126         }
127         spu_int_mask_set(spu, 0, 0ul);
128         spu_int_mask_set(spu, 1, 0ul);
129         spu_int_mask_set(spu, 2, 0ul);
130         eieio();
131         spin_unlock_irq(&spu->register_lock);
132 }
133
134 static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
135 {
136         /* Save, Step 4:
137          * Restore, Step 25.
138          *    Set a software watchdog timer, which specifies the
139          *    maximum allowable time for a context save sequence.
140          *
141          *    For present, this implementation will not set a global
142          *    watchdog timer, as virtualization & variable system load
143          *    may cause unpredictable execution times.
144          */
145 }
146
147 static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
148 {
149         /* Save, Step 5:
150          * Restore, Step 3:
151          *     Inhibit user-space access (if provided) to this
152          *     SPU by unmapping the virtual pages assigned to
153          *     the SPU memory-mapped I/O (MMIO) for problem
154          *     state. TBD.
155          */
156 }
157
158 static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
159 {
160         /* Save, Step 7:
161          * Restore, Step 5:
162          *     Set a software context switch pending flag.
163          */
164         set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
165         mb();
166 }
167
168 static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
169 {
170         struct spu_priv2 __iomem *priv2 = spu->priv2;
171
172         /* Save, Step 8:
173          *     Suspend DMA and save MFC_CNTL.
174          */
175         switch (in_be64(&priv2->mfc_control_RW) &
176                MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
177         case MFC_CNTL_SUSPEND_IN_PROGRESS:
178                 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
179                                   MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
180                                  MFC_CNTL_SUSPEND_COMPLETE);
181                 /* fall through */
182         case MFC_CNTL_SUSPEND_COMPLETE:
183                 if (csa) {
184                         csa->priv2.mfc_control_RW =
185                                 in_be64(&priv2->mfc_control_RW) |
186                                 MFC_CNTL_SUSPEND_DMA_QUEUE;
187                 }
188                 break;
189         case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
190                 out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
191                 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
192                                   MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
193                                  MFC_CNTL_SUSPEND_COMPLETE);
194                 if (csa) {
195                         csa->priv2.mfc_control_RW =
196                                 in_be64(&priv2->mfc_control_RW) &
197                                 ~MFC_CNTL_SUSPEND_DMA_QUEUE;
198                 }
199                 break;
200         }
201 }
202
203 static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
204 {
205         struct spu_problem __iomem *prob = spu->problem;
206
207         /* Save, Step 9:
208          *     Save SPU_Runcntl in the CSA.  This value contains
209          *     the "Application Desired State".
210          */
211         csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
212 }
213
214 static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
215 {
216         /* Save, Step 10:
217          *     Save MFC_SR1 in the CSA.
218          */
219         csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
220 }
221
222 static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
223 {
224         struct spu_problem __iomem *prob = spu->problem;
225
226         /* Save, Step 11:
227          *     Read SPU_Status[R], and save to CSA.
228          */
229         if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
230                 csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
231         } else {
232                 u32 stopped;
233
234                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
235                 eieio();
236                 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
237                                 SPU_STATUS_RUNNING);
238                 stopped =
239                     SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
240                     SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
241                 if ((in_be32(&prob->spu_status_R) & stopped) == 0)
242                         csa->prob.spu_status_R = SPU_STATUS_RUNNING;
243                 else
244                         csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
245         }
246 }
247
248 static inline void save_mfc_decr(struct spu_state *csa, struct spu *spu)
249 {
250         struct spu_priv2 __iomem *priv2 = spu->priv2;
251
252         /* Save, Step 12:
253          *     Read MFC_CNTL[Ds].  Update saved copy of
254          *     CSA.MFC_CNTL[Ds].
255          */
256         if (in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DECREMENTER_RUNNING) {
257                 csa->priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
258                 csa->suspend_time = get_cycles();
259                 out_be64(&priv2->spu_chnlcntptr_RW, 7ULL);
260                 eieio();
261                 csa->spu_chnldata_RW[7] = in_be64(&priv2->spu_chnldata_RW);
262                 eieio();
263         } else {
264                 csa->priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
265         }
266 }
267
268 static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
269 {
270         struct spu_priv2 __iomem *priv2 = spu->priv2;
271
272         /* Save, Step 13:
273          *     Write MFC_CNTL[Dh] set to a '1' to halt
274          *     the decrementer.
275          */
276         out_be64(&priv2->mfc_control_RW, MFC_CNTL_DECREMENTER_HALTED);
277         eieio();
278 }
279
280 static inline void save_timebase(struct spu_state *csa, struct spu *spu)
281 {
282         /* Save, Step 14:
283          *    Read PPE Timebase High and Timebase low registers
284          *    and save in CSA.  TBD.
285          */
286         csa->suspend_time = get_cycles();
287 }
288
289 static inline void remove_other_spu_access(struct spu_state *csa,
290                                            struct spu *spu)
291 {
292         /* Save, Step 15:
293          *     Remove other SPU access to this SPU by unmapping
294          *     this SPU's pages from their address space.  TBD.
295          */
296 }
297
298 static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
299 {
300         struct spu_problem __iomem *prob = spu->problem;
301
302         /* Save, Step 16:
303          * Restore, Step 11.
304          *     Write SPU_MSSync register. Poll SPU_MSSync[P]
305          *     for a value of 0.
306          */
307         out_be64(&prob->spc_mssync_RW, 1UL);
308         POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
309 }
310
311 static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
312 {
313         /* Save, Step 17:
314          * Restore, Step 12.
315          * Restore, Step 48.
316          *     Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
317          *     Then issue a PPE sync instruction.
318          */
319         spu_tlb_invalidate(spu);
320         mb();
321 }
322
323 static inline void handle_pending_interrupts(struct spu_state *csa,
324                                              struct spu *spu)
325 {
326         /* Save, Step 18:
327          *     Handle any pending interrupts from this SPU
328          *     here.  This is OS or hypervisor specific.  One
329          *     option is to re-enable interrupts to handle any
330          *     pending interrupts, with the interrupt handlers
331          *     recognizing the software Context Switch Pending
332          *     flag, to ensure the SPU execution or MFC command
333          *     queue is not restarted.  TBD.
334          */
335 }
336
337 static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
338 {
339         struct spu_priv2 __iomem *priv2 = spu->priv2;
340         int i;
341
342         /* Save, Step 19:
343          *     If MFC_Cntl[Se]=0 then save
344          *     MFC command queues.
345          */
346         if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
347                 for (i = 0; i < 8; i++) {
348                         csa->priv2.puq[i].mfc_cq_data0_RW =
349                             in_be64(&priv2->puq[i].mfc_cq_data0_RW);
350                         csa->priv2.puq[i].mfc_cq_data1_RW =
351                             in_be64(&priv2->puq[i].mfc_cq_data1_RW);
352                         csa->priv2.puq[i].mfc_cq_data2_RW =
353                             in_be64(&priv2->puq[i].mfc_cq_data2_RW);
354                         csa->priv2.puq[i].mfc_cq_data3_RW =
355                             in_be64(&priv2->puq[i].mfc_cq_data3_RW);
356                 }
357                 for (i = 0; i < 16; i++) {
358                         csa->priv2.spuq[i].mfc_cq_data0_RW =
359                             in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
360                         csa->priv2.spuq[i].mfc_cq_data1_RW =
361                             in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
362                         csa->priv2.spuq[i].mfc_cq_data2_RW =
363                             in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
364                         csa->priv2.spuq[i].mfc_cq_data3_RW =
365                             in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
366                 }
367         }
368 }
369
370 static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
371 {
372         struct spu_problem __iomem *prob = spu->problem;
373
374         /* Save, Step 20:
375          *     Save the PPU_QueryMask register
376          *     in the CSA.
377          */
378         csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
379 }
380
381 static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
382 {
383         struct spu_problem __iomem *prob = spu->problem;
384
385         /* Save, Step 21:
386          *     Save the PPU_QueryType register
387          *     in the CSA.
388          */
389         csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
390 }
391
392 static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
393 {
394         struct spu_priv2 __iomem *priv2 = spu->priv2;
395
396         /* Save, Step 22:
397          *     Save the MFC_CSR_TSQ register
398          *     in the LSCSA.
399          */
400         csa->priv2.spu_tag_status_query_RW =
401             in_be64(&priv2->spu_tag_status_query_RW);
402 }
403
404 static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
405 {
406         struct spu_priv2 __iomem *priv2 = spu->priv2;
407
408         /* Save, Step 23:
409          *     Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
410          *     registers in the CSA.
411          */
412         csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
413         csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
414 }
415
416 static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
417 {
418         struct spu_priv2 __iomem *priv2 = spu->priv2;
419
420         /* Save, Step 24:
421          *     Save the MFC_CSR_ATO register in
422          *     the CSA.
