Merge branch 'devel' of master.kernel.org:/home/rmk/linux-2.6-arm
[pandora-kernel.git] / arch / powerpc / platforms / cell / spufs / switch.c
1 /*
2  * spu_switch.c
3  *
4  * (C) Copyright IBM Corp. 2005
5  *
6  * Author: Mark Nutter <mnutter@us.ibm.com>
7  *
8  * Host-side part of SPU context switch sequence outlined in
9  * Synergistic Processor Element, Book IV.
10  *
11  * A fully premptive switch of an SPE is very expensive in terms
12  * of time and system resources.  SPE Book IV indicates that SPE
13  * allocation should follow a "serially reusable device" model,
14  * in which the SPE is assigned a task until it completes.  When
15  * this is not possible, this sequence may be used to premptively
16  * save, and then later (optionally) restore the context of a
17  * program executing on an SPE.
18  *
19  *
20  * This program is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2, or (at your option)
23  * any later version.
24  *
25  * This program is distributed in the hope that it will be useful,
26  * but WITHOUT ANY WARRANTY; without even the implied warranty of
27  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28  * GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with this program; if not, write to the Free Software
32  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33  */
34
35 #include <linux/module.h>
36 #include <linux/errno.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/vmalloc.h>
41 #include <linux/smp.h>
42 #include <linux/stddef.h>
43 #include <linux/unistd.h>
44
45 #include <asm/io.h>
46 #include <asm/spu.h>
47 #include <asm/spu_priv1.h>
48 #include <asm/spu_csa.h>
49 #include <asm/mmu_context.h>
50
51 #include "spu_save_dump.h"
52 #include "spu_restore_dump.h"
53
54 #if 0
55 #define POLL_WHILE_TRUE(_c) {                           \
56     do {                                                \
57     } while (_c);                                       \
58   }
59 #else
60 #define RELAX_SPIN_COUNT                                1000
61 #define POLL_WHILE_TRUE(_c) {                           \
62     do {                                                \
63         int _i;                                         \
64         for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
65             cpu_relax();                                \
66         }                                               \
67         if (unlikely(_c)) yield();                      \
68         else break;                                     \
69     } while (_c);                                       \
70   }
71 #endif                          /* debug */
72
73 #define POLL_WHILE_FALSE(_c)    POLL_WHILE_TRUE(!(_c))
74
75 static inline void acquire_spu_lock(struct spu *spu)
76 {
77         /* Save, Step 1:
78          * Restore, Step 1:
79          *    Acquire SPU-specific mutual exclusion lock.
80          *    TBD.
81          */
82 }
83
84 static inline void release_spu_lock(struct spu *spu)
85 {
86         /* Restore, Step 76:
87          *    Release SPU-specific mutual exclusion lock.
88          *    TBD.
89          */
90 }
91
92 static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
93 {
94         struct spu_problem __iomem *prob = spu->problem;
95         u32 isolate_state;
96
97         /* Save, Step 2:
98          * Save, Step 6:
99          *     If SPU_Status[E,L,IS] any field is '1', this
100          *     SPU is in isolate state and cannot be context
101          *     saved at this time.
102          */
103         isolate_state = SPU_STATUS_ISOLATED_STATE |
104             SPU_STATUS_ISOLATED_LOAD_STATUS | SPU_STATUS_ISOLATED_EXIT_STATUS;
105         return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
106 }
107
108 static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
109 {
110         /* Save, Step 3:
111          * Restore, Step 2:
112          *     Save INT_Mask_class0 in CSA.
113          *     Write INT_MASK_class0 with value of 0.
114          *     Save INT_Mask_class1 in CSA.
115          *     Write INT_MASK_class1 with value of 0.
116          *     Save INT_Mask_class2 in CSA.
117          *     Write INT_MASK_class2 with value of 0.
118          */
119         spin_lock_irq(&spu->register_lock);
120         if (csa) {
121                 csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
122                 csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
123                 csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
124         }
125         spu_int_mask_set(spu, 0, 0ul);
126         spu_int_mask_set(spu, 1, 0ul);
127         spu_int_mask_set(spu, 2, 0ul);
128         eieio();
129         spin_unlock_irq(&spu->register_lock);
130 }
131
132 static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
133 {
134         /* Save, Step 4:
135          * Restore, Step 25.
136          *    Set a software watchdog timer, which specifies the
137          *    maximum allowable time for a context save sequence.
138          *
139          *    For present, this implementation will not set a global
140          *    watchdog timer, as virtualization & variable system load
141          *    may cause unpredictable execution times.
142          */
143 }
144
145 static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
146 {
147         /* Save, Step 5:
148          * Restore, Step 3:
149          *     Inhibit user-space access (if provided) to this
150          *     SPU by unmapping the virtual pages assigned to
151          *     the SPU memory-mapped I/O (MMIO) for problem
152          *     state. TBD.
153          */
154 }
155
156 static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
157 {
158         /* Save, Step 7:
159          * Restore, Step 5:
160          *     Set a software context switch pending flag.
161          */
162         set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
163         mb();
164 }
165
166 static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
167 {
168         struct spu_priv2 __iomem *priv2 = spu->priv2;
169
170         /* Save, Step 8:
171          *     Suspend DMA and save MFC_CNTL.
172          */
173         switch (in_be64(&priv2->mfc_control_RW) &
174                MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
175         case MFC_CNTL_SUSPEND_IN_PROGRESS:
176                 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
177                                   MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
178                                  MFC_CNTL_SUSPEND_COMPLETE);
179                 /* fall through */
180         case MFC_CNTL_SUSPEND_COMPLETE:
181                 if (csa) {
182                         csa->priv2.mfc_control_RW =
183                                 MFC_CNTL_SUSPEND_MASK |
184                                 MFC_CNTL_SUSPEND_DMA_QUEUE;
185                 }
186                 break;
187         case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
188                 out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
189                 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
190                                   MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
191                                  MFC_CNTL_SUSPEND_COMPLETE);
192                 if (csa) {
193                         csa->priv2.mfc_control_RW = 0;
194                 }
195                 break;
196         }
197 }
198
199 static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
200 {
201         struct spu_problem __iomem *prob = spu->problem;
202
203         /* Save, Step 9:
204          *     Save SPU_Runcntl in the CSA.  This value contains
205          *     the "Application Desired State".
206          */
207         csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
208 }
209
210 static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
211 {
212         /* Save, Step 10:
213          *     Save MFC_SR1 in the CSA.
214          */
215         csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
216 }
217
218 static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
219 {
220         struct spu_problem __iomem *prob = spu->problem;
221
222         /* Save, Step 11:
223          *     Read SPU_Status[R], and save to CSA.
224          */
225         if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
226                 csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
227         } else {
228                 u32 stopped;
229
230                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
231                 eieio();
232                 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
233                                 SPU_STATUS_RUNNING);
234                 stopped =
235                     SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
236                     SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
237                 if ((in_be32(&prob->spu_status_R) & stopped) == 0)
238                         csa->prob.spu_status_R = SPU_STATUS_RUNNING;
239                 else
240                         csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
241         }
242 }
243
244 static inline void save_mfc_decr(struct spu_state *csa, struct spu *spu)
245 {
246         struct spu_priv2 __iomem *priv2 = spu->priv2;
247
248         /* Save, Step 12:
249          *     Read MFC_CNTL[Ds].  Update saved copy of
250          *     CSA.MFC_CNTL[Ds].
251          */
252         csa->priv2.mfc_control_RW |=
253                 in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DECREMENTER_RUNNING;
254 }
255
256 static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
257 {
258         struct spu_priv2 __iomem *priv2 = spu->priv2;
259
260         /* Save, Step 13:
261          *     Write MFC_CNTL[Dh] set to a '1' to halt
262          *     the decrementer.
263          */
264         out_be64(&priv2->mfc_control_RW,
265                  MFC_CNTL_DECREMENTER_HALTED | MFC_CNTL_SUSPEND_MASK);
266         eieio();
267 }
268
269 static inline void save_timebase(struct spu_state *csa, struct spu *spu)
270 {
271         /* Save, Step 14:
272          *    Read PPE Timebase High and Timebase low registers
273          *    and save in CSA.  TBD.
274          */
275         csa->suspend_time = get_cycles();
276 }
277
278 static inline void remove_other_spu_access(struct spu_state *csa,
279                                            struct spu *spu)
280 {
281         /* Save, Step 15:
282          *     Remove other SPU access to this SPU by unmapping
283          *     this SPU's pages from their address space.  TBD.
284          */
285 }
286
287 static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
288 {
289         struct spu_problem __iomem *prob = spu->problem;
290
291         /* Save, Step 16:
292          * Restore, Step 11.
293          *     Write SPU_MSSync register. Poll SPU_MSSync[P]
294          *     for a value of 0.
295          */
296         out_be64(&prob->spc_mssync_RW, 1UL);
297         POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
298 }
299
300 static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
301 {
302         /* Save, Step 17:
303          * Restore, Step 12.
304          * Restore, Step 48.
305          *     Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
306          *     Then issue a PPE sync instruction.
