Merge branch 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee13...
[pandora-kernel.git] / arch / powerpc / platforms / cell / spufs / sched.c
1 /* sched.c - SPU scheduler.
2  *
3  * Copyright (C) IBM 2005
4  * Author: Mark Nutter <mnutter@us.ibm.com>
5  *
6  * 2006-03-31   NUMA domains added.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #undef DEBUG
24
25 #include <linux/module.h>
26 #include <linux/errno.h>
27 #include <linux/sched.h>
28 #include <linux/kernel.h>
29 #include <linux/mm.h>
30 #include <linux/completion.h>
31 #include <linux/vmalloc.h>
32 #include <linux/smp.h>
33 #include <linux/smp_lock.h>
34 #include <linux/stddef.h>
35 #include <linux/unistd.h>
36 #include <linux/numa.h>
37 #include <linux/mutex.h>
38 #include <linux/notifier.h>
39
40 #include <asm/io.h>
41 #include <asm/mmu_context.h>
42 #include <asm/spu.h>
43 #include <asm/spu_csa.h>
44 #include <asm/spu_priv1.h>
45 #include "spufs.h"
46
47 #define SPU_MIN_TIMESLICE       (100 * HZ / 1000)
48
49 #define SPU_BITMAP_SIZE (((MAX_PRIO+BITS_PER_LONG)/BITS_PER_LONG)+1)
50 struct spu_prio_array {
51         unsigned long bitmap[SPU_BITMAP_SIZE];
52         wait_queue_head_t waitq[MAX_PRIO];
53         struct list_head active_list[MAX_NUMNODES];
54         struct mutex active_mutex[MAX_NUMNODES];
55 };
56
57 static struct spu_prio_array *spu_prio;
58
59 static inline int node_allowed(int node)
60 {
61         cpumask_t mask;
62
63         if (!nr_cpus_node(node))
64                 return 0;
65         mask = node_to_cpumask(node);
66         if (!cpus_intersects(mask, current->cpus_allowed))
67                 return 0;
68         return 1;
69 }
70
71 static inline void mm_needs_global_tlbie(struct mm_struct *mm)
72 {
73         int nr = (NR_CPUS > 1) ? NR_CPUS : NR_CPUS + 1;
74
75         /* Global TLBIE broadcast required with SPEs. */
76         __cpus_setall(&mm->cpu_vm_mask, nr);
77 }
78
79 static BLOCKING_NOTIFIER_HEAD(spu_switch_notifier);
80
81 static void spu_switch_notify(struct spu *spu, struct spu_context *ctx)
82 {
83         blocking_notifier_call_chain(&spu_switch_notifier,
84                             ctx ? ctx->object_id : 0, spu);
85 }
86
87 int spu_switch_event_register(struct notifier_block * n)
88 {
89         return blocking_notifier_chain_register(&spu_switch_notifier, n);
90 }
91
92 int spu_switch_event_unregister(struct notifier_block * n)
93 {
94         return blocking_notifier_chain_unregister(&spu_switch_notifier, n);
95 }
96
97
98 static inline void bind_context(struct spu *spu, struct spu_context *ctx)
99 {
100         pr_debug("%s: pid=%d SPU=%d NODE=%d\n", __FUNCTION__, current->pid,
101                  spu->number, spu->node);
102         spu->ctx = ctx;
103         spu->flags = 0;
104         ctx->spu = spu;
105         ctx->ops = &spu_hw_ops;
106         spu->pid = current->pid;
107         spu->prio = current->prio;
108         spu->mm = ctx->owner;
109         mm_needs_global_tlbie(spu->mm);
110         spu->ibox_callback = spufs_ibox_callback;
111         spu->wbox_callback = spufs_wbox_callback;
112         spu->stop_callback = spufs_stop_callback;
113         spu->mfc_callback = spufs_mfc_callback;
114         spu->dma_callback = spufs_dma_callback;
115         mb();
116         spu_unmap_mappings(ctx);
117         spu_restore(&ctx->csa, spu);
118         spu->timestamp = jiffies;
119         spu_cpu_affinity_set(spu, raw_smp_processor_id());
120         spu_switch_notify(spu, ctx);
121 }
122
123 static inline void unbind_context(struct spu *spu, struct spu_context *ctx)
124 {
125         pr_debug("%s: unbind pid=%d SPU=%d NODE=%d\n", __FUNCTION__,
126                  spu->pid, spu->number, spu->node);
127         spu_switch_notify(spu, NULL);
128         spu_unmap_mappings(ctx);
129         spu_save(&ctx->csa, spu);