423          */
424         csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
425 }
426
427 static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
428 {
429         /* Save, Step 25:
430          *     Save the MFC_TCLASS_ID register in
431          *     the CSA.
432          */
433         csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
434 }
435
436 static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
437 {
438         /* Save, Step 26:
439          * Restore, Step 23.
440          *     Write the MFC_TCLASS_ID register with
441          *     the value 0x10000000.
442          */
443         spu_mfc_tclass_id_set(spu, 0x10000000);
444         eieio();
445 }
446
447 static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
448 {
449         struct spu_priv2 __iomem *priv2 = spu->priv2;
450
451         /* Save, Step 27:
452          * Restore, Step 14.
453          *     Write MFC_CNTL[Pc]=1 (purge queue).
454          */
455         out_be64(&priv2->mfc_control_RW, MFC_CNTL_PURGE_DMA_REQUEST);
456         eieio();
457 }
458
459 static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
460 {
461         struct spu_priv2 __iomem *priv2 = spu->priv2;
462
463         /* Save, Step 28:
464          *     Poll MFC_CNTL[Ps] until value '11' is read
465          *     (purge complete).
466          */
467         POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
468                          MFC_CNTL_PURGE_DMA_STATUS_MASK) ==
469                          MFC_CNTL_PURGE_DMA_COMPLETE);
470 }
471
472 static inline void save_mfc_slbs(struct spu_state *csa, struct spu *spu)
473 {
474         struct spu_priv2 __iomem *priv2 = spu->priv2;
475         int i;
476
477         /* Save, Step 29:
478          *     If MFC_SR1[R]='1', save SLBs in CSA.
479          */
480         if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK) {
481                 csa->priv2.slb_index_W = in_be64(&priv2->slb_index_W);
482                 for (i = 0; i < 8; i++) {
483                         out_be64(&priv2->slb_index_W, i);
484                         eieio();
485                         csa->slb_esid_RW[i] = in_be64(&priv2->slb_esid_RW);
486                         csa->slb_vsid_RW[i] = in_be64(&priv2->slb_vsid_RW);
487                         eieio();
488                 }
489         }
490 }
491
492 static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
493 {
494         /* Save, Step 30:
495          * Restore, Step 18:
496          *     Write MFC_SR1 with MFC_SR1[D=0,S=1] and
497          *     MFC_SR1[TL,R,Pr,T] set correctly for the
498          *     OS specific environment.
499          *
500          *     Implementation note: The SPU-side code
501          *     for save/restore is privileged, so the
502          *     MFC_SR1[Pr] bit is not set.
503          *
504          */
505         spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
506                               MFC_STATE1_RELOCATE_MASK |
507                               MFC_STATE1_BUS_TLBIE_MASK));
508 }
509
510 static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
511 {
512         struct spu_problem __iomem *prob = spu->problem;
513
514         /* Save, Step 31:
515          *     Save SPU_NPC in the CSA.
516          */
517         csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
518 }
519
520 static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
521 {
522         struct spu_priv2 __iomem *priv2 = spu->priv2;
523
524         /* Save, Step 32:
525          *     Save SPU_PrivCntl in the CSA.
526          */
527         csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
528 }
529
530 static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
531 {
532         struct spu_priv2 __iomem *priv2 = spu->priv2;
533
534         /* Save, Step 33:
535          * Restore, Step 16:
536          *     Write SPU_PrivCntl[S,Le,A] fields reset to 0.
537          */
538         out_be64(&priv2->spu_privcntl_RW, 0UL);
539         eieio();
540 }
541
542 static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
543 {
544         struct spu_priv2 __iomem *priv2 = spu->priv2;
545
546         /* Save, Step 34:
547          *     Save SPU_LSLR in the CSA.
548          */
549         csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
550 }
551
552 static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
553 {
554         struct spu_priv2 __iomem *priv2 = spu->priv2;
555
556         /* Save, Step 35:
557          * Restore, Step 17.
558          *     Reset SPU_LSLR.
559          */
560         out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
561         eieio();
562 }
563
564 static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
565 {
566         struct spu_priv2 __iomem *priv2 = spu->priv2;
567
568         /* Save, Step 36:
569          *     Save SPU_Cfg in the CSA.
570          */
571         csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
572 }
573
574 static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
575 {
576         /* Save, Step 37:
577          *     Save PM_Trace_Tag_Wait_Mask in the CSA.
578          *     Not performed by this implementation.
579          */
580 }
581
582 static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
583 {
584         /* Save, Step 38:
585          *     Save RA_GROUP_ID register and the
586          *     RA_ENABLE reigster in the CSA.
587          */
588         csa->priv1.resource_allocation_groupID_RW =
589                 spu_resource_allocation_groupID_get(spu);
590         csa->priv1.resource_allocation_enable_RW =
591                 spu_resource_allocation_enable_get(spu);
592 }
593
594 static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
595 {
596         struct spu_problem __iomem *prob = spu->problem;
597
598         /* Save, Step 39:
599          *     Save MB_Stat register in the CSA.
600          */
601         csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
602 }
603
604 static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
605 {
606         struct spu_problem __iomem *prob = spu->problem;
607
608         /* Save, Step 40:
609          *     Save the PPU_MB register in the CSA.
610          */
611         csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
612 }
613
614 static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
615 {
616         struct spu_priv2 __iomem *priv2 = spu->priv2;
617
618         /* Save, Step 41:
619          *     Save the PPUINT_MB register in the CSA.
620          */
621         csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
622 }
623
624 static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
625 {
626         struct spu_priv2 __iomem *priv2 = spu->priv2;
627         u64 idx, ch_indices[7] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
628         int i;
629
630         /* Save, Step 42:
631          */
632
633         /* Save CH 1, without channel count */
634         out_be64(&priv2->spu_chnlcntptr_RW, 1);
635         csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW);
636
637         /* Save the following CH: [0,3,4,24,25,27] */
638         for (i = 0; i < 7; i++) {
639                 idx = ch_indices[i];
640                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
641                 eieio();
642                 csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
643                 csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
644                 out_be64(&priv2->spu_chnldata_RW, 0UL);
645                 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
646                 eieio();
647         }
648 }
649
650 static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
651 {
652         struct spu_priv2 __iomem *priv2 = spu->priv2;
653         int i;
654
655         /* Save, Step 43:
656          *     Save SPU Read Mailbox Channel.
657          */
658         out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
659         eieio();
660         csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
661         for (i = 0; i < 4; i++) {
662                 csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
663         }
664         out_be64(&priv2->spu_chnlcnt_RW, 0UL);
665         eieio();
666 }
667
668 static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
669 {
670         struct spu_priv2 __iomem *priv2 = spu->priv2;
671
672         /* Save, Step 44:
673          *     Save MFC_CMD Channel.
674          */
675         out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
676         eieio();
677         csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
678         eieio();
679 }
680
681 static inline void reset_ch(struct spu_state *csa, struct spu *spu)
682 {
683         struct spu_priv2 __iomem *priv2 = spu->priv2;
684         u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
685         u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
686         u64 idx;
687         int i;
688
689         /* Save, Step 45:
690          *     Reset the following CH: [21, 23, 28, 30]
691          */
692         for (i = 0; i < 4; i++) {
693                 idx = ch_indices[i];
694                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
695                 eieio();
696                 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
697                 eieio();
698         }
699 }
700
701 static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
702 {
703         struct spu_priv2 __iomem *priv2 = spu->priv2;
704
705         /* Save, Step 46:
706          * Restore, Step 25.
707          *     Write MFC_CNTL[Sc]=0 (resume queue processing).
708          */
709         out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
710 }
711
712 static inline void invalidate_slbs(struct spu_state *csa, struct spu *spu)
713 {
714         struct spu_priv2 __iomem *priv2 = spu->priv2;
715
716         /* Save, Step 45:
717          * Restore, Step 19:
718          *     If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All.
719          */
720         if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK) {
721                 out_be64(&priv2->slb_invalidate_all_W, 0UL);
722                 eieio();
723         }
724 }
725
726 static inline void get_kernel_slb(u64 ea, u64 slb[2])
727 {
728         u64 llp;
729
730         if (REGION_ID(ea) == KERNEL_REGION_ID)
731                 llp = mmu_psize_defs[mmu_linear_psize].sllp;
732         else
733                 llp = mmu_psize_defs[mmu_virtual_psize].sllp;
734         slb[0] = (get_kernel_vsid(ea) << SLB_VSID_SHIFT) |
735                 SLB_VSID_KERNEL | llp;
736         slb[1] = (ea & ESID_MASK) | SLB_ESID_V;
737 }
738
739 static inline void load_mfc_slb(struct spu *spu, u64 slb[2], int slbe)
740 {
741         struct spu_priv2 __iomem *priv2 = spu->priv2;
742
743         out_be64(&priv2->slb_index_W, slbe);
744         eieio();
745         out_be64(&priv2->slb_vsid_RW, slb[0]);
746         out_be64(&priv2->slb_esid_RW, slb[1]);
747         eieio();
748 }
749
750 static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu)
751 {
752         u64 code_slb[2];
753         u64 lscsa_slb[2];
754
755         /* Save, Step 47:
756          * Restore, Step 30.