307          */
308         spu_tlb_invalidate(spu);
309         mb();
310 }
311
312 static inline void handle_pending_interrupts(struct spu_state *csa,
313                                              struct spu *spu)
314 {
315         /* Save, Step 18:
316          *     Handle any pending interrupts from this SPU
317          *     here.  This is OS or hypervisor specific.  One
318          *     option is to re-enable interrupts to handle any
319          *     pending interrupts, with the interrupt handlers
320          *     recognizing the software Context Switch Pending
321          *     flag, to ensure the SPU execution or MFC command
322          *     queue is not restarted.  TBD.
323          */
324 }
325
326 static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
327 {
328         struct spu_priv2 __iomem *priv2 = spu->priv2;
329         int i;
330
331         /* Save, Step 19:
332          *     If MFC_Cntl[Se]=0 then save
333          *     MFC command queues.
334          */
335         if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
336                 for (i = 0; i < 8; i++) {
337                         csa->priv2.puq[i].mfc_cq_data0_RW =
338                             in_be64(&priv2->puq[i].mfc_cq_data0_RW);
339                         csa->priv2.puq[i].mfc_cq_data1_RW =
340                             in_be64(&priv2->puq[i].mfc_cq_data1_RW);
341                         csa->priv2.puq[i].mfc_cq_data2_RW =
342                             in_be64(&priv2->puq[i].mfc_cq_data2_RW);
343                         csa->priv2.puq[i].mfc_cq_data3_RW =
344                             in_be64(&priv2->puq[i].mfc_cq_data3_RW);
345                 }
346                 for (i = 0; i < 16; i++) {
347                         csa->priv2.spuq[i].mfc_cq_data0_RW =
348                             in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
349                         csa->priv2.spuq[i].mfc_cq_data1_RW =
350                             in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
351                         csa->priv2.spuq[i].mfc_cq_data2_RW =
352                             in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
353                         csa->priv2.spuq[i].mfc_cq_data3_RW =
354                             in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
355                 }
356         }
357 }
358
359 static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
360 {
361         struct spu_problem __iomem *prob = spu->problem;
362
363         /* Save, Step 20:
364          *     Save the PPU_QueryMask register
365          *     in the CSA.
366          */
367         csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
368 }
369
370 static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
371 {
372         struct spu_problem __iomem *prob = spu->problem;
373
374         /* Save, Step 21:
375          *     Save the PPU_QueryType register
376          *     in the CSA.
377          */
378         csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
379 }
380
381 static inline void save_ppu_tagstatus(struct spu_state *csa, struct spu *spu)
382 {
383         struct spu_problem __iomem *prob = spu->problem;
384
385         /* Save the Prxy_TagStatus register in the CSA.
386          *
387          * It is unnecessary to restore dma_tagstatus_R, however,
388          * dma_tagstatus_R in the CSA is accessed via backing_ops, so
389          * we must save it.
390          */
391         csa->prob.dma_tagstatus_R = in_be32(&prob->dma_tagstatus_R);
392 }
393
394 static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
395 {
396         struct spu_priv2 __iomem *priv2 = spu->priv2;
397
398         /* Save, Step 22:
399          *     Save the MFC_CSR_TSQ register
400          *     in the LSCSA.
401          */
402         csa->priv2.spu_tag_status_query_RW =
403             in_be64(&priv2->spu_tag_status_query_RW);
404 }
405
406 static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
407 {
408         struct spu_priv2 __iomem *priv2 = spu->priv2;
409
410         /* Save, Step 23:
411          *     Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
412          *     registers in the CSA.
413          */
414         csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
415         csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
416 }
417
418 static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
419 {
420         struct spu_priv2 __iomem *priv2 = spu->priv2;
421
422         /* Save, Step 24:
423          *     Save the MFC_CSR_ATO register in
424          *     the CSA.
425          */
426         csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
427 }
428
429 static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
430 {
431         /* Save, Step 25:
432          *     Save the MFC_TCLASS_ID register in
433          *     the CSA.
434          */
435         csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
436 }
437
438 static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
439 {
440         /* Save, Step 26:
441          * Restore, Step 23.
442          *     Write the MFC_TCLASS_ID register with
443          *     the value 0x10000000.
444          */
445         spu_mfc_tclass_id_set(spu, 0x10000000);
446         eieio();
447 }
448
449 static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
450 {
451         struct spu_priv2 __iomem *priv2 = spu->priv2;
452
453         /* Save, Step 27:
454          * Restore, Step 14.
455          *     Write MFC_CNTL[Pc]=1 (purge queue).
456          */
457         out_be64(&priv2->mfc_control_RW, MFC_CNTL_PURGE_DMA_REQUEST);
458         eieio();
459 }
460
461 static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
462 {
463         struct spu_priv2 __iomem *priv2 = spu->priv2;
464
465         /* Save, Step 28:
466          *     Poll MFC_CNTL[Ps] until value '11' is read
467          *     (purge complete).
468          */
469         POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
470                          MFC_CNTL_PURGE_DMA_STATUS_MASK) ==
471                          MFC_CNTL_PURGE_DMA_COMPLETE);
472 }
473
474 static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
475 {
476         /* Save, Step 30:
477          * Restore, Step 18:
478          *     Write MFC_SR1 with MFC_SR1[D=0,S=1] and
479          *     MFC_SR1[TL,R,Pr,T] set correctly for the
480          *     OS specific environment.
481          *
482          *     Implementation note: The SPU-side code
483          *     for save/restore is privileged, so the
484          *     MFC_SR1[Pr] bit is not set.
485          *
486          */
487         spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
488                               MFC_STATE1_RELOCATE_MASK |
489                               MFC_STATE1_BUS_TLBIE_MASK));
490 }
491
492 static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
493 {
494         struct spu_problem __iomem *prob = spu->problem;
495
496         /* Save, Step 31:
497          *     Save SPU_NPC in the CSA.
498          */
499         csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
500 }
501
502 static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
503 {
504         struct spu_priv2 __iomem *priv2 = spu->priv2;
505
506         /* Save, Step 32:
507          *     Save SPU_PrivCntl in the CSA.
508          */
509         csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
510 }
511
512 static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
513 {
514         struct spu_priv2 __iomem *priv2 = spu->priv2;
515
516         /* Save, Step 33:
517          * Restore, Step 16:
518          *     Write SPU_PrivCntl[S,Le,A] fields reset to 0.
519          */
520         out_be64(&priv2->spu_privcntl_RW, 0UL);
521         eieio();
522 }
523
524 static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
525 {
526         struct spu_priv2 __iomem *priv2 = spu->priv2;
527
528         /* Save, Step 34:
529          *     Save SPU_LSLR in the CSA.
530          */
531         csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
532 }
533
534 static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
535 {
536         struct spu_priv2 __iomem *priv2 = spu->priv2;
537
538         /* Save, Step 35:
539          * Restore, Step 17.
540          *     Reset SPU_LSLR.
541          */
542         out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
543         eieio();
544 }
545
546 static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
547 {
548         struct spu_priv2 __iomem *priv2 = spu->priv2;
549
550         /* Save, Step 36:
551          *     Save SPU_Cfg in the CSA.
552          */
553         csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
554 }
555
556 static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
557 {
558         /* Save, Step 37:
559          *     Save PM_Trace_Tag_Wait_Mask in the CSA.
560          *     Not performed by this implementation.
561          */
562 }
563
564 static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
565 {
566         /* Save, Step 38:
567          *     Save RA_GROUP_ID register and the
568          *     RA_ENABLE reigster in the CSA.
569          */
570         csa->priv1.resource_allocation_groupID_RW =
571                 spu_resource_allocation_groupID_get(spu);
572         csa->priv1.resource_allocation_enable_RW =
573                 spu_resource_allocation_enable_get(spu);
574 }
575
576 static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
577 {
578         struct spu_problem __iomem *prob = spu->problem;
579
580         /* Save, Step 39:
581          *     Save MB_Stat register in the CSA.
582          */
583         csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
584 }
585
586 static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
587 {
588         struct spu_problem __iomem *prob = spu->problem;
589
590         /* Save, Step 40:
591          *     Save the PPU_MB register in the CSA.
592          */
593         csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
594 }
595
596 static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
597 {
598         struct spu_priv2 __iomem *priv2 = spu->priv2;
599
600         /* Save, Step 41:
601          *     Save the PPUINT_MB register in the CSA.
602          */
603         csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
604 }
605
606 static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
607 {
608         struct spu_priv2 __iomem *priv2 = spu->priv2;
609         u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
610         int i;
611
612         /* Save, Step 42:
613          */
614
615         /* Save CH 1, without channel count */
616         out_be64(&priv2->spu_chnlcntptr_RW, 1);
617         csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW);
618
619         /* Save the following CH: [0,3,4,24,25,27] */
620         for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
621                 idx = ch_indices[i];
622                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
623                 eieio();
624                 csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
625                 csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
626                 out_be64(&priv2->spu_chnldata_RW, 0UL);
627                 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
628                 eieio();
629         }
630 }
631
632 static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
633 {
634         struct spu_priv2 __iomem *priv2 = spu->priv2;
635         int i;
636
637         /* Save, Step 43:
638          *     Save SPU Read Mailbox Channel.
639          */
640         out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
641         eieio();
642         csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
643         for (i = 0; i < 4; i++) {
644                 csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
645         }
646         out_be64(&priv2->spu_chnlcnt_RW, 0UL);
647         eieio();
648 }
649
650 static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
651 {
652         struct spu_priv2 __iomem *priv2 = spu->priv2;
653
654         /* Save, Step 44:
655          *     Save MFC_CMD Channel.