130         spu->timestamp = jiffies;
131         ctx->state = SPU_STATE_SAVED;
132         spu->ibox_callback = NULL;
133         spu->wbox_callback = NULL;
134         spu->stop_callback = NULL;
135         spu->mfc_callback = NULL;
136         spu->dma_callback = NULL;
137         spu->mm = NULL;
138         spu->pid = 0;
139         spu->prio = MAX_PRIO;
140         ctx->ops = &spu_backing_ops;
141         ctx->spu = NULL;
142         spu->flags = 0;
143         spu->ctx = NULL;
144 }
145
146 static inline void spu_add_wq(wait_queue_head_t * wq, wait_queue_t * wait,
147                               int prio)
148 {
149         prepare_to_wait_exclusive(wq, wait, TASK_INTERRUPTIBLE);
150         set_bit(prio, spu_prio->bitmap);
151 }
152
153 static inline void spu_del_wq(wait_queue_head_t * wq, wait_queue_t * wait,
154                               int prio)
155 {
156         u64 flags;
157
158         __set_current_state(TASK_RUNNING);
159
160         spin_lock_irqsave(&wq->lock, flags);
161
162         remove_wait_queue_locked(wq, wait);
163         if (list_empty(&wq->task_list))
164                 clear_bit(prio, spu_prio->bitmap);
165
166         spin_unlock_irqrestore(&wq->lock, flags);
167 }
168
169 static void spu_prio_wait(struct spu_context *ctx, u64 flags)
170 {
171         int prio = current->prio;
172         wait_queue_head_t *wq = &spu_prio->waitq[prio];
173         DEFINE_WAIT(wait);
174
175         if (ctx->spu)
176                 return;
177
178         spu_add_wq(wq, &wait, prio);
179
180         if (!signal_pending(current)) {
181                 up_write(&ctx->state_sema);
182                 pr_debug("%s: pid=%d prio=%d\n", __FUNCTION__,
183                          current->pid, current->prio);
184                 schedule();
185                 down_write(&ctx->state_sema);
186         }
187
188         spu_del_wq(wq, &wait, prio);
189 }
190
191 static void spu_prio_wakeup(void)
192 {
193         int best = sched_find_first_bit(spu_prio->bitmap);
194         if (best < MAX_PRIO) {
195                 wait_queue_head_t *wq = &spu_prio->waitq[best];
196                 wake_up_interruptible_nr(wq, 1);
197         }
198 }
199
200 static int get_active_spu(struct spu *spu)
201 {
202         int node = spu->node;
203         struct spu *tmp;
204         int rc = 0;
205
206         mutex_lock(&spu_prio->active_mutex[node]);
207         list_for_each_entry(tmp, &spu_prio->active_list[node], list) {
208                 if (tmp == spu) {
209                         list_del_init(&spu->list);
210                         rc = 1;
211                         break;
212                 }
213         }
214         mutex_unlock(&spu_prio->active_mutex[node]);
215         return rc;
216 }
217
218 static void put_active_spu(struct spu *spu)
219 {
220         int node = spu->node;
221
222         mutex_lock(&spu_prio->active_mutex[node]);
223         list_add_tail(&spu->list, &spu_prio->active_list[node]);
224         mutex_unlock(&spu_prio->active_mutex[node]);
225 }
226
227 static struct spu *spu_get_idle(struct spu_context *ctx, u64 flags)
228 {
229         struct spu *spu = NULL;
230         int node = cpu_to_node(raw_smp_processor_id());
231         int n;
232
233         for (n = 0; n < MAX_NUMNODES; n++, node++) {
234                 node = (node < MAX_NUMNODES) ? node : 0;
235                 if (!node_allowed(node))
236                         continue;
237                 spu = spu_alloc_node(node);
238                 if (spu)
239                         break;
240         }
241         return spu;
242 }
243
244 static inline struct spu *spu_get(struct spu_context *ctx, u64 flags)
245 {
246         /* Future: spu_get_idle() if possible,
247          * otherwise try to preempt an active
248          * context.