757          *     If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
758          *     register, then initialize SLB_VSID and SLB_ESID
759          *     to provide access to SPU context save code and
760          *     LSCSA.
761          *
762          *     This implementation places both the context
763          *     switch code and LSCSA in kernel address space.
764          *
765          *     Further this implementation assumes that the
766          *     MFC_SR1[R]=1 (in other words, assume that
767          *     translation is desired by OS environment).
768          */
769         invalidate_slbs(csa, spu);
770         get_kernel_slb((unsigned long)&spu_save_code[0], code_slb);
771         get_kernel_slb((unsigned long)csa->lscsa, lscsa_slb);
772         load_mfc_slb(spu, code_slb, 0);
773         if ((lscsa_slb[0] != code_slb[0]) || (lscsa_slb[1] != code_slb[1]))
774                 load_mfc_slb(spu, lscsa_slb, 1);
775 }
776
777 static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
778 {
779         /* Save, Step 48:
780          * Restore, Step 23.
781          *     Change the software context switch pending flag
782          *     to context switch active.
783          */
784         set_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags);
785         clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
786         mb();
787 }
788
789 static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
790 {
791         unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
792             CLASS1_ENABLE_STORAGE_FAULT_INTR;
793
794         /* Save, Step 49:
795          * Restore, Step 22:
796          *     Reset and then enable interrupts, as
797          *     needed by OS.
798          *
799          *     This implementation enables only class1
800          *     (translation) interrupts.
801          */
802         spin_lock_irq(&spu->register_lock);
803         spu_int_stat_clear(spu, 0, ~0ul);
804         spu_int_stat_clear(spu, 1, ~0ul);
805         spu_int_stat_clear(spu, 2, ~0ul);
806         spu_int_mask_set(spu, 0, 0ul);
807         spu_int_mask_set(spu, 1, class1_mask);
808         spu_int_mask_set(spu, 2, 0ul);
809         spin_unlock_irq(&spu->register_lock);
810 }
811
812 static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
813                                unsigned int ls_offset, unsigned int size,
814                                unsigned int tag, unsigned int rclass,
815                                unsigned int cmd)
816 {
817         struct spu_problem __iomem *prob = spu->problem;
818         union mfc_tag_size_class_cmd command;
819         unsigned int transfer_size;
820         volatile unsigned int status = 0x0;
821
822         while (size > 0) {
823                 transfer_size =
824                     (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
825                 command.u.mfc_size = transfer_size;
826                 command.u.mfc_tag = tag;
827                 command.u.mfc_rclassid = rclass;
828                 command.u.mfc_cmd = cmd;
829                 do {
830                         out_be32(&prob->mfc_lsa_W, ls_offset);
831                         out_be64(&prob->mfc_ea_W, ea);
832                         out_be64(&prob->mfc_union_W.all64, command.all64);
833                         status =
834                             in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
835                         if (unlikely(status & 0x2)) {
836                                 cpu_relax();
837                         }
838                 } while (status & 0x3);
839                 size -= transfer_size;
840                 ea += transfer_size;
841                 ls_offset += transfer_size;
842         }
843         return 0;
844 }
845
846 static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
847 {
848         unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
849         unsigned int ls_offset = 0x0;
850         unsigned int size = 16384;
851         unsigned int tag = 0;
852         unsigned int rclass = 0;
853         unsigned int cmd = MFC_PUT_CMD;
854
855         /* Save, Step 50:
856          *     Issue a DMA command to copy the first 16K bytes
857          *     of local storage to the CSA.
858          */
859         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
860 }
861
862 static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
863 {
864         struct spu_problem __iomem *prob = spu->problem;
865
866         /* Save, Step 51:
867          * Restore, Step 31.
868          *     Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
869          *     point address of context save code in local
870          *     storage.
871          *
872          *     This implementation uses SPU-side save/restore
873          *     programs with entry points at LSA of 0.
874          */
875         out_be32(&prob->spu_npc_RW, 0);
876         eieio();
877 }
878
879 static inline void set_signot1(struct spu_state *csa, struct spu *spu)
880 {
881         struct spu_problem __iomem *prob = spu->problem;
882         union {
883                 u64 ull;
884                 u32 ui[2];
885         } addr64;
886
887         /* Save, Step 52:
888          * Restore, Step 32:
889          *    Write SPU_Sig_Notify_1 register with upper 32-bits
890          *    of the CSA.LSCSA effective address.
891          */
892         addr64.ull = (u64) csa->lscsa;
893         out_be32(&prob->signal_notify1, addr64.ui[0]);
894         eieio();
895 }
896
897 static inline void set_signot2(struct spu_state *csa, struct spu *spu)
898 {
899         struct spu_problem __iomem *prob = spu->problem;
900         union {
901                 u64 ull;
902                 u32 ui[2];
903         } addr64;
904
905         /* Save, Step 53:
906          * Restore, Step 33:
907          *    Write SPU_Sig_Notify_2 register with lower 32-bits
908          *    of the CSA.LSCSA effective address.
909          */
910         addr64.ull = (u64) csa->lscsa;
911         out_be32(&prob->signal_notify2, addr64.ui[1]);
912         eieio();
913 }
914
915 static inline void send_save_code(struct spu_state *csa, struct spu *spu)
916 {
917         unsigned long addr = (unsigned long)&spu_save_code[0];
918         unsigned int ls_offset = 0x0;
919         unsigned int size = sizeof(spu_save_code);
920         unsigned int tag = 0;
921         unsigned int rclass = 0;
922         unsigned int cmd = MFC_GETFS_CMD;
923
924         /* Save, Step 54:
925          *     Issue a DMA command to copy context save code
926          *     to local storage and start SPU.
927          */
928         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
929 }
930
931 static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
932 {
933         struct spu_problem __iomem *prob = spu->problem;
934
935         /* Save, Step 55:
936          * Restore, Step 38.
937          *     Write PPU_QueryMask=1 (enable Tag Group 0)
938          *     and issue eieio instruction.
939          */
940         out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
941         eieio();
942 }
943
944 static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
945 {
946         struct spu_problem __iomem *prob = spu->problem;
947         u32 mask = MFC_TAGID_TO_TAGMASK(0);
948         unsigned long flags;
949
950         /* Save, Step 56:
951          * Restore, Step 39.
952          * Restore, Step 39.
953          * Restore, Step 46.
954          *     Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
955          *     or write PPU_QueryType[TS]=01 and wait for Tag Group
956          *     Complete Interrupt.  Write INT_Stat_Class0 or
957          *     INT_Stat_Class2 with value of 'handled'.
958          */
959         POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
960
961         local_irq_save(flags);
962         spu_int_stat_clear(spu, 0, ~(0ul));
963         spu_int_stat_clear(spu, 2, ~(0ul));
964         local_irq_restore(flags);
965 }
966
967 static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
968 {
969         struct spu_problem __iomem *prob = spu->problem;
970         unsigned long flags;
971
972         /* Save, Step 57:
973          * Restore, Step 40.
974          *     Poll until SPU_Status[R]=0 or wait for SPU Class 0
975          *     or SPU Class 2 interrupt.  Write INT_Stat_class0
976          *     or INT_Stat_class2 with value of handled.
977          */
978         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
979
980         local_irq_save(flags);
981         spu_int_stat_clear(spu, 0, ~(0ul));
982         spu_int_stat_clear(spu, 2, ~(0ul));
983         local_irq_restore(flags);
984 }
985
986 static inline int check_save_status(struct spu_state *csa, struct spu *spu)
987 {
988         struct spu_problem __iomem *prob = spu->problem;
989         u32 complete;
990
991         /* Save, Step 54:
992          *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
993          *     context save succeeded, otherwise context save
994          *     failed.
995          */
996         complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
997                     SPU_STATUS_STOPPED_BY_STOP);
998         return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
999 }
1000
1001 static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
1002 {
1003         /* Restore, Step 4:
1004          *    If required, notify the "using application" that
1005          *    the SPU task has been terminated.  TBD.
1006          */
1007 }
1008
1009 static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
1010 {
1011         struct spu_priv2 __iomem *priv2 = spu->priv2;
1012
1013         /* Restore, Step 7:
1014          * Restore, Step 47.
1015          *     Write MFC_Cntl[Dh,Sc]='1','1' to suspend
1016          *     the queue and halt the decrementer.