656          */
657         out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
658         eieio();
659         csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
660         eieio();
661 }
662
663 static inline void reset_ch(struct spu_state *csa, struct spu *spu)
664 {
665         struct spu_priv2 __iomem *priv2 = spu->priv2;
666         u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
667         u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
668         u64 idx;
669         int i;
670
671         /* Save, Step 45:
672          *     Reset the following CH: [21, 23, 28, 30]
673          */
674         for (i = 0; i < 4; i++) {
675                 idx = ch_indices[i];
676                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
677                 eieio();
678                 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
679                 eieio();
680         }
681 }
682
683 static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
684 {
685         struct spu_priv2 __iomem *priv2 = spu->priv2;
686
687         /* Save, Step 46:
688          * Restore, Step 25.
689          *     Write MFC_CNTL[Sc]=0 (resume queue processing).
690          */
691         out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
692 }
693
694 static inline void get_kernel_slb(u64 ea, u64 slb[2])
695 {
696         u64 llp;
697
698         if (REGION_ID(ea) == KERNEL_REGION_ID)
699                 llp = mmu_psize_defs[mmu_linear_psize].sllp;
700         else
701                 llp = mmu_psize_defs[mmu_virtual_psize].sllp;
702         slb[0] = (get_kernel_vsid(ea) << SLB_VSID_SHIFT) |
703                 SLB_VSID_KERNEL | llp;
704         slb[1] = (ea & ESID_MASK) | SLB_ESID_V;
705 }
706
707 static inline void load_mfc_slb(struct spu *spu, u64 slb[2], int slbe)
708 {
709         struct spu_priv2 __iomem *priv2 = spu->priv2;
710
711         out_be64(&priv2->slb_index_W, slbe);
712         eieio();
713         out_be64(&priv2->slb_vsid_RW, slb[0]);
714         out_be64(&priv2->slb_esid_RW, slb[1]);
715         eieio();
716 }
717
718 static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu)
719 {
720         u64 code_slb[2];
721         u64 lscsa_slb[2];
722
723         /* Save, Step 47:
724          * Restore, Step 30.
725          *     If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
726          *     register, then initialize SLB_VSID and SLB_ESID
727          *     to provide access to SPU context save code and
728          *     LSCSA.
729          *
730          *     This implementation places both the context
731          *     switch code and LSCSA in kernel address space.
732          *
733          *     Further this implementation assumes that the
734          *     MFC_SR1[R]=1 (in other words, assume that
735          *     translation is desired by OS environment).
736          */
737         spu_invalidate_slbs(spu);
738         get_kernel_slb((unsigned long)&spu_save_code[0], code_slb);
739         get_kernel_slb((unsigned long)csa->lscsa, lscsa_slb);
740         load_mfc_slb(spu, code_slb, 0);
741         if ((lscsa_slb[0] != code_slb[0]) || (lscsa_slb[1] != code_slb[1]))
742                 load_mfc_slb(spu, lscsa_slb, 1);
743 }
744
745 static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
746 {
747         /* Save, Step 48:
748          * Restore, Step 23.
749          *     Change the software context switch pending flag
750          *     to context switch active.
751          */
752         set_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags);
753         clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
754         mb();
755 }
756
757 static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
758 {
759         unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
760             CLASS1_ENABLE_STORAGE_FAULT_INTR;
761
762         /* Save, Step 49:
763          * Restore, Step 22:
764          *     Reset and then enable interrupts, as
765          *     needed by OS.
766          *
767          *     This implementation enables only class1
768          *     (translation) interrupts.
769          */
770         spin_lock_irq(&spu->register_lock);
771         spu_int_stat_clear(spu, 0, ~0ul);
772         spu_int_stat_clear(spu, 1, ~0ul);
773         spu_int_stat_clear(spu, 2, ~0ul);
774         spu_int_mask_set(spu, 0, 0ul);
775         spu_int_mask_set(spu, 1, class1_mask);
776         spu_int_mask_set(spu, 2, 0ul);
777         spin_unlock_irq(&spu->register_lock);
778 }
779
780 static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
781                                unsigned int ls_offset, unsigned int size,
782                                unsigned int tag, unsigned int rclass,
783                                unsigned int cmd)
784 {
785         struct spu_problem __iomem *prob = spu->problem;
786         union mfc_tag_size_class_cmd command;
787         unsigned int transfer_size;
788         volatile unsigned int status = 0x0;
789
790         while (size > 0) {
791                 transfer_size =
792                     (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
793                 command.u.mfc_size = transfer_size;
794                 command.u.mfc_tag = tag;
795                 command.u.mfc_rclassid = rclass;
796                 command.u.mfc_cmd = cmd;
797                 do {
798                         out_be32(&prob->mfc_lsa_W, ls_offset);
799                         out_be64(&prob->mfc_ea_W, ea);
800                         out_be64(&prob->mfc_union_W.all64, command.all64);
801                         status =
802                             in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
803                         if (unlikely(status & 0x2)) {
804                                 cpu_relax();
805                         }
806                 } while (status & 0x3);
807                 size -= transfer_size;
808                 ea += transfer_size;
809                 ls_offset += transfer_size;
810         }
811         return 0;
812 }
813
814 static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
815 {
816         unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
817         unsigned int ls_offset = 0x0;
818         unsigned int size = 16384;
819         unsigned int tag = 0;
820         unsigned int rclass = 0;
821         unsigned int cmd = MFC_PUT_CMD;
822
823         /* Save, Step 50:
824          *     Issue a DMA command to copy the first 16K bytes
825          *     of local storage to the CSA.
826          */
827         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
828 }
829
830 static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
831 {
832         struct spu_problem __iomem *prob = spu->problem;
833
834         /* Save, Step 51:
835          * Restore, Step 31.
836          *     Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
837          *     point address of context save code in local
838          *     storage.
839          *
840          *     This implementation uses SPU-side save/restore
841          *     programs with entry points at LSA of 0.
842          */
843         out_be32(&prob->spu_npc_RW, 0);
844         eieio();
845 }
846
847 static inline void set_signot1(struct spu_state *csa, struct spu *spu)
848 {
849         struct spu_problem __iomem *prob = spu->problem;
850         union {
851                 u64 ull;
852                 u32 ui[2];
853         } addr64;
854
855         /* Save, Step 52:
856          * Restore, Step 32:
857          *    Write SPU_Sig_Notify_1 register with upper 32-bits
858          *    of the CSA.LSCSA effective address.
859          */
860         addr64.ull = (u64) csa->lscsa;
861         out_be32(&prob->signal_notify1, addr64.ui[0]);
862         eieio();
863 }
864
865 static inline void set_signot2(struct spu_state *csa, struct spu *spu)
866 {
867         struct spu_problem __iomem *prob = spu->problem;
868         union {
869                 u64 ull;
870                 u32 ui[2];
871         } addr64;
872
873         /* Save, Step 53:
874          * Restore, Step 33:
875          *    Write SPU_Sig_Notify_2 register with lower 32-bits
876          *    of the CSA.LSCSA effective address.
877          */
878         addr64.ull = (u64) csa->lscsa;
879         out_be32(&prob->signal_notify2, addr64.ui[1]);
880         eieio();
881 }
882
883 static inline void send_save_code(struct spu_state *csa, struct spu *spu)
884 {
885         unsigned long addr = (unsigned long)&spu_save_code[0];
886         unsigned int ls_offset = 0x0;
887         unsigned int size = sizeof(spu_save_code);
888         unsigned int tag = 0;
889         unsigned int rclass = 0;
890         unsigned int cmd = MFC_GETFS_CMD;
891
892         /* Save, Step 54:
893          *     Issue a DMA command to copy context save code
894          *     to local storage and start SPU.
895          */
896         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
897 }
898
899 static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
900 {
901         struct spu_problem __iomem *prob = spu->problem;
902
903         /* Save, Step 55:
904          * Restore, Step 38.
905          *     Write PPU_QueryMask=1 (enable Tag Group 0)
906          *     and issue eieio instruction.
907          */
908         out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
909         eieio();
910 }
911
912 static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
913 {
914         struct spu_problem __iomem *prob = spu->problem;
915         u32 mask = MFC_TAGID_TO_TAGMASK(0);
916         unsigned long flags;
917
918         /* Save, Step 56:
919          * Restore, Step 39.
920          * Restore, Step 39.
921          * Restore, Step 46.
922          *     Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
923          *     or write PPU_QueryType[TS]=01 and wait for Tag Group
924          *     Complete Interrupt.  Write INT_Stat_Class0 or
925          *     INT_Stat_Class2 with value of 'handled'.
926          */
927         POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
928
929         local_irq_save(flags);
930         spu_int_stat_clear(spu, 0, ~(0ul));
931         spu_int_stat_clear(spu, 2, ~(0ul));
932         local_irq_restore(flags);
933 }
934
935 static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
936 {
937         struct spu_problem __iomem *prob = spu->problem;
938         unsigned long flags;
939
940         /* Save, Step 57:
941          * Restore, Step 40.
942          *     Poll until SPU_Status[R]=0 or wait for SPU Class 0
943          *     or SPU Class 2 interrupt.  Write INT_Stat_class0
944          *     or INT_Stat_class2 with value of handled.