249          */
250         return spu_get_idle(ctx, flags);
251 }
252
253 /* The three externally callable interfaces
254  * for the scheduler begin here.
255  *
256  *      spu_activate    - bind a context to SPU, waiting as needed.
257  *      spu_deactivate  - unbind a context from its SPU.
258  *      spu_yield       - yield an SPU if others are waiting.
259  */
260
261 int spu_activate(struct spu_context *ctx, u64 flags)
262 {
263         struct spu *spu;
264         int ret = 0;
265
266         for (;;) {
267                 if (ctx->spu)
268                         return 0;
269                 spu = spu_get(ctx, flags);
270                 if (spu != NULL) {
271                         if (ctx->spu != NULL) {
272                                 spu_free(spu);
273                                 spu_prio_wakeup();
274                                 break;
275                         }
276                         bind_context(spu, ctx);
277                         put_active_spu(spu);
278                         break;
279                 }
280                 spu_prio_wait(ctx, flags);
281                 if (signal_pending(current)) {
282                         ret = -ERESTARTSYS;
283                         spu_prio_wakeup();
284                         break;
285                 }
286         }
287         return ret;
288 }
289
290 void spu_deactivate(struct spu_context *ctx)
291 {
292         struct spu *spu;
293         int needs_idle;
294
295         spu = ctx->spu;
296         if (!spu)
297                 return;
298         needs_idle = get_active_spu(spu);
299         unbind_context(spu, ctx);
300         if (needs_idle) {
301                 spu_free(spu);
302                 spu_prio_wakeup();
303         }
304 }
305
306 void spu_yield(struct spu_context *ctx)
307 {
308         struct spu *spu;
309         int need_yield = 0;
310
311         if (down_write_trylock(&ctx->state_sema)) {
312                 if ((spu = ctx->spu) != NULL) {
313                         int best = sched_find_first_bit(spu_prio->bitmap);
314                         if (best < MAX_PRIO) {
315                                 pr_debug("%s: yielding SPU %d NODE %d\n",
316                                          __FUNCTION__, spu->number, spu->node);
317                                 spu_deactivate(ctx);
318                                 ctx->state = SPU_STATE_SAVED;
319                                 need_yield = 1;
320                         } else {
321                                 spu->prio = MAX_PRIO;
322                         }
323                 }
324                 up_write(&ctx->state_sema);
325         }
326         if (unlikely(need_yield))
327                 yield();
328 }
329
330 int __init spu_sched_init(void)
331 {
332         int i;
333
334         spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
335         if (!spu_prio) {
336                 printk(KERN_WARNING "%s: Unable to allocate priority queue.\n",
337                        __FUNCTION__);
338                 return 1;
339         }
340         for (i = 0; i < MAX_PRIO; i++) {
341                 init_waitqueue_head(&spu_prio->waitq[i]);
342                 __clear_bit(i, spu_prio->bitmap);
343         }
344         __set_bit(MAX_PRIO, spu_prio->bitmap);
345         for (i = 0; i < MAX_NUMNODES; i++) {
346                 mutex_init(&spu_prio->active_mutex[i]);
347                 INIT_LIST_HEAD(&spu_prio->active_list[i]);
348         }
349         return 0;
350 }
351
352 void __exit spu_sched_exit(void)
353 {
354         struct spu *spu, *tmp;
355         int node;
356
357         for (node = 0; node < MAX_NUMNODES; node++) {
358                 mutex_lock(&spu_prio->active_mutex[node]);
359                 list_for_each_entry_safe(spu, tmp, &spu_prio->active_list[node],
360                                          list) {
361                         list_del_init(&spu->list);
362                         spu_free(spu);
363                 }
364                 mutex_unlock(&spu_prio->active_mutex[node]);
365         }
366         kfree(spu_prio);
367 }