1017          */
1018         out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
1019                  MFC_CNTL_DECREMENTER_HALTED);
1020         eieio();
1021 }
1022
1023 static inline void wait_suspend_mfc_complete(struct spu_state *csa,
1024                                              struct spu *spu)
1025 {
1026         struct spu_priv2 __iomem *priv2 = spu->priv2;
1027
1028         /* Restore, Step 8:
1029          * Restore, Step 47.
1030          *     Poll MFC_CNTL[Ss] until 11 is returned.
1031          */
1032         POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
1033                          MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
1034                          MFC_CNTL_SUSPEND_COMPLETE);
1035 }
1036
1037 static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
1038 {
1039         struct spu_problem __iomem *prob = spu->problem;
1040
1041         /* Restore, Step 9:
1042          *    If SPU_Status[R]=1, stop SPU execution
1043          *    and wait for stop to complete.
1044          *
1045          *    Returns       1 if SPU_Status[R]=1 on entry.
1046          *                  0 otherwise
1047          */
1048         if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
1049                 if (in_be32(&prob->spu_status_R) &
1050                     SPU_STATUS_ISOLATED_EXIT_STAUTUS) {
1051                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1052                                         SPU_STATUS_RUNNING);
1053                 }
1054                 if ((in_be32(&prob->spu_status_R) &
1055                      SPU_STATUS_ISOLATED_LOAD_STAUTUS)
1056                     || (in_be32(&prob->spu_status_R) &
1057                         SPU_STATUS_ISOLATED_STATE)) {
1058                         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1059                         eieio();
1060                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1061                                         SPU_STATUS_RUNNING);
1062                         out_be32(&prob->spu_runcntl_RW, 0x2);
1063                         eieio();
1064                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1065                                         SPU_STATUS_RUNNING);
1066                 }
1067                 if (in_be32(&prob->spu_status_R) &
1068                     SPU_STATUS_WAITING_FOR_CHANNEL) {
1069                         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1070                         eieio();
1071                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1072                                         SPU_STATUS_RUNNING);
1073                 }
1074                 return 1;
1075         }
1076         return 0;
1077 }
1078
1079 static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
1080 {
1081         struct spu_problem __iomem *prob = spu->problem;
1082
1083         /* Restore, Step 10:
1084          *    If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
1085          *    release SPU from isolate state.
1086          */
1087         if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
1088                 if (in_be32(&prob->spu_status_R) &
1089                     SPU_STATUS_ISOLATED_EXIT_STAUTUS) {
1090                         spu_mfc_sr1_set(spu,
1091                                         MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1092                         eieio();
1093                         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1094                         eieio();
1095                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1096                                         SPU_STATUS_RUNNING);
1097                 }
1098                 if ((in_be32(&prob->spu_status_R) &
1099                      SPU_STATUS_ISOLATED_LOAD_STAUTUS)
1100                     || (in_be32(&prob->spu_status_R) &
1101                         SPU_STATUS_ISOLATED_STATE)) {
1102                         spu_mfc_sr1_set(spu,
1103                                         MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1104                         eieio();
1105                         out_be32(&prob->spu_runcntl_RW, 0x2);
1106                         eieio();
1107                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1108                                         SPU_STATUS_RUNNING);
1109                 }
1110         }
1111 }
1112
1113 static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
1114 {
1115         struct spu_priv2 __iomem *priv2 = spu->priv2;
1116         u64 ch_indices[7] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1117         u64 idx;
1118         int i;
1119
1120         /* Restore, Step 20:
1121          */
1122
1123         /* Reset CH 1 */
1124         out_be64(&priv2->spu_chnlcntptr_RW, 1);
1125         out_be64(&priv2->spu_chnldata_RW, 0UL);
1126
1127         /* Reset the following CH: [0,3,4,24,25,27] */
1128         for (i = 0; i < 7; i++) {
1129                 idx = ch_indices[i];
1130                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1131                 eieio();
1132                 out_be64(&priv2->spu_chnldata_RW, 0UL);
1133                 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
1134                 eieio();
1135         }
1136 }
1137
1138 static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
1139 {
1140         struct spu_priv2 __iomem *priv2 = spu->priv2;
1141         u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
1142         u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
1143         u64 idx;
1144         int i;
1145
1146         /* Restore, Step 21:
1147          *     Reset the following CH: [21, 23, 28, 29, 30]
1148          */
1149         for (i = 0; i < 5; i++) {
1150                 idx = ch_indices[i];
1151                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1152                 eieio();
1153                 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1154                 eieio();
1155         }
1156 }
1157
1158 static inline void setup_spu_status_part1(struct spu_state *csa,
1159                                           struct spu *spu)
1160 {
1161         u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
1162         u32 status_I = SPU_STATUS_INVALID_INSTR;
1163         u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
1164         u32 status_S = SPU_STATUS_SINGLE_STEP;
1165         u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
1166         u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
1167         u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
1168         u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
1169         u32 status_code;
1170
1171         /* Restore, Step 27:
1172          *     If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
1173          *     instruction sequence to the end of the SPU based restore
1174          *     code (after the "context restored" stop and signal) to
1175          *     restore the correct SPU status.
1176          *
1177          *     NOTE: Rather than modifying the SPU executable, we
1178          *     instead add a new 'stopped_status' field to the
1179          *     LSCSA.  The SPU-side restore reads this field and
1180          *     takes the appropriate action when exiting.
1181          */
1182
1183         status_code =
1184             (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
1185         if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
1186
1187                 /* SPU_Status[P,I]=1 - Illegal Instruction followed
1188                  * by Stop and Signal instruction, followed by 'br -4'.
1189                  *
1190                  */
1191                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
1192                 csa->lscsa->stopped_status.slot[1] = status_code;
1193
1194         } else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
1195
1196                 /* SPU_Status[P,H]=1 - Halt Conditional, followed
1197                  * by Stop and Signal instruction, followed by
1198                  * 'br -4'.
1199                  */
1200                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
1201                 csa->lscsa->stopped_status.slot[1] = status_code;
1202
1203         } else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
1204
1205                 /* SPU_Status[S,P]=1 - Stop and Signal instruction
1206                  * followed by 'br -4'.
1207                  */
1208                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
1209                 csa->lscsa->stopped_status.slot[1] = status_code;
1210
1211         } else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
1212
1213                 /* SPU_Status[S,I]=1 - Illegal instruction followed
1214                  * by 'br -4'.
1215                  */
1216                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
1217                 csa->lscsa->stopped_status.slot[1] = status_code;
1218
1219         } else if ((csa->prob.spu_status_R & status_P) == status_P) {
1220
1221                 /* SPU_Status[P]=1 - Stop and Signal instruction
1222                  * followed by 'br -4'.
1223                  */
1224                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
1225                 csa->lscsa->stopped_status.slot[1] = status_code;
1226
1227         } else if ((csa->prob.spu_status_R & status_H) == status_H) {
1228
1229                 /* SPU_Status[H]=1 - Halt Conditional, followed
1230                  * by 'br -4'.
1231                  */
1232                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
1233
1234         } else if ((csa->prob.spu_status_R & status_S) == status_S) {
1235
1236                 /* SPU_Status[S]=1 - Two nop instructions.
1237                  */
1238                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
1239
1240         } else if ((csa->prob.spu_status_R & status_I) == status_I) {
1241
1242                 /* SPU_Status[I]=1 - Illegal instruction followed
1243                  * by 'br -4'.
1244                  */
1245                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
1246
1247         }
1248 }
1249
1250 static inline void setup_spu_status_part2(struct spu_state *csa,
1251                                           struct spu *spu)
1252 {
1253         u32 mask;
1254
1255         /* Restore, Step 28:
1256          *     If the CSA.SPU_Status[I,S,H,P,R]=0 then
1257          *     add a 'br *' instruction to the end of
1258          *     the SPU based restore code.
1259          *
1260          *     NOTE: Rather than modifying the SPU executable, we
1261          *     instead add a new 'stopped_status' field to the
1262          *     LSCSA.  The SPU-side restore reads this field and
1263          *     takes the appropriate action when exiting.
1264          */
1265         mask = SPU_STATUS_INVALID_INSTR |
1266             SPU_STATUS_SINGLE_STEP |
1267             SPU_STATUS_STOPPED_BY_HALT |
1268             SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1269         if (!(csa->prob.spu_status_R & mask)) {
1270                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
1271         }
1272 }
1273
1274 static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
1275 {
1276         /* Restore, Step 29:
1277          *     Restore RA_GROUP_ID register and the
1278          *     RA_ENABLE reigster from the CSA.
1279          */
1280         spu_resource_allocation_groupID_set(spu,
1281                         csa->priv1.resource_allocation_groupID_RW);
1282         spu_resource_allocation_enable_set(spu,
1283                         csa->priv1.resource_allocation_enable_RW);
1284 }
1285
1286 static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
1287 {
1288         unsigned long addr = (unsigned long)&spu_restore_code[0];
1289         unsigned int ls_offset = 0x0;
1290         unsigned int size = sizeof(spu_restore_code);
1291         unsigned int tag = 0;
1292         unsigned int rclass = 0;
1293         unsigned int cmd = MFC_GETFS_CMD;
1294
1295         /* Restore, Step 37:
1296          *     Issue MFC DMA command to copy context
1297          *     restore code to local storage.