945          */
946         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
947
948         local_irq_save(flags);
949         spu_int_stat_clear(spu, 0, ~(0ul));
950         spu_int_stat_clear(spu, 2, ~(0ul));
951         local_irq_restore(flags);
952 }
953
954 static inline int check_save_status(struct spu_state *csa, struct spu *spu)
955 {
956         struct spu_problem __iomem *prob = spu->problem;
957         u32 complete;
958
959         /* Save, Step 54:
960          *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
961          *     context save succeeded, otherwise context save
962          *     failed.
963          */
964         complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
965                     SPU_STATUS_STOPPED_BY_STOP);
966         return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
967 }
968
969 static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
970 {
971         /* Restore, Step 4:
972          *    If required, notify the "using application" that
973          *    the SPU task has been terminated.  TBD.
974          */
975 }
976
977 static inline void suspend_mfc_and_halt_decr(struct spu_state *csa,
978                 struct spu *spu)
979 {
980         struct spu_priv2 __iomem *priv2 = spu->priv2;
981
982         /* Restore, Step 7:
983          *     Write MFC_Cntl[Dh,Sc,Sm]='1','1','0' to suspend
984          *     the queue and halt the decrementer.
985          */
986         out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
987                  MFC_CNTL_DECREMENTER_HALTED);
988         eieio();
989 }
990
991 static inline void wait_suspend_mfc_complete(struct spu_state *csa,
992                                              struct spu *spu)
993 {
994         struct spu_priv2 __iomem *priv2 = spu->priv2;
995
996         /* Restore, Step 8:
997          * Restore, Step 47.
998          *     Poll MFC_CNTL[Ss] until 11 is returned.
999          */
1000         POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
1001                          MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
1002                          MFC_CNTL_SUSPEND_COMPLETE);
1003 }
1004
1005 static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
1006 {
1007         struct spu_problem __iomem *prob = spu->problem;
1008
1009         /* Restore, Step 9:
1010          *    If SPU_Status[R]=1, stop SPU execution
1011          *    and wait for stop to complete.
1012          *
1013          *    Returns       1 if SPU_Status[R]=1 on entry.
1014          *                  0 otherwise
1015          */
1016         if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
1017                 if (in_be32(&prob->spu_status_R) &
1018                     SPU_STATUS_ISOLATED_EXIT_STATUS) {
1019                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1020                                         SPU_STATUS_RUNNING);
1021                 }
1022                 if ((in_be32(&prob->spu_status_R) &
1023                      SPU_STATUS_ISOLATED_LOAD_STATUS)
1024                     || (in_be32(&prob->spu_status_R) &
1025                         SPU_STATUS_ISOLATED_STATE)) {
1026                         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1027                         eieio();
1028                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1029                                         SPU_STATUS_RUNNING);
1030                         out_be32(&prob->spu_runcntl_RW, 0x2);
1031                         eieio();
1032                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1033                                         SPU_STATUS_RUNNING);
1034                 }
1035                 if (in_be32(&prob->spu_status_R) &
1036                     SPU_STATUS_WAITING_FOR_CHANNEL) {
1037                         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1038                         eieio();
1039                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1040                                         SPU_STATUS_RUNNING);
1041                 }
1042                 return 1;
1043         }
1044         return 0;
1045 }
1046
1047 static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
1048 {
1049         struct spu_problem __iomem *prob = spu->problem;
1050
1051         /* Restore, Step 10:
1052          *    If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
1053          *    release SPU from isolate state.
1054          */
1055         if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
1056                 if (in_be32(&prob->spu_status_R) &
1057                     SPU_STATUS_ISOLATED_EXIT_STATUS) {
1058                         spu_mfc_sr1_set(spu,
1059                                         MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1060                         eieio();
1061                         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1062                         eieio();
1063                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1064                                         SPU_STATUS_RUNNING);
1065                 }
1066                 if ((in_be32(&prob->spu_status_R) &
1067                      SPU_STATUS_ISOLATED_LOAD_STATUS)
1068                     || (in_be32(&prob->spu_status_R) &
1069                         SPU_STATUS_ISOLATED_STATE)) {
1070                         spu_mfc_sr1_set(spu,
1071                                         MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1072                         eieio();
1073                         out_be32(&prob->spu_runcntl_RW, 0x2);
1074                         eieio();
1075                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1076                                         SPU_STATUS_RUNNING);
1077                 }
1078         }
1079 }
1080
1081 static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
1082 {
1083         struct spu_priv2 __iomem *priv2 = spu->priv2;
1084         u64 ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1085         u64 idx;
1086         int i;
1087
1088         /* Restore, Step 20:
1089          */
1090
1091         /* Reset CH 1 */
1092         out_be64(&priv2->spu_chnlcntptr_RW, 1);
1093         out_be64(&priv2->spu_chnldata_RW, 0UL);
1094
1095         /* Reset the following CH: [0,3,4,24,25,27] */
1096         for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1097                 idx = ch_indices[i];
1098                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1099                 eieio();
1100                 out_be64(&priv2->spu_chnldata_RW, 0UL);
1101                 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
1102                 eieio();
1103         }
1104 }
1105
1106 static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
1107 {
1108         struct spu_priv2 __iomem *priv2 = spu->priv2;
1109         u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
1110         u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
1111         u64 idx;
1112         int i;
1113
1114         /* Restore, Step 21:
1115          *     Reset the following CH: [21, 23, 28, 29, 30]
1116          */
1117         for (i = 0; i < 5; i++) {
1118                 idx = ch_indices[i];
1119                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1120                 eieio();
1121                 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1122                 eieio();
1123         }
1124 }
1125
1126 static inline void setup_spu_status_part1(struct spu_state *csa,
1127                                           struct spu *spu)
1128 {
1129         u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
1130         u32 status_I = SPU_STATUS_INVALID_INSTR;
1131         u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
1132         u32 status_S = SPU_STATUS_SINGLE_STEP;
1133         u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
1134         u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
1135         u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
1136         u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
1137         u32 status_code;
1138
1139         /* Restore, Step 27:
1140          *     If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
1141          *     instruction sequence to the end of the SPU based restore
1142          *     code (after the "context restored" stop and signal) to
1143          *     restore the correct SPU status.
1144          *
1145          *     NOTE: Rather than modifying the SPU executable, we
1146          *     instead add a new 'stopped_status' field to the
1147          *     LSCSA.  The SPU-side restore reads this field and
1148          *     takes the appropriate action when exiting.
1149          */
1150
1151         status_code =
1152             (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
1153         if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
1154
1155                 /* SPU_Status[P,I]=1 - Illegal Instruction followed
1156                  * by Stop and Signal instruction, followed by 'br -4'.
1157                  *
1158                  */
1159                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
1160                 csa->lscsa->stopped_status.slot[1] = status_code;
1161
1162         } else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
1163
1164                 /* SPU_Status[P,H]=1 - Halt Conditional, followed
1165                  * by Stop and Signal instruction, followed by
1166                  * 'br -4'.
1167                  */
1168                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
1169                 csa->lscsa->stopped_status.slot[1] = status_code;
1170
1171         } else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
1172
1173                 /* SPU_Status[S,P]=1 - Stop and Signal instruction
1174                  * followed by 'br -4'.
1175                  */
1176                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
1177                 csa->lscsa->stopped_status.slot[1] = status_code;
1178
1179         } else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
1180
1181                 /* SPU_Status[S,I]=1 - Illegal instruction followed
1182                  * by 'br -4'.
1183                  */
1184                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
1185                 csa->lscsa->stopped_status.slot[1] = status_code;
1186
1187         } else if ((csa->prob.spu_status_R & status_P) == status_P) {
1188
1189                 /* SPU_Status[P]=1 - Stop and Signal instruction
1190                  * followed by 'br -4'.
1191                  */
1192                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
1193                 csa->lscsa->stopped_status.slot[1] = status_code;
1194
1195         } else if ((csa->prob.spu_status_R & status_H) == status_H) {
1196
1197                 /* SPU_Status[H]=1 - Halt Conditional, followed
1198                  * by 'br -4'.
1199                  */
1200                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
1201
1202         } else if ((csa->prob.spu_status_R & status_S) == status_S) {
1203
1204                 /* SPU_Status[S]=1 - Two nop instructions.
1205                  */
1206                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
1207
1208         } else if ((csa->prob.spu_status_R & status_I) == status_I) {
1209
1210                 /* SPU_Status[I]=1 - Illegal instruction followed
1211                  * by 'br -4'.
1212                  */
1213                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
1214
1215         }
1216 }
1217
1218 static inline void setup_spu_status_part2(struct spu_state *csa,
1219                                           struct spu *spu)
1220 {
1221         u32 mask;
1222
1223         /* Restore, Step 28:
1224          *     If the CSA.SPU_Status[I,S,H,P,R]=0 then
1225          *     add a 'br *' instruction to the end of
1226          *     the SPU based restore code.
1227          *
1228          *     NOTE: Rather than modifying the SPU executable, we
1229          *     instead add a new 'stopped_status' field to the
1230          *     LSCSA.  The SPU-side restore reads this field and
1231          *     takes the appropriate action when exiting.