1298          */
1299         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1300 }
1301
1302 static inline void setup_decr(struct spu_state *csa, struct spu *spu)
1303 {
1304         /* Restore, Step 34:
1305          *     If CSA.MFC_CNTL[Ds]=1 (decrementer was
1306          *     running) then adjust decrementer, set
1307          *     decrementer running status in LSCSA,
1308          *     and set decrementer "wrapped" status
1309          *     in LSCSA.
1310          */
1311         if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
1312                 cycles_t resume_time = get_cycles();
1313                 cycles_t delta_time = resume_time - csa->suspend_time;
1314
1315                 csa->lscsa->decr.slot[0] -= delta_time;
1316         }
1317 }
1318
1319 static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
1320 {
1321         /* Restore, Step 35:
1322          *     Copy the CSA.PU_MB data into the LSCSA.
1323          */
1324         csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
1325 }
1326
1327 static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
1328 {
1329         /* Restore, Step 36:
1330          *     Copy the CSA.PUINT_MB data into the LSCSA.
1331          */
1332         csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
1333 }
1334
1335 static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
1336 {
1337         struct spu_problem __iomem *prob = spu->problem;
1338         u32 complete;
1339
1340         /* Restore, Step 40:
1341          *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
1342          *     context restore succeeded, otherwise context restore
1343          *     failed.
1344          */
1345         complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
1346                     SPU_STATUS_STOPPED_BY_STOP);
1347         return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
1348 }
1349
1350 static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
1351 {
1352         struct spu_priv2 __iomem *priv2 = spu->priv2;
1353
1354         /* Restore, Step 41:
1355          *     Restore SPU_PrivCntl from the CSA.
1356          */
1357         out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
1358         eieio();
1359 }
1360
1361 static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
1362 {
1363         struct spu_problem __iomem *prob = spu->problem;
1364         u32 mask;
1365
1366         /* Restore, Step 42:
1367          *     If any CSA.SPU_Status[I,S,H,P]=1, then
1368          *     restore the error or single step state.
1369          */
1370         mask = SPU_STATUS_INVALID_INSTR |
1371             SPU_STATUS_SINGLE_STEP |
1372             SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
1373         if (csa->prob.spu_status_R & mask) {
1374                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1375                 eieio();
1376                 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1377                                 SPU_STATUS_RUNNING);
1378         }
1379 }
1380
1381 static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
1382 {
1383         struct spu_problem __iomem *prob = spu->problem;
1384         u32 mask;
1385
1386         /* Restore, Step 43:
1387          *     If all CSA.SPU_Status[I,S,H,P,R]=0 then write
1388          *     SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
1389          *     then write '00' to SPU_RunCntl[R0R1] and wait
1390          *     for SPU_Status[R]=0.
1391          */
1392         mask = SPU_STATUS_INVALID_INSTR |
1393             SPU_STATUS_SINGLE_STEP |
1394             SPU_STATUS_STOPPED_BY_HALT |
1395             SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1396         if (!(csa->prob.spu_status_R & mask)) {
1397                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1398                 eieio();
1399                 POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
1400                                  SPU_STATUS_RUNNING);
1401                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1402                 eieio();
1403                 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1404                                 SPU_STATUS_RUNNING);
1405         }
1406 }
1407
1408 static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
1409 {
1410         unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
1411         unsigned int ls_offset = 0x0;
1412         unsigned int size = 16384;
1413         unsigned int tag = 0;
1414         unsigned int rclass = 0;
1415         unsigned int cmd = MFC_GET_CMD;
1416
1417         /* Restore, Step 44:
1418          *     Issue a DMA command to restore the first
1419          *     16kb of local storage from CSA.
1420          */
1421         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1422 }
1423
1424 static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
1425 {
1426         /* Restore, Step 49:
1427          *     Write INT_MASK_class0 with value of 0.
1428          *     Write INT_MASK_class1 with value of 0.
1429          *     Write INT_MASK_class2 with value of 0.
1430          *     Write INT_STAT_class0 with value of -1.
1431          *     Write INT_STAT_class1 with value of -1.
1432          *     Write INT_STAT_class2 with value of -1.
1433          */
1434         spin_lock_irq(&spu->register_lock);
1435         spu_int_mask_set(spu, 0, 0ul);
1436         spu_int_mask_set(spu, 1, 0ul);
1437         spu_int_mask_set(spu, 2, 0ul);
1438         spu_int_stat_clear(spu, 0, ~0ul);
1439         spu_int_stat_clear(spu, 1, ~0ul);
1440         spu_int_stat_clear(spu, 2, ~0ul);
1441         spin_unlock_irq(&spu->register_lock);
1442 }
1443
1444 static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
1445 {
1446         struct spu_priv2 __iomem *priv2 = spu->priv2;
1447         int i;
1448
1449         /* Restore, Step 50:
1450          *     If MFC_Cntl[Se]!=0 then restore
1451          *     MFC command queues.
1452          */
1453         if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
1454                 for (i = 0; i < 8; i++) {
1455                         out_be64(&priv2->puq[i].mfc_cq_data0_RW,
1456                                  csa->priv2.puq[i].mfc_cq_data0_RW);
1457                         out_be64(&priv2->puq[i].mfc_cq_data1_RW,
1458                                  csa->priv2.puq[i].mfc_cq_data1_RW);
1459                         out_be64(&priv2->puq[i].mfc_cq_data2_RW,
1460                                  csa->priv2.puq[i].mfc_cq_data2_RW);
1461                         out_be64(&priv2->puq[i].mfc_cq_data3_RW,
1462                                  csa->priv2.puq[i].mfc_cq_data3_RW);
1463                 }
1464                 for (i = 0; i < 16; i++) {
1465                         out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
1466                                  csa->priv2.spuq[i].mfc_cq_data0_RW);
1467                         out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
1468                                  csa->priv2.spuq[i].mfc_cq_data1_RW);
1469                         out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
1470                                  csa->priv2.spuq[i].mfc_cq_data2_RW);
1471                         out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
1472                                  csa->priv2.spuq[i].mfc_cq_data3_RW);
1473                 }
1474         }
1475         eieio();
1476 }
1477
1478 static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
1479 {
1480         struct spu_problem __iomem *prob = spu->problem;
1481
1482         /* Restore, Step 51:
1483          *     Restore the PPU_QueryMask register from CSA.
1484          */
1485         out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
1486         eieio();
1487 }
1488
1489 static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
1490 {
1491         struct spu_problem __iomem *prob = spu->problem;
1492
1493         /* Restore, Step 52:
1494          *     Restore the PPU_QueryType register from CSA.
1495          */
1496         out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
1497         eieio();
1498 }
1499
1500 static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
1501 {
1502         struct spu_priv2 __iomem *priv2 = spu->priv2;
1503
1504         /* Restore, Step 53:
1505          *     Restore the MFC_CSR_TSQ register from CSA.
1506          */
1507         out_be64(&priv2->spu_tag_status_query_RW,
1508                  csa->priv2.spu_tag_status_query_RW);
1509         eieio();
1510 }
1511
1512 static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
1513 {
1514         struct spu_priv2 __iomem *priv2 = spu->priv2;
1515
1516         /* Restore, Step 54:
1517          *     Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
1518          *     registers from CSA.
1519          */
1520         out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
1521         out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
1522         eieio();
1523 }
1524
1525 static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
1526 {
1527         struct spu_priv2 __iomem *priv2 = spu->priv2;
1528
1529         /* Restore, Step 55:
1530          *     Restore the MFC_CSR_ATO register from CSA.
1531          */
1532         out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
1533 }
1534
1535 static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
1536 {
1537         /* Restore, Step 56:
1538          *     Restore the MFC_TCLASS_ID register from CSA.
1539          */
1540         spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
1541         eieio();
1542 }
1543
1544 static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
1545 {
1546         u64 ch0_cnt, ch0_data;
1547         u64 ch1_data;
1548
1549         /* Restore, Step 57:
1550          *    Set the Lock Line Reservation Lost Event by:
1551          *      1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
1552          *      2. If CSA.SPU_Channel_0_Count=0 and
1553          *         CSA.SPU_Wr_Event_Mask[Lr]=1 and
1554          *         CSA.SPU_Event_Status[Lr]=0 then set
1555          *         CSA.SPU_Event_Status_Count=1.