1232          */
1233         mask = SPU_STATUS_INVALID_INSTR |
1234             SPU_STATUS_SINGLE_STEP |
1235             SPU_STATUS_STOPPED_BY_HALT |
1236             SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1237         if (!(csa->prob.spu_status_R & mask)) {
1238                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
1239         }
1240 }
1241
1242 static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
1243 {
1244         /* Restore, Step 29:
1245          *     Restore RA_GROUP_ID register and the
1246          *     RA_ENABLE reigster from the CSA.
1247          */
1248         spu_resource_allocation_groupID_set(spu,
1249                         csa->priv1.resource_allocation_groupID_RW);
1250         spu_resource_allocation_enable_set(spu,
1251                         csa->priv1.resource_allocation_enable_RW);
1252 }
1253
1254 static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
1255 {
1256         unsigned long addr = (unsigned long)&spu_restore_code[0];
1257         unsigned int ls_offset = 0x0;
1258         unsigned int size = sizeof(spu_restore_code);
1259         unsigned int tag = 0;
1260         unsigned int rclass = 0;
1261         unsigned int cmd = MFC_GETFS_CMD;
1262
1263         /* Restore, Step 37:
1264          *     Issue MFC DMA command to copy context
1265          *     restore code to local storage.
1266          */
1267         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1268 }
1269
1270 static inline void setup_decr(struct spu_state *csa, struct spu *spu)
1271 {
1272         /* Restore, Step 34:
1273          *     If CSA.MFC_CNTL[Ds]=1 (decrementer was
1274          *     running) then adjust decrementer, set
1275          *     decrementer running status in LSCSA,
1276          *     and set decrementer "wrapped" status
1277          *     in LSCSA.
1278          */
1279         if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
1280                 cycles_t resume_time = get_cycles();
1281                 cycles_t delta_time = resume_time - csa->suspend_time;
1282
1283                 csa->lscsa->decr_status.slot[0] = SPU_DECR_STATUS_RUNNING;
1284                 if (csa->lscsa->decr.slot[0] < delta_time) {
1285                         csa->lscsa->decr_status.slot[0] |=
1286                                  SPU_DECR_STATUS_WRAPPED;
1287                 }
1288
1289                 csa->lscsa->decr.slot[0] -= delta_time;
1290         } else {
1291                 csa->lscsa->decr_status.slot[0] = 0;
1292         }
1293 }
1294
1295 static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
1296 {
1297         /* Restore, Step 35:
1298          *     Copy the CSA.PU_MB data into the LSCSA.
1299          */
1300         csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
1301 }
1302
1303 static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
1304 {
1305         /* Restore, Step 36:
1306          *     Copy the CSA.PUINT_MB data into the LSCSA.
1307          */
1308         csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
1309 }
1310
1311 static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
1312 {
1313         struct spu_problem __iomem *prob = spu->problem;
1314         u32 complete;
1315
1316         /* Restore, Step 40:
1317          *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
1318          *     context restore succeeded, otherwise context restore
1319          *     failed.
1320          */
1321         complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
1322                     SPU_STATUS_STOPPED_BY_STOP);
1323         return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
1324 }
1325
1326 static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
1327 {
1328         struct spu_priv2 __iomem *priv2 = spu->priv2;
1329
1330         /* Restore, Step 41:
1331          *     Restore SPU_PrivCntl from the CSA.
1332          */
1333         out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
1334         eieio();
1335 }
1336
1337 static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
1338 {
1339         struct spu_problem __iomem *prob = spu->problem;
1340         u32 mask;
1341
1342         /* Restore, Step 42:
1343          *     If any CSA.SPU_Status[I,S,H,P]=1, then
1344          *     restore the error or single step state.
1345          */
1346         mask = SPU_STATUS_INVALID_INSTR |
1347             SPU_STATUS_SINGLE_STEP |
1348             SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
1349         if (csa->prob.spu_status_R & mask) {
1350                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1351                 eieio();
1352                 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1353                                 SPU_STATUS_RUNNING);
1354         }
1355 }
1356
1357 static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
1358 {
1359         struct spu_problem __iomem *prob = spu->problem;
1360         u32 mask;
1361
1362         /* Restore, Step 43:
1363          *     If all CSA.SPU_Status[I,S,H,P,R]=0 then write
1364          *     SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
1365          *     then write '00' to SPU_RunCntl[R0R1] and wait
1366          *     for SPU_Status[R]=0.
1367          */
1368         mask = SPU_STATUS_INVALID_INSTR |
1369             SPU_STATUS_SINGLE_STEP |
1370             SPU_STATUS_STOPPED_BY_HALT |
1371             SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1372         if (!(csa->prob.spu_status_R & mask)) {
1373                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1374                 eieio();
1375                 POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
1376                                  SPU_STATUS_RUNNING);
1377                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1378                 eieio();
1379                 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1380                                 SPU_STATUS_RUNNING);
1381         }
1382 }
1383
1384 static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
1385 {
1386         unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
1387         unsigned int ls_offset = 0x0;
1388         unsigned int size = 16384;
1389         unsigned int tag = 0;
1390         unsigned int rclass = 0;
1391         unsigned int cmd = MFC_GET_CMD;
1392
1393         /* Restore, Step 44:
1394          *     Issue a DMA command to restore the first
1395          *     16kb of local storage from CSA.
1396          */
1397         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1398 }
1399
1400 static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
1401 {
1402         struct spu_priv2 __iomem *priv2 = spu->priv2;
1403
1404         /* Restore, Step 47.
1405          *     Write MFC_Cntl[Sc,Sm]='1','0' to suspend
1406          *     the queue.
1407          */
1408         out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
1409         eieio();
1410 }
1411
1412 static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
1413 {
1414         /* Restore, Step 49:
1415          *     Write INT_MASK_class0 with value of 0.
1416          *     Write INT_MASK_class1 with value of 0.
1417          *     Write INT_MASK_class2 with value of 0.
1418          *     Write INT_STAT_class0 with value of -1.
1419          *     Write INT_STAT_class1 with value of -1.
1420          *     Write INT_STAT_class2 with value of -1.
1421          */
1422         spin_lock_irq(&spu->register_lock);
1423         spu_int_mask_set(spu, 0, 0ul);
1424         spu_int_mask_set(spu, 1, 0ul);
1425         spu_int_mask_set(spu, 2, 0ul);
1426         spu_int_stat_clear(spu, 0, ~0ul);
1427         spu_int_stat_clear(spu, 1, ~0ul);
1428         spu_int_stat_clear(spu, 2, ~0ul);
1429         spin_unlock_irq(&spu->register_lock);
1430 }
1431
1432 static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
1433 {
1434         struct spu_priv2 __iomem *priv2 = spu->priv2;
1435         int i;
1436
1437         /* Restore, Step 50:
1438          *     If MFC_Cntl[Se]!=0 then restore
1439          *     MFC command queues.
1440          */
1441         if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
1442                 for (i = 0; i < 8; i++) {
1443                         out_be64(&priv2->puq[i].mfc_cq_data0_RW,
1444                                  csa->priv2.puq[i].mfc_cq_data0_RW);
1445                         out_be64(&priv2->puq[i].mfc_cq_data1_RW,
1446                                  csa->priv2.puq[i].mfc_cq_data1_RW);
1447                         out_be64(&priv2->puq[i].mfc_cq_data2_RW,
1448                                  csa->priv2.puq[i].mfc_cq_data2_RW);
1449                         out_be64(&priv2->puq[i].mfc_cq_data3_RW,
1450                                  csa->priv2.puq[i].mfc_cq_data3_RW);
1451                 }
1452                 for (i = 0; i < 16; i++) {
1453                         out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
1454                                  csa->priv2.spuq[i].mfc_cq_data0_RW);
1455                         out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
1456                                  csa->priv2.spuq[i].mfc_cq_data1_RW);
1457                         out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
1458                                  csa->priv2.spuq[i].mfc_cq_data2_RW);
1459                         out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
1460                                  csa->priv2.spuq[i].mfc_cq_data3_RW);
1461                 }
1462         }
1463         eieio();
1464 }
1465
1466 static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
1467 {
1468         struct spu_problem __iomem *prob = spu->problem;
1469
1470         /* Restore, Step 51:
1471          *     Restore the PPU_QueryMask register from CSA.
1472          */
1473         out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
1474         eieio();
1475 }
1476
1477 static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
1478 {
1479         struct spu_problem __iomem *prob = spu->problem;
1480
1481         /* Restore, Step 52:
1482          *     Restore the PPU_QueryType register from CSA.
1483          */
1484         out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
1485         eieio();
1486 }
1487
1488 static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
1489 {
1490         struct spu_priv2 __iomem *priv2 = spu->priv2;
1491
1492         /* Restore, Step 53:
1493          *     Restore the MFC_CSR_TSQ register from CSA.
1494          */
1495         out_be64(&priv2->spu_tag_status_query_RW,
1496                  csa->priv2.spu_tag_status_query_RW);
1497         eieio();
1498 }
1499
1500 static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
1501 {
1502         struct spu_priv2 __iomem *priv2 = spu->priv2;
1503
1504         /* Restore, Step 54:
1505          *     Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
1506          *     registers from CSA.
1507          */
1508         out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
1509         out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
1510         eieio();
1511 }
1512
1513 static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
1514 {
1515         struct spu_priv2 __iomem *priv2 = spu->priv2;
1516
1517         /* Restore, Step 55:
1518          *     Restore the MFC_CSR_ATO register from CSA.