1556          */
1557         ch0_cnt = csa->spu_chnlcnt_RW[0];
1558         ch0_data = csa->spu_chnldata_RW[0];
1559         ch1_data = csa->spu_chnldata_RW[1];
1560         csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
1561         if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
1562             (ch1_data & MFC_LLR_LOST_EVENT)) {
1563                 csa->spu_chnlcnt_RW[0] = 1;
1564         }
1565 }
1566
1567 static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
1568 {
1569         /* Restore, Step 58:
1570          *     If the status of the CSA software decrementer
1571          *     "wrapped" flag is set, OR in a '1' to
1572          *     CSA.SPU_Event_Status[Tm].
1573          */
1574         if (csa->lscsa->decr_status.slot[0] == 1) {
1575                 csa->spu_chnldata_RW[0] |= 0x20;
1576         }
1577         if ((csa->lscsa->decr_status.slot[0] == 1) &&
1578             (csa->spu_chnlcnt_RW[0] == 0 &&
1579              ((csa->spu_chnldata_RW[2] & 0x20) == 0x0) &&
1580              ((csa->spu_chnldata_RW[0] & 0x20) != 0x1))) {
1581                 csa->spu_chnlcnt_RW[0] = 1;
1582         }
1583 }
1584
1585 static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
1586 {
1587         struct spu_priv2 __iomem *priv2 = spu->priv2;
1588         u64 idx, ch_indices[7] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1589         int i;
1590
1591         /* Restore, Step 59:
1592          */
1593
1594         /* Restore CH 1 without count */
1595         out_be64(&priv2->spu_chnlcntptr_RW, 1);
1596         out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[1]);
1597
1598         /* Restore the following CH: [0,3,4,24,25,27] */
1599         for (i = 0; i < 7; i++) {
1600                 idx = ch_indices[i];
1601                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1602                 eieio();
1603                 out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
1604                 out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
1605                 eieio();
1606         }
1607 }
1608
1609 static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
1610 {
1611         struct spu_priv2 __iomem *priv2 = spu->priv2;
1612         u64 ch_indices[3] = { 9UL, 21UL, 23UL };
1613         u64 ch_counts[3] = { 1UL, 16UL, 1UL };
1614         u64 idx;
1615         int i;
1616
1617         /* Restore, Step 60:
1618          *     Restore the following CH: [9,21,23].
1619          */
1620         ch_counts[0] = 1UL;
1621         ch_counts[1] = csa->spu_chnlcnt_RW[21];
1622         ch_counts[2] = 1UL;
1623         for (i = 0; i < 3; i++) {
1624                 idx = ch_indices[i];
1625                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1626                 eieio();
1627                 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1628                 eieio();
1629         }
1630 }
1631
1632 static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
1633 {
1634         struct spu_priv2 __iomem *priv2 = spu->priv2;
1635
1636         /* Restore, Step 61:
1637          *     Restore the SPU_LSLR register from CSA.
1638          */
1639         out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
1640         eieio();
1641 }
1642
1643 static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
1644 {
1645         struct spu_priv2 __iomem *priv2 = spu->priv2;
1646
1647         /* Restore, Step 62:
1648          *     Restore the SPU_Cfg register from CSA.
1649          */
1650         out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
1651         eieio();
1652 }
1653
1654 static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
1655 {
1656         /* Restore, Step 63:
1657          *     Restore PM_Trace_Tag_Wait_Mask from CSA.
1658          *     Not performed by this implementation.
1659          */
1660 }
1661
1662 static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
1663 {
1664         struct spu_problem __iomem *prob = spu->problem;
1665
1666         /* Restore, Step 64:
1667          *     Restore SPU_NPC from CSA.
1668          */
1669         out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
1670         eieio();
1671 }
1672
1673 static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
1674 {
1675         struct spu_priv2 __iomem *priv2 = spu->priv2;
1676         int i;
1677
1678         /* Restore, Step 65:
1679          *     Restore MFC_RdSPU_MB from CSA.
1680          */
1681         out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
1682         eieio();
1683         out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
1684         for (i = 0; i < 4; i++) {
1685                 out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
1686         }
1687         eieio();
1688 }
1689
1690 static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
1691 {
1692         struct spu_problem __iomem *prob = spu->problem;
1693         u32 dummy = 0;
1694
1695         /* Restore, Step 66:
1696          *     If CSA.MB_Stat[P]=0 (mailbox empty) then
1697          *     read from the PPU_MB register.
1698          */
1699         if ((csa->prob.mb_stat_R & 0xFF) == 0) {
1700                 dummy = in_be32(&prob->pu_mb_R);
1701                 eieio();
1702         }
1703 }
1704
1705 static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
1706 {
1707         struct spu_priv2 __iomem *priv2 = spu->priv2;
1708         u64 dummy = 0UL;
1709
1710         /* Restore, Step 66:
1711          *     If CSA.MB_Stat[I]=0 (mailbox empty) then
1712          *     read from the PPUINT_MB register.
1713          */
1714         if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
1715                 dummy = in_be64(&priv2->puint_mb_R);
1716                 eieio();
1717                 spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
1718                 eieio();
1719         }
1720 }
1721
1722 static inline void restore_mfc_slbs(struct spu_state *csa, struct spu *spu)
1723 {
1724         struct spu_priv2 __iomem *priv2 = spu->priv2;
1725         int i;
1726
1727         /* Restore, Step 68:
1728          *     If MFC_SR1[R]='1', restore SLBs from CSA.
1729          */
1730         if (csa->priv1.mfc_sr1_RW & MFC_STATE1_RELOCATE_MASK) {
1731                 for (i = 0; i < 8; i++) {
1732                         out_be64(&priv2->slb_index_W, i);
1733                         eieio();
1734                         out_be64(&priv2->slb_esid_RW, csa->slb_esid_RW[i]);
1735                         out_be64(&priv2->slb_vsid_RW, csa->slb_vsid_RW[i]);
1736                         eieio();
1737                 }
1738                 out_be64(&priv2->slb_index_W, csa->priv2.slb_index_W);
1739                 eieio();
1740         }
1741 }
1742
1743 static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
1744 {
1745         /* Restore, Step 69:
1746          *     Restore the MFC_SR1 register from CSA.
1747          */
1748         spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
1749         eieio();
1750 }
1751
1752 static inline void restore_other_spu_access(struct spu_state *csa,
1753                                             struct spu *spu)
1754 {
1755         /* Restore, Step 70:
1756          *     Restore other SPU mappings to this SPU. TBD.
1757          */
1758 }
1759
1760 static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
1761 {
1762         struct spu_problem __iomem *prob = spu->problem;
1763
1764         /* Restore, Step 71:
1765          *     If CSA.SPU_Status[R]=1 then write
1766          *     SPU_RunCntl[R0R1]='01'.
1767          */
1768         if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
1769                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1770                 eieio();
1771         }
1772 }
1773
1774 static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
1775 {
1776         struct spu_priv2 __iomem *priv2 = spu->priv2;
1777
1778         /* Restore, Step 72:
1779          *    Restore the MFC_CNTL register for the CSA.
1780          */
1781         out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
1782         eieio();
1783 }
1784
1785 static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
1786 {
1787         /* Restore, Step 73:
1788          *     Enable user-space access (if provided) to this
1789          *     SPU by mapping the virtual pages assigned to
1790          *     the SPU memory-mapped I/O (MMIO) for problem
1791          *     state. TBD.
1792          */
1793 }
1794
1795 static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
1796 {
1797         /* Restore, Step 74:
1798          *     Reset the "context switch active" flag.
1799          */
1800         clear_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags);
1801         mb();
1802 }
1803
1804 static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
1805 {
1806         /* Restore, Step 75:
1807          *     Re-enable SPU interrupts.
1808          */
1809         spin_lock_irq(&spu->register_lock);
1810         spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
1811         spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
1812         spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
1813         spin_unlock_irq(&spu->register_lock);
1814 }
1815
1816 static int quiece_spu(struct spu_state *prev, struct spu *spu)
1817 {
1818         /*
1819          * Combined steps 2-18 of SPU context save sequence, which
1820          * quiesce the SPU state (disable SPU execution, MFC command
1821          * queues, decrementer, SPU interrupts, etc.).
1822          *
1823          * Returns      0 on success.
1824          *              2 if failed step 2.
1825          *              6 if failed step 6.