1519          */
1520         out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
1521 }
1522
1523 static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
1524 {
1525         /* Restore, Step 56:
1526          *     Restore the MFC_TCLASS_ID register from CSA.
1527          */
1528         spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
1529         eieio();
1530 }
1531
1532 static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
1533 {
1534         u64 ch0_cnt, ch0_data;
1535         u64 ch1_data;
1536
1537         /* Restore, Step 57:
1538          *    Set the Lock Line Reservation Lost Event by:
1539          *      1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
1540          *      2. If CSA.SPU_Channel_0_Count=0 and
1541          *         CSA.SPU_Wr_Event_Mask[Lr]=1 and
1542          *         CSA.SPU_Event_Status[Lr]=0 then set
1543          *         CSA.SPU_Event_Status_Count=1.
1544          */
1545         ch0_cnt = csa->spu_chnlcnt_RW[0];
1546         ch0_data = csa->spu_chnldata_RW[0];
1547         ch1_data = csa->spu_chnldata_RW[1];
1548         csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
1549         if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
1550             (ch1_data & MFC_LLR_LOST_EVENT)) {
1551                 csa->spu_chnlcnt_RW[0] = 1;
1552         }
1553 }
1554
1555 static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
1556 {
1557         /* Restore, Step 58:
1558          *     If the status of the CSA software decrementer
1559          *     "wrapped" flag is set, OR in a '1' to
1560          *     CSA.SPU_Event_Status[Tm].
1561          */
1562         if (csa->lscsa->decr_status.slot[0] & SPU_DECR_STATUS_WRAPPED) {
1563                 csa->spu_chnldata_RW[0] |= 0x20;
1564         }
1565         if ((csa->lscsa->decr_status.slot[0] & SPU_DECR_STATUS_WRAPPED) &&
1566             (csa->spu_chnlcnt_RW[0] == 0 &&
1567              ((csa->spu_chnldata_RW[2] & 0x20) == 0x0) &&
1568              ((csa->spu_chnldata_RW[0] & 0x20) != 0x1))) {
1569                 csa->spu_chnlcnt_RW[0] = 1;
1570         }
1571 }
1572
1573 static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
1574 {
1575         struct spu_priv2 __iomem *priv2 = spu->priv2;
1576         u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1577         int i;
1578
1579         /* Restore, Step 59:
1580          *      Restore the following CH: [0,3,4,24,25,27]
1581          */
1582         for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1583                 idx = ch_indices[i];
1584                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1585                 eieio();
1586                 out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
1587                 out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
1588                 eieio();
1589         }
1590 }
1591
1592 static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
1593 {
1594         struct spu_priv2 __iomem *priv2 = spu->priv2;
1595         u64 ch_indices[3] = { 9UL, 21UL, 23UL };
1596         u64 ch_counts[3] = { 1UL, 16UL, 1UL };
1597         u64 idx;
1598         int i;
1599
1600         /* Restore, Step 60:
1601          *     Restore the following CH: [9,21,23].
1602          */
1603         ch_counts[0] = 1UL;
1604         ch_counts[1] = csa->spu_chnlcnt_RW[21];
1605         ch_counts[2] = 1UL;
1606         for (i = 0; i < 3; i++) {
1607                 idx = ch_indices[i];
1608                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1609                 eieio();
1610                 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1611                 eieio();
1612         }
1613 }
1614
1615 static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
1616 {
1617         struct spu_priv2 __iomem *priv2 = spu->priv2;
1618
1619         /* Restore, Step 61:
1620          *     Restore the SPU_LSLR register from CSA.
1621          */
1622         out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
1623         eieio();
1624 }
1625
1626 static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
1627 {
1628         struct spu_priv2 __iomem *priv2 = spu->priv2;
1629
1630         /* Restore, Step 62:
1631          *     Restore the SPU_Cfg register from CSA.
1632          */
1633         out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
1634         eieio();
1635 }
1636
1637 static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
1638 {
1639         /* Restore, Step 63:
1640          *     Restore PM_Trace_Tag_Wait_Mask from CSA.
1641          *     Not performed by this implementation.
1642          */
1643 }
1644
1645 static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
1646 {
1647         struct spu_problem __iomem *prob = spu->problem;
1648
1649         /* Restore, Step 64:
1650          *     Restore SPU_NPC from CSA.
1651          */
1652         out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
1653         eieio();
1654 }
1655
1656 static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
1657 {
1658         struct spu_priv2 __iomem *priv2 = spu->priv2;
1659         int i;
1660
1661         /* Restore, Step 65:
1662          *     Restore MFC_RdSPU_MB from CSA.
1663          */
1664         out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
1665         eieio();
1666         out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
1667         for (i = 0; i < 4; i++) {
1668                 out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
1669         }
1670         eieio();
1671 }
1672
1673 static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
1674 {
1675         struct spu_problem __iomem *prob = spu->problem;
1676         u32 dummy = 0;
1677
1678         /* Restore, Step 66:
1679          *     If CSA.MB_Stat[P]=0 (mailbox empty) then
1680          *     read from the PPU_MB register.
1681          */
1682         if ((csa->prob.mb_stat_R & 0xFF) == 0) {
1683                 dummy = in_be32(&prob->pu_mb_R);
1684                 eieio();
1685         }
1686 }
1687
1688 static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
1689 {
1690         struct spu_priv2 __iomem *priv2 = spu->priv2;
1691         u64 dummy = 0UL;
1692
1693         /* Restore, Step 66:
1694          *     If CSA.MB_Stat[I]=0 (mailbox empty) then
1695          *     read from the PPUINT_MB register.
1696          */
1697         if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
1698                 dummy = in_be64(&priv2->puint_mb_R);
1699                 eieio();
1700                 spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
1701                 eieio();
1702         }
1703 }
1704
1705 static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
1706 {
1707         /* Restore, Step 69:
1708          *     Restore the MFC_SR1 register from CSA.
1709          */
1710         spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
1711         eieio();
1712 }
1713
1714 static inline void restore_other_spu_access(struct spu_state *csa,
1715                                             struct spu *spu)
1716 {
1717         /* Restore, Step 70:
1718          *     Restore other SPU mappings to this SPU. TBD.
1719          */
1720 }
1721
1722 static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
1723 {
1724         struct spu_problem __iomem *prob = spu->problem;
1725
1726         /* Restore, Step 71:
1727          *     If CSA.SPU_Status[R]=1 then write
1728          *     SPU_RunCntl[R0R1]='01'.
1729          */
1730         if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
1731                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1732                 eieio();
1733         }
1734 }
1735
1736 static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
1737 {
1738         struct spu_priv2 __iomem *priv2 = spu->priv2;
1739
1740         /* Restore, Step 72:
1741          *    Restore the MFC_CNTL register for the CSA.
1742          */
1743         out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
1744         eieio();
1745         /*
1746          * FIXME: this is to restart a DMA that we were processing
1747          *        before the save. better remember the fault information
1748          *        in the csa instead.
1749          */
1750         if ((csa->priv2.mfc_control_RW & MFC_CNTL_SUSPEND_DMA_QUEUE_MASK)) {
1751                 out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
1752                 eieio();
1753         }
1754 }
1755
1756 static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
1757 {
1758         /* Restore, Step 73:
1759          *     Enable user-space access (if provided) to this
1760          *     SPU by mapping the virtual pages assigned to
1761          *     the SPU memory-mapped I/O (MMIO) for problem
1762          *     state. TBD.
1763          */
1764 }
1765
1766 static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
1767 {
1768         /* Restore, Step 74:
1769          *     Reset the "context switch active" flag.
1770          */
1771         clear_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags);
1772         mb();
1773 }
1774
1775 static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
1776 {
1777         /* Restore, Step 75:
1778          *     Re-enable SPU interrupts.
1779          */
1780         spin_lock_irq(&spu->register_lock);
1781         spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
1782         spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
1783         spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
1784         spin_unlock_irq(&spu->register_lock);
1785 }
1786
1787 static int quiece_spu(struct spu_state *prev, struct spu *spu)
1788 {
1789         /*
1790          * Combined steps 2-18 of SPU context save sequence, which
1791          * quiesce the SPU state (disable SPU execution, MFC command
1792          * queues, decrementer, SPU interrupts, etc.).
1793          *
1794          * Returns      0 on success.
1795          *              2 if failed step 2.
1796          *              6 if failed step 6.
1797          */
1798
1799         if (check_spu_isolate(prev, spu)) {     /* Step 2. */
1800                 return 2;
1801         }
1802         disable_interrupts(prev, spu);          /* Step 3. */
1803         set_watchdog_timer(prev, spu);          /* Step 4. */
1804         inhibit_user_access(prev, spu);         /* Step 5. */
1805         if (check_spu_isolate(prev, spu)) {     /* Step 6. */
1806                 return 6;
1807         }
1808         set_switch_pending(prev, spu);          /* Step 7. */
1809         save_mfc_cntl(prev, spu);               /* Step 8. */
1810         save_spu_runcntl(prev, spu);            /* Step 9. */
1811         save_mfc_sr1(prev, spu);                /* Step 10. */
1812         save_spu_status(prev, spu);             /* Step 11. */
1813         save_mfc_decr(prev, spu);               /* Step 12. */
1814         halt_mfc_decr(prev, spu);               /* Step 13. */
1815         save_timebase(prev, spu);               /* Step 14. */
1816         remove_other_spu_access(prev, spu);     /* Step 15. */
1817         do_mfc_mssync(prev, spu);               /* Step 16. */
1818         issue_mfc_tlbie(prev, spu);             /* Step 17. */
1819         handle_pending_interrupts(prev, spu);   /* Step 18. */
1820
1821         return 0;
1822 }
1823
1824 static void save_csa(struct spu_state *prev, struct spu *spu)
1825 {
1826         /*
1827          * Combine steps 19-44 of SPU context save sequence, which
1828          * save regions of the privileged & problem state areas.
1829          */
1830
1831         save_mfc_queues(prev, spu);     /* Step 19. */
1832         save_ppu_querymask(prev, spu);  /* Step 20. */
1833         save_ppu_querytype(prev, spu);  /* Step 21. */
1834         save_ppu_tagstatus(prev, spu);  /* NEW.     */
1835         save_mfc_csr_tsq(prev, spu);    /* Step 22. */
1836         save_mfc_csr_cmd(prev, spu);    /* Step 23. */
1837         save_mfc_csr_ato(prev, spu);    /* Step 24. */
1838         save_mfc_tclass_id(prev, spu);  /* Step 25. */
1839         set_mfc_tclass_id(prev, spu);   /* Step 26. */
1840         purge_mfc_queue(prev, spu);     /* Step 27. */
1841         wait_purge_complete(prev, spu); /* Step 28. */
1842         setup_mfc_sr1(prev, spu);       /* Step 30. */
1843         save_spu_npc(prev, spu);        /* Step 31. */
1844         save_spu_privcntl(prev, spu);   /* Step 32. */
1845         reset_spu_privcntl(prev, spu);  /* Step 33. */
1846         save_spu_lslr(prev, spu);       /* Step 34. */
1847         reset_spu_lslr(prev, spu);      /* Step 35. */
1848         save_spu_cfg(prev, spu);        /* Step 36. */
1849         save_pm_trace(prev, spu);       /* Step 37. */
1850         save_mfc_rag(prev, spu);        /* Step 38. */
1851         save_ppu_mb_stat(prev, spu);    /* Step 39. */
1852         save_ppu_mb(prev, spu);         /* Step 40. */
1853         save_ppuint_mb(prev, spu);      /* Step 41. */
1854         save_ch_part1(prev, spu);       /* Step 42. */
1855         save_spu_mb(prev, spu);         /* Step 43. */
1856         save_mfc_cmd(prev, spu);        /* Step 44. */
1857         reset_ch(prev, spu);            /* Step 45. */
1858 }
1859
1860 static void save_lscsa(struct spu_state *prev, struct spu *spu)
1861 {
1862         /*
1863          * Perform steps 46-57 of SPU context save sequence,
1864          * which save regions of the local store and register
1865          * file.
1866          */
1867
1868         resume_mfc_queue(prev, spu);    /* Step 46. */
1869         setup_mfc_slbs(prev, spu);      /* Step 47. */
1870         set_switch_active(prev, spu);   /* Step 48. */
1871         enable_interrupts(prev, spu);   /* Step 49. */
1872         save_ls_16kb(prev, spu);        /* Step 50. */
1873         set_spu_npc(prev, spu);         /* Step 51. */
1874         set_signot1(prev, spu);         /* Step 52. */
1875         set_signot2(prev, spu);         /* Step 53. */
1876         send_save_code(prev, spu);      /* Step 54. */
1877         set_ppu_querymask(prev, spu);   /* Step 55. */
1878         wait_tag_complete(prev, spu);   /* Step 56. */
1879         wait_spu_stopped(prev, spu);    /* Step 57. */
1880 }
1881
1882 static void force_spu_isolate_exit(struct spu *spu)
1883 {
1884         struct spu_problem __iomem *prob = spu->problem;
1885         struct spu_priv2 __iomem *priv2 = spu->priv2;
1886
1887         /* Stop SPE execution and wait for completion. */
1888         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1889         iobarrier_rw();
1890         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
1891
1892         /* Restart SPE master runcntl. */
1893         spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1894         iobarrier_w();
1895
1896         /* Initiate isolate exit request and wait for completion. */
1897         out_be64(&priv2->spu_privcntl_RW, 4LL);
1898         iobarrier_w();
1899         out_be32(&prob->spu_runcntl_RW, 2);
1900         iobarrier_rw();
1901         POLL_WHILE_FALSE((in_be32(&prob->spu_status_R)
1902                                 & SPU_STATUS_STOPPED_BY_STOP));
1903
1904         /* Reset load request to normal. */
1905         out_be64(&priv2->spu_privcntl_RW, SPU_PRIVCNT_LOAD_REQUEST_NORMAL);
1906         iobarrier_w();
1907 }
1908
1909 /**
1910  * stop_spu_isolate
1911  *      Check SPU run-control state and force isolated
1912  *      exit function as necessary.
1913  */
1914 static void stop_spu_isolate(struct spu *spu)
1915 {
1916         struct spu_problem __iomem *prob = spu->problem;
1917
1918         if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE) {
1919                 /* The SPU is in isolated state; the only way
1920                  * to get it out is to perform an isolated
1921                  * exit (clean) operation.
1922                  */
1923                 force_spu_isolate_exit(spu);
1924         }
1925 }
1926
1927 static void harvest(struct spu_state *prev, struct spu *spu)
1928 {
1929         /*
1930          * Perform steps 2-25 of SPU context restore sequence,
1931          * which resets an SPU either after a failed save, or
1932          * when using SPU for first time.
1933          */
1934
1935         disable_interrupts(prev, spu);          /* Step 2.  */
1936         inhibit_user_access(prev, spu);         /* Step 3.  */
1937         terminate_spu_app(prev, spu);           /* Step 4.  */
1938         set_switch_pending(prev, spu);          /* Step 5.  */
1939         stop_spu_isolate(spu);                  /* NEW.     */
1940         remove_other_spu_access(prev, spu);     /* Step 6.  */
1941         suspend_mfc_and_halt_decr(prev, spu);   /* Step 7.  */
1942         wait_suspend_mfc_complete(prev, spu);   /* Step 8.  */
1943         if (!suspend_spe(prev, spu))            /* Step 9.  */
1944                 clear_spu_status(prev, spu);    /* Step 10. */
1945         do_mfc_mssync(prev, spu);               /* Step 11. */
1946         issue_mfc_tlbie(prev, spu);             /* Step 12. */
1947         handle_pending_interrupts(prev, spu);   /* Step 13. */
1948         purge_mfc_queue(prev, spu);             /* Step 14. */
1949         wait_purge_complete(prev, spu);         /* Step 15. */
1950         reset_spu_privcntl(prev, spu);          /* Step 16. */
1951         reset_spu_lslr(prev, spu);              /* Step 17. */
1952         setup_mfc_sr1(prev, spu);               /* Step 18. */
1953         spu_invalidate_slbs(spu);               /* Step 19. */
1954         reset_ch_part1(prev, spu);              /* Step 20. */
1955         reset_ch_part2(prev, spu);              /* Step 21. */
1956         enable_interrupts(prev, spu);           /* Step 22. */
1957         set_switch_active(prev, spu);           /* Step 23. */
1958         set_mfc_tclass_id(prev, spu);           /* Step 24. */
1959         resume_mfc_queue(prev, spu);            /* Step 25. */
1960 }
1961
1962 static void restore_lscsa(struct spu_state *next, struct spu *spu)
1963 {
1964         /*
1965          * Perform steps 26-40 of SPU context restore sequence,
1966          * which restores regions of the local store and register
1967          * file.
1968          */
1969
1970         set_watchdog_timer(next, spu);          /* Step 26. */
1971         setup_spu_status_part1(next, spu);      /* Step 27. */
1972         setup_spu_status_part2(next, spu);      /* Step 28. */
1973         restore_mfc_rag(next, spu);             /* Step 29. */
1974         setup_mfc_slbs(next, spu);              /* Step 30. */
1975         set_spu_npc(next, spu);                 /* Step 31. */
1976         set_signot1(next, spu);                 /* Step 32. */
1977         set_signot2(next, spu);                 /* Step 33. */
1978         setup_decr(next, spu);                  /* Step 34. */
1979         setup_ppu_mb(next, spu);                /* Step 35. */
1980         setup_ppuint_mb(next, spu);             /* Step 36. */
1981         send_restore_code(next, spu);           /* Step 37. */
1982         set_ppu_querymask(next, spu);           /* Step 38. */
1983         wait_tag_complete(next, spu);           /* Step 39. */
1984         wait_spu_stopped(next, spu);            /* Step 40. */
1985 }
1986
1987 static void restore_csa(struct spu_state *next, struct spu *spu)
1988 {
1989         /*
1990          * Combine steps 41-76 of SPU context restore sequence, which
1991          * restore regions of the privileged & problem state areas.