1826          */
1827
1828         if (check_spu_isolate(prev, spu)) {     /* Step 2. */
1829                 return 2;
1830         }
1831         disable_interrupts(prev, spu);          /* Step 3. */
1832         set_watchdog_timer(prev, spu);          /* Step 4. */
1833         inhibit_user_access(prev, spu);         /* Step 5. */
1834         if (check_spu_isolate(prev, spu)) {     /* Step 6. */
1835                 return 6;
1836         }
1837         set_switch_pending(prev, spu);          /* Step 7. */
1838         save_mfc_cntl(prev, spu);               /* Step 8. */
1839         save_spu_runcntl(prev, spu);            /* Step 9. */
1840         save_mfc_sr1(prev, spu);                /* Step 10. */
1841         save_spu_status(prev, spu);             /* Step 11. */
1842         save_mfc_decr(prev, spu);               /* Step 12. */
1843         halt_mfc_decr(prev, spu);               /* Step 13. */
1844         save_timebase(prev, spu);               /* Step 14. */
1845         remove_other_spu_access(prev, spu);     /* Step 15. */
1846         do_mfc_mssync(prev, spu);               /* Step 16. */
1847         issue_mfc_tlbie(prev, spu);             /* Step 17. */
1848         handle_pending_interrupts(prev, spu);   /* Step 18. */
1849
1850         return 0;
1851 }
1852
1853 static void save_csa(struct spu_state *prev, struct spu *spu)
1854 {
1855         /*
1856          * Combine steps 19-44 of SPU context save sequence, which
1857          * save regions of the privileged & problem state areas.
1858          */
1859
1860         save_mfc_queues(prev, spu);     /* Step 19. */
1861         save_ppu_querymask(prev, spu);  /* Step 20. */
1862         save_ppu_querytype(prev, spu);  /* Step 21. */
1863         save_mfc_csr_tsq(prev, spu);    /* Step 22. */
1864         save_mfc_csr_cmd(prev, spu);    /* Step 23. */
1865         save_mfc_csr_ato(prev, spu);    /* Step 24. */
1866         save_mfc_tclass_id(prev, spu);  /* Step 25. */
1867         set_mfc_tclass_id(prev, spu);   /* Step 26. */
1868         purge_mfc_queue(prev, spu);     /* Step 27. */
1869         wait_purge_complete(prev, spu); /* Step 28. */
1870         save_mfc_slbs(prev, spu);       /* Step 29. */
1871         setup_mfc_sr1(prev, spu);       /* Step 30. */
1872         save_spu_npc(prev, spu);        /* Step 31. */
1873         save_spu_privcntl(prev, spu);   /* Step 32. */
1874         reset_spu_privcntl(prev, spu);  /* Step 33. */
1875         save_spu_lslr(prev, spu);       /* Step 34. */
1876         reset_spu_lslr(prev, spu);      /* Step 35. */
1877         save_spu_cfg(prev, spu);        /* Step 36. */
1878         save_pm_trace(prev, spu);       /* Step 37. */
1879         save_mfc_rag(prev, spu);        /* Step 38. */
1880         save_ppu_mb_stat(prev, spu);    /* Step 39. */
1881         save_ppu_mb(prev, spu);         /* Step 40. */
1882         save_ppuint_mb(prev, spu);      /* Step 41. */
1883         save_ch_part1(prev, spu);       /* Step 42. */
1884         save_spu_mb(prev, spu);         /* Step 43. */
1885         save_mfc_cmd(prev, spu);        /* Step 44. */
1886         reset_ch(prev, spu);            /* Step 45. */
1887 }
1888
1889 static void save_lscsa(struct spu_state *prev, struct spu *spu)
1890 {
1891         /*
1892          * Perform steps 46-57 of SPU context save sequence,
1893          * which save regions of the local store and register
1894          * file.
1895          */
1896
1897         resume_mfc_queue(prev, spu);    /* Step 46. */
1898         setup_mfc_slbs(prev, spu);      /* Step 47. */
1899         set_switch_active(prev, spu);   /* Step 48. */
1900         enable_interrupts(prev, spu);   /* Step 49. */
1901         save_ls_16kb(prev, spu);        /* Step 50. */
1902         set_spu_npc(prev, spu);         /* Step 51. */
1903         set_signot1(prev, spu);         /* Step 52. */
1904         set_signot2(prev, spu);         /* Step 53. */
1905         send_save_code(prev, spu);      /* Step 54. */
1906         set_ppu_querymask(prev, spu);   /* Step 55. */
1907         wait_tag_complete(prev, spu);   /* Step 56. */
1908         wait_spu_stopped(prev, spu);    /* Step 57. */
1909 }
1910
1911 static void harvest(struct spu_state *prev, struct spu *spu)
1912 {
1913         /*
1914          * Perform steps 2-25 of SPU context restore sequence,
1915          * which resets an SPU either after a failed save, or
1916          * when using SPU for first time.
1917          */
1918
1919         disable_interrupts(prev, spu);          /* Step 2.  */
1920         inhibit_user_access(prev, spu);         /* Step 3.  */
1921         terminate_spu_app(prev, spu);           /* Step 4.  */
1922         set_switch_pending(prev, spu);          /* Step 5.  */
1923         remove_other_spu_access(prev, spu);     /* Step 6.  */
1924         suspend_mfc(prev, spu);                 /* Step 7.  */
1925         wait_suspend_mfc_complete(prev, spu);   /* Step 8.  */
1926         if (!suspend_spe(prev, spu))            /* Step 9.  */
1927                 clear_spu_status(prev, spu);    /* Step 10. */
1928         do_mfc_mssync(prev, spu);               /* Step 11. */
1929         issue_mfc_tlbie(prev, spu);             /* Step 12. */
1930         handle_pending_interrupts(prev, spu);   /* Step 13. */
1931         purge_mfc_queue(prev, spu);             /* Step 14. */
1932         wait_purge_complete(prev, spu);         /* Step 15. */
1933         reset_spu_privcntl(prev, spu);          /* Step 16. */
1934         reset_spu_lslr(prev, spu);              /* Step 17. */
1935         setup_mfc_sr1(prev, spu);               /* Step 18. */
1936         invalidate_slbs(prev, spu);             /* Step 19. */
1937         reset_ch_part1(prev, spu);              /* Step 20. */
1938         reset_ch_part2(prev, spu);              /* Step 21. */
1939         enable_interrupts(prev, spu);           /* Step 22. */
1940         set_switch_active(prev, spu);           /* Step 23. */
1941         set_mfc_tclass_id(prev, spu);           /* Step 24. */
1942         resume_mfc_queue(prev, spu);            /* Step 25. */
1943 }
1944
1945 static void restore_lscsa(struct spu_state *next, struct spu *spu)
1946 {
1947         /*
1948          * Perform steps 26-40 of SPU context restore sequence,
1949          * which restores regions of the local store and register
1950          * file.
1951          */
1952
1953         set_watchdog_timer(next, spu);          /* Step 26. */
1954         setup_spu_status_part1(next, spu);      /* Step 27. */
1955         setup_spu_status_part2(next, spu);      /* Step 28. */
1956         restore_mfc_rag(next, spu);             /* Step 29. */
1957         setup_mfc_slbs(next, spu);              /* Step 30. */
1958         set_spu_npc(next, spu);                 /* Step 31. */
1959         set_signot1(next, spu);                 /* Step 32. */
1960         set_signot2(next, spu);                 /* Step 33. */
1961         setup_decr(next, spu);                  /* Step 34. */
1962         setup_ppu_mb(next, spu);                /* Step 35. */
1963         setup_ppuint_mb(next, spu);             /* Step 36. */
1964         send_restore_code(next, spu);           /* Step 37. */
1965         set_ppu_querymask(next, spu);           /* Step 38. */
1966         wait_tag_complete(next, spu);           /* Step 39. */
1967         wait_spu_stopped(next, spu);            /* Step 40. */
1968 }
1969
1970 static void restore_csa(struct spu_state *next, struct spu *spu)
1971 {
1972         /*
1973          * Combine steps 41-76 of SPU context restore sequence, which
1974          * restore regions of the privileged & problem state areas.
1975          */
1976
1977         restore_spu_privcntl(next, spu);        /* Step 41. */
1978         restore_status_part1(next, spu);        /* Step 42. */
1979         restore_status_part2(next, spu);        /* Step 43. */
1980         restore_ls_16kb(next, spu);             /* Step 44. */
1981         wait_tag_complete(next, spu);           /* Step 45. */
1982         suspend_mfc(next, spu);                 /* Step 46. */
1983         wait_suspend_mfc_complete(next, spu);   /* Step 47. */
1984         issue_mfc_tlbie(next, spu);             /* Step 48. */
1985         clear_interrupts(next, spu);            /* Step 49. */
1986         restore_mfc_queues(next, spu);          /* Step 50. */
1987         restore_ppu_querymask(next, spu);       /* Step 51. */
1988         restore_ppu_querytype(next, spu);       /* Step 52. */
1989         restore_mfc_csr_tsq(next, spu);         /* Step 53. */
1990         restore_mfc_csr_cmd(next, spu);         /* Step 54. */
1991         restore_mfc_csr_ato(next, spu);         /* Step 55. */
1992         restore_mfc_tclass_id(next, spu);       /* Step 56. */
1993         set_llr_event(next, spu);               /* Step 57. */
1994         restore_decr_wrapped(next, spu);        /* Step 58. */
1995         restore_ch_part1(next, spu);            /* Step 59. */
1996         restore_ch_part2(next, spu);            /* Step 60. */
1997         restore_spu_lslr(next, spu);            /* Step 61. */
1998         restore_spu_cfg(next, spu);             /* Step 62. */
1999         restore_pm_trace(next, spu);            /* Step 63. */
2000         restore_spu_npc(next, spu);             /* Step 64. */
2001         restore_spu_mb(next, spu);              /* Step 65. */
2002         check_ppu_mb_stat(next, spu);           /* Step 66. */
2003         check_ppuint_mb_stat(next, spu);        /* Step 67. */
2004         restore_mfc_slbs(next, spu);            /* Step 68. */
2005         restore_mfc_sr1(next, spu);             /* Step 69. */
2006         restore_other_spu_access(next, spu);    /* Step 70. */
2007         restore_spu_runcntl(next, spu);         /* Step 71. */
2008         restore_mfc_cntl(next, spu);            /* Step 72. */
2009         enable_user_access(next, spu);          /* Step 73. */
2010         reset_switch_active(next, spu);         /* Step 74. */
2011         reenable_interrupts(next, spu);         /* Step 75. */
2012 }
2013
2014 static int __do_spu_save(struct spu_state *prev, struct spu *spu)
2015 {
2016         int rc;
2017
2018         /*
2019          * SPU context save can be broken into three phases:
2020          *
2021          *     (a) quiesce [steps 2-16].
2022          *     (b) save of CSA, performed by PPE [steps 17-42]
2023          *     (c) save of LSCSA, mostly performed by SPU [steps 43-52].
2024          *
2025          * Returns      0 on success.
2026          *              2,6 if failed to quiece SPU
2027          *              53 if SPU-side of save failed.
2028          */
2029
2030         rc = quiece_spu(prev, spu);             /* Steps 2-16. */
2031         switch (rc) {
2032         default:
2033         case 2:
2034         case 6:
2035                 harvest(prev, spu);
2036                 return rc;
2037                 break;
2038         case 0:
2039                 break;
2040         }
2041         save_csa(prev, spu);                    /* Steps 17-43. */
2042         save_lscsa(prev, spu);                  /* Steps 44-53. */
2043         return check_save_status(prev, spu);    /* Step 54.     */
2044 }
2045
2046 static int __do_spu_restore(struct spu_state *next, struct spu *spu)
2047 {
2048         int rc;
2049
2050         /*
2051          * SPU context restore can be broken into three phases:
2052          *
2053          *    (a) harvest (or reset) SPU [steps 2-24].
2054          *    (b) restore LSCSA [steps 25-40], mostly performed by SPU.
2055          *    (c) restore CSA [steps 41-76], performed by PPE.
2056          *
2057          * The 'harvest' step is not performed here, but rather
2058          * as needed below.
2059          */
2060
2061         restore_lscsa(next, spu);               /* Steps 24-39. */
2062         rc = check_restore_status(next, spu);   /* Step 40.     */
2063         switch (rc) {
2064         default:
2065                 /* Failed. Return now. */
2066                 return rc;
2067                 break;
2068         case 0:
2069                 /* Fall through to next step. */
2070                 break;
2071         }
2072         restore_csa(next, spu);
2073
2074         return 0;
2075 }
2076
2077 /**
2078  * spu_save - SPU context save, with locking.
2079  * @prev: pointer to SPU context save area, to be saved.
2080  * @spu: pointer to SPU iomem structure.
2081  *
2082  * Acquire locks, perform the save operation then return.
2083  */
2084 int spu_save(struct spu_state *prev, struct spu *spu)
2085 {
2086         int rc;
2087
2088         acquire_spu_lock(spu);          /* Step 1.     */
2089         rc = __do_spu_save(prev, spu);  /* Steps 2-53. */
2090         release_spu_lock(spu);
2091         if (rc) {
2092                 panic("%s failed on SPU[%d], rc=%d.\n",
2093                       __func__, spu->number, rc);
2094         }
2095         return rc;
2096 }
2097 EXPORT_SYMBOL_GPL(spu_save);
2098
2099 /**
2100  * spu_restore - SPU context restore, with harvest and locking.
2101  * @new: pointer to SPU context save area, to be restored.
2102  * @spu: pointer to SPU iomem structure.
2103  *
2104  * Perform harvest + restore, as we may not be coming
2105  * from a previous successful save operation, and the
2106  * hardware state is unknown.
2107  */
2108 int spu_restore(struct spu_state *new, struct spu *spu)
2109 {
2110         int rc;
2111
2112         acquire_spu_lock(spu);
2113         harvest(NULL, spu);
2114         spu->dar = 0;
2115         spu->dsisr = 0;
2116         spu->slb_replace = 0;
2117         spu->class_0_pending = 0;
2118         rc = __do_spu_restore(new, spu);
2119         release_spu_lock(spu);
2120         if (rc) {
2121                 panic("%s failed on SPU[%d] rc=%d.\n",
2122                        __func__, spu->number, rc);
2123         }
2124         return rc;
2125 }
2126 EXPORT_SYMBOL_GPL(spu_restore);
2127
2128 /**
2129  * spu_harvest - SPU harvest (reset) operation
2130  * @spu: pointer to SPU iomem structure.
2131  *
2132  * Perform SPU harvest (reset) operation.
2133  */
2134 void spu_harvest(struct spu *spu)
2135 {
2136         acquire_spu_lock(spu);
2137         harvest(NULL, spu);
2138         release_spu_lock(spu);
2139 }
2140
2141 static void init_prob(struct spu_state *csa)
2142 {
2143         csa->spu_chnlcnt_RW[9] = 1;
2144         csa->spu_chnlcnt_RW[21] = 16;
2145         csa->spu_chnlcnt_RW[23] = 1;
2146         csa->spu_chnlcnt_RW[28] = 1;
2147         csa->spu_chnlcnt_RW[30] = 1;
2148         csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
2149         csa->prob.mb_stat_R = 0x000400;
2150 }
2151
2152 static void init_priv1(struct spu_state *csa)
2153 {
2154         /* Enable decode, relocate, tlbie response, master runcntl. */
2155         csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
2156             MFC_STATE1_MASTER_RUN_CONTROL_MASK |
2157             MFC_STATE1_PROBLEM_STATE_MASK |
2158             MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
2159
2160         /* Set storage description.  */
2161         csa->priv1.mfc_sdr_RW = mfspr(SPRN_SDR1);
2162
2163         /* Enable OS-specific set of interrupts. */
2164         csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
2165             CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
2166             CLASS0_ENABLE_SPU_ERROR_INTR;
2167         csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
2168             CLASS1_ENABLE_STORAGE_FAULT_INTR;
2169         csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
2170             CLASS2_ENABLE_SPU_HALT_INTR |
2171             CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
2172 }
2173
2174 static void init_priv2(struct spu_state *csa)
2175 {
2176         csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
2177         csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
2178             MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
2179             MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
2180 }
2181
2182 /**
2183  * spu_alloc_csa - allocate and initialize an SPU context save area.
2184  *
2185  * Allocate and initialize the contents of an SPU context save area.
2186  * This includes enabling address translation, interrupt masks, etc.,
2187  * as appropriate for the given OS environment.
2188  *
2189  * Note that storage for the 'lscsa' is allocated separately,
2190  * as it is by far the largest of the context save regions,
2191  * and may need to be pinned or otherwise specially aligned.
2192  */
2193 void spu_init_csa(struct spu_state *csa)
2194 {
2195         struct spu_lscsa *lscsa;
2196         unsigned char *p;
2197
2198         if (!csa)
2199                 return;
2200         memset(csa, 0, sizeof(struct spu_state));
2201
2202         lscsa = vmalloc(sizeof(struct spu_lscsa));
2203         if (!lscsa)
2204                 return;
2205
2206         memset(lscsa, 0, sizeof(struct spu_lscsa));
2207         csa->lscsa = lscsa;
2208         spin_lock_init(&csa->register_lock);
2209
2210         /* Set LS pages reserved to allow for user-space mapping. */
2211         for (p = lscsa->ls; p < lscsa->ls + LS_SIZE; p += PAGE_SIZE)
2212                 SetPageReserved(vmalloc_to_page(p));
2213
2214         init_prob(csa);
2215         init_priv1(csa);
2216         init_priv2(csa);
2217 }
2218 EXPORT_SYMBOL_GPL(spu_init_csa);
2219
2220 void spu_fini_csa(struct spu_state *csa)
2221 {
2222         /* Clear reserved bit before vfree. */
2223         unsigned char *p;
2224         for (p = csa->lscsa->ls; p < csa->lscsa->ls + LS_SIZE; p += PAGE_SIZE)
2225                 ClearPageReserved(vmalloc_to_page(p));
2226
2227         vfree(csa->lscsa);
2228 }
2229 EXPORT_SYMBOL_GPL(spu_fini_csa);