1992          */
1993
1994         restore_spu_privcntl(next, spu);        /* Step 41. */
1995         restore_status_part1(next, spu);        /* Step 42. */
1996         restore_status_part2(next, spu);        /* Step 43. */
1997         restore_ls_16kb(next, spu);             /* Step 44. */
1998         wait_tag_complete(next, spu);           /* Step 45. */
1999         suspend_mfc(next, spu);                 /* Step 46. */
2000         wait_suspend_mfc_complete(next, spu);   /* Step 47. */
2001         issue_mfc_tlbie(next, spu);             /* Step 48. */
2002         clear_interrupts(next, spu);            /* Step 49. */
2003         restore_mfc_queues(next, spu);          /* Step 50. */
2004         restore_ppu_querymask(next, spu);       /* Step 51. */
2005         restore_ppu_querytype(next, spu);       /* Step 52. */
2006         restore_mfc_csr_tsq(next, spu);         /* Step 53. */
2007         restore_mfc_csr_cmd(next, spu);         /* Step 54. */
2008         restore_mfc_csr_ato(next, spu);         /* Step 55. */
2009         restore_mfc_tclass_id(next, spu);       /* Step 56. */
2010         set_llr_event(next, spu);               /* Step 57. */
2011         restore_decr_wrapped(next, spu);        /* Step 58. */
2012         restore_ch_part1(next, spu);            /* Step 59. */
2013         restore_ch_part2(next, spu);            /* Step 60. */
2014         restore_spu_lslr(next, spu);            /* Step 61. */
2015         restore_spu_cfg(next, spu);             /* Step 62. */
2016         restore_pm_trace(next, spu);            /* Step 63. */
2017         restore_spu_npc(next, spu);             /* Step 64. */
2018         restore_spu_mb(next, spu);              /* Step 65. */
2019         check_ppu_mb_stat(next, spu);           /* Step 66. */
2020         check_ppuint_mb_stat(next, spu);        /* Step 67. */
2021         spu_invalidate_slbs(spu);               /* Modified Step 68. */
2022         restore_mfc_sr1(next, spu);             /* Step 69. */
2023         restore_other_spu_access(next, spu);    /* Step 70. */
2024         restore_spu_runcntl(next, spu);         /* Step 71. */
2025         restore_mfc_cntl(next, spu);            /* Step 72. */
2026         enable_user_access(next, spu);          /* Step 73. */
2027         reset_switch_active(next, spu);         /* Step 74. */
2028         reenable_interrupts(next, spu);         /* Step 75. */
2029 }
2030
2031 static int __do_spu_save(struct spu_state *prev, struct spu *spu)
2032 {
2033         int rc;
2034
2035         /*
2036          * SPU context save can be broken into three phases:
2037          *
2038          *     (a) quiesce [steps 2-16].
2039          *     (b) save of CSA, performed by PPE [steps 17-42]
2040          *     (c) save of LSCSA, mostly performed by SPU [steps 43-52].
2041          *
2042          * Returns      0 on success.
2043          *              2,6 if failed to quiece SPU
2044          *              53 if SPU-side of save failed.
2045          */
2046
2047         rc = quiece_spu(prev, spu);             /* Steps 2-16. */
2048         switch (rc) {
2049         default:
2050         case 2:
2051         case 6:
2052                 harvest(prev, spu);
2053                 return rc;
2054                 break;
2055         case 0:
2056                 break;
2057         }
2058         save_csa(prev, spu);                    /* Steps 17-43. */
2059         save_lscsa(prev, spu);                  /* Steps 44-53. */
2060         return check_save_status(prev, spu);    /* Step 54.     */
2061 }
2062
2063 static int __do_spu_restore(struct spu_state *next, struct spu *spu)
2064 {
2065         int rc;
2066
2067         /*
2068          * SPU context restore can be broken into three phases:
2069          *
2070          *    (a) harvest (or reset) SPU [steps 2-24].
2071          *    (b) restore LSCSA [steps 25-40], mostly performed by SPU.
2072          *    (c) restore CSA [steps 41-76], performed by PPE.
2073          *
2074          * The 'harvest' step is not performed here, but rather
2075          * as needed below.
2076          */
2077
2078         restore_lscsa(next, spu);               /* Steps 24-39. */
2079         rc = check_restore_status(next, spu);   /* Step 40.     */
2080         switch (rc) {
2081         default:
2082                 /* Failed. Return now. */
2083                 return rc;
2084                 break;
2085         case 0:
2086                 /* Fall through to next step. */
2087                 break;
2088         }
2089         restore_csa(next, spu);
2090
2091         return 0;
2092 }
2093
2094 /**
2095  * spu_save - SPU context save, with locking.
2096  * @prev: pointer to SPU context save area, to be saved.
2097  * @spu: pointer to SPU iomem structure.
2098  *
2099  * Acquire locks, perform the save operation then return.
2100  */
2101 int spu_save(struct spu_state *prev, struct spu *spu)
2102 {
2103         int rc;
2104
2105         acquire_spu_lock(spu);          /* Step 1.     */
2106         prev->dar = spu->dar;
2107         prev->dsisr = spu->dsisr;
2108         spu->dar = 0;
2109         spu->dsisr = 0;
2110         rc = __do_spu_save(prev, spu);  /* Steps 2-53. */
2111         release_spu_lock(spu);
2112         if (rc != 0 && rc != 2 && rc != 6) {
2113                 panic("%s failed on SPU[%d], rc=%d.\n",
2114                       __func__, spu->number, rc);
2115         }
2116         return 0;
2117 }
2118 EXPORT_SYMBOL_GPL(spu_save);
2119
2120 /**
2121  * spu_restore - SPU context restore, with harvest and locking.
2122  * @new: pointer to SPU context save area, to be restored.
2123  * @spu: pointer to SPU iomem structure.
2124  *
2125  * Perform harvest + restore, as we may not be coming
2126  * from a previous successful save operation, and the
2127  * hardware state is unknown.
2128  */
2129 int spu_restore(struct spu_state *new, struct spu *spu)
2130 {
2131         int rc;
2132
2133         acquire_spu_lock(spu);
2134         harvest(NULL, spu);
2135         spu->slb_replace = 0;
2136         new->dar = 0;
2137         new->dsisr = 0;
2138         spu->class_0_pending = 0;
2139         rc = __do_spu_restore(new, spu);
2140         release_spu_lock(spu);
2141         if (rc) {
2142                 panic("%s failed on SPU[%d] rc=%d.\n",
2143                        __func__, spu->number, rc);
2144         }
2145         return rc;
2146 }
2147 EXPORT_SYMBOL_GPL(spu_restore);
2148
2149 /**
2150  * spu_harvest - SPU harvest (reset) operation
2151  * @spu: pointer to SPU iomem structure.
2152  *
2153  * Perform SPU harvest (reset) operation.
2154  */
2155 void spu_harvest(struct spu *spu)
2156 {
2157         acquire_spu_lock(spu);
2158         harvest(NULL, spu);
2159         release_spu_lock(spu);
2160 }
2161
2162 static void init_prob(struct spu_state *csa)
2163 {
2164         csa->spu_chnlcnt_RW[9] = 1;
2165         csa->spu_chnlcnt_RW[21] = 16;
2166         csa->spu_chnlcnt_RW[23] = 1;
2167         csa->spu_chnlcnt_RW[28] = 1;
2168         csa->spu_chnlcnt_RW[30] = 1;
2169         csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
2170         csa->prob.mb_stat_R = 0x000400;
2171 }
2172
2173 static void init_priv1(struct spu_state *csa)
2174 {
2175         /* Enable decode, relocate, tlbie response, master runcntl. */
2176         csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
2177             MFC_STATE1_MASTER_RUN_CONTROL_MASK |
2178             MFC_STATE1_PROBLEM_STATE_MASK |
2179             MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
2180
2181         /* Enable OS-specific set of interrupts. */
2182         csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
2183             CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
2184             CLASS0_ENABLE_SPU_ERROR_INTR;
2185         csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
2186             CLASS1_ENABLE_STORAGE_FAULT_INTR;
2187         csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
2188             CLASS2_ENABLE_SPU_HALT_INTR |
2189             CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
2190 }
2191
2192 static void init_priv2(struct spu_state *csa)
2193 {
2194         csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
2195         csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
2196             MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
2197             MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
2198 }
2199
2200 /**
2201  * spu_alloc_csa - allocate and initialize an SPU context save area.
2202  *
2203  * Allocate and initialize the contents of an SPU context save area.
2204  * This includes enabling address translation, interrupt masks, etc.,
2205  * as appropriate for the given OS environment.
2206  *
2207  * Note that storage for the 'lscsa' is allocated separately,
2208  * as it is by far the largest of the context save regions,
2209  * and may need to be pinned or otherwise specially aligned.
2210  */
2211 int spu_init_csa(struct spu_state *csa)
2212 {
2213         int rc;
2214
2215         if (!csa)
2216                 return -EINVAL;
2217         memset(csa, 0, sizeof(struct spu_state));
2218
2219         rc = spu_alloc_lscsa(csa);
2220         if (rc)
2221                 return rc;
2222
2223         spin_lock_init(&csa->register_lock);
2224
2225         init_prob(csa);
2226         init_priv1(csa);
2227         init_priv2(csa);
2228
2229         return 0;
2230 }
2231 EXPORT_SYMBOL_GPL(spu_init_csa);
2232
2233 void spu_fini_csa(struct spu_state *csa)
2234 {
2235         spu_free_lscsa(csa);
2236 }
2237 EXPORT_SYMBOL_GPL(spu_fini_csa);