include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[pandora-kernel.git] / arch / powerpc / mm / hugetlbpage.c
1 /*
2  * PPC64 (POWER4) Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  *
6  * Based on the IA-32 version:
7  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
8  */
9
10 #include <linux/mm.h>
11 #include <linux/io.h>
12 #include <linux/slab.h>
13 #include <linux/hugetlb.h>
14 #include <asm/pgtable.h>
15 #include <asm/pgalloc.h>
16 #include <asm/tlb.h>
17
18 #define PAGE_SHIFT_64K  16
19 #define PAGE_SHIFT_16M  24
20 #define PAGE_SHIFT_16G  34
21
22 #define MAX_NUMBER_GPAGES       1024
23
24 /* Tracks the 16G pages after the device tree is scanned and before the
25  * huge_boot_pages list is ready.  */
26 static unsigned long gpage_freearray[MAX_NUMBER_GPAGES];
27 static unsigned nr_gpages;
28
29 /* Flag to mark huge PD pointers.  This means pmd_bad() and pud_bad()
30  * will choke on pointers to hugepte tables, which is handy for
31  * catching screwups early. */
32
33 static inline int shift_to_mmu_psize(unsigned int shift)
34 {
35         int psize;
36
37         for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
38                 if (mmu_psize_defs[psize].shift == shift)
39                         return psize;
40         return -1;
41 }
42
43 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
44 {
45         if (mmu_psize_defs[mmu_psize].shift)
46                 return mmu_psize_defs[mmu_psize].shift;
47         BUG();
48 }
49
50 #define hugepd_none(hpd)        ((hpd).pd == 0)
51
52 static inline pte_t *hugepd_page(hugepd_t hpd)
53 {
54         BUG_ON(!hugepd_ok(hpd));
55         return (pte_t *)((hpd.pd & ~HUGEPD_SHIFT_MASK) | 0xc000000000000000);
56 }
57
58 static inline unsigned int hugepd_shift(hugepd_t hpd)
59 {
60         return hpd.pd & HUGEPD_SHIFT_MASK;
61 }
62
63 static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr, unsigned pdshift)
64 {
65         unsigned long idx = (addr & ((1UL << pdshift) - 1)) >> hugepd_shift(*hpdp);
66         pte_t *dir = hugepd_page(*hpdp);
67
68         return dir + idx;
69 }
70
71 pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
72 {
73         pgd_t *pg;
74         pud_t *pu;
75         pmd_t *pm;
76         hugepd_t *hpdp = NULL;
77         unsigned pdshift = PGDIR_SHIFT;
78
79         if (shift)
80                 *shift = 0;
81
82         pg = pgdir + pgd_index(ea);
83         if (is_hugepd(pg)) {
84                 hpdp = (hugepd_t *)pg;
85         } else if (!pgd_none(*pg)) {
86                 pdshift = PUD_SHIFT;
87                 pu = pud_offset(pg, ea);
88                 if (is_hugepd(pu))
89                         hpdp = (hugepd_t *)pu;
90                 else if (!pud_none(*pu)) {
91                         pdshift = PMD_SHIFT;
92                         pm = pmd_offset(pu, ea);
93                         if (is_hugepd(pm))
94                                 hpdp = (hugepd_t *)pm;
95                         else if (!pmd_none(*pm)) {
96                                 return pte_offset_map(pm, ea);
97                         }
98                 }
99         }
100
101         if (!hpdp)
102                 return NULL;
103
104         if (shift)
105                 *shift = hugepd_shift(*hpdp);
106         return hugepte_offset(hpdp, ea, pdshift);
107 }
108
109 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
110 {
111         return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
112 }
113
114 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
115                            unsigned long address, unsigned pdshift, unsigned pshift)
116 {
117         pte_t *new = kmem_cache_zalloc(PGT_CACHE(pdshift - pshift),
118                                        GFP_KERNEL|__GFP_REPEAT);
119
120         BUG_ON(pshift > HUGEPD_SHIFT_MASK);
121         BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
122
123         if (! new)
124                 return -ENOMEM;
125
126         spin_lock(&mm->page_table_lock);
127         if (!hugepd_none(*hpdp))
128                 kmem_cache_free(PGT_CACHE(pdshift - pshift), new);
129         else
130                 hpdp->pd = ((unsigned long)new & ~0x8000000000000000) | pshift;
131         spin_unlock(&mm->page_table_lock);
132         return 0;
133 }
134
135 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
136 {
137         pgd_t *pg;
138         pud_t *pu;
139         pmd_t *pm;
140         hugepd_t *hpdp = NULL;
141         unsigned pshift = __ffs(sz);
142         unsigned pdshift = PGDIR_SHIFT;
143
144         addr &= ~(sz-1);
145
146         pg = pgd_offset(mm, addr);
147         if (pshift >= PUD_SHIFT) {
148                 hpdp = (hugepd_t *)pg;
149         } else {
150                 pdshift = PUD_SHIFT;
151                 pu = pud_alloc(mm, pg, addr);
152                 if (pshift >= PMD_SHIFT) {
153                         hpdp = (hugepd_t *)pu;
154                 } else {
155                         pdshift = PMD_SHIFT;
156                         pm = pmd_alloc(mm, pu, addr);
157                         hpdp = (hugepd_t *)pm;
158                 }
159         }
160
161         if (!hpdp)
162                 return NULL;
163
164         BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
165
166         if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
167                 return NULL;
168
169         return hugepte_offset(hpdp, addr, pdshift);
170 }
171
172 /* Build list of addresses of gigantic pages.  This function is used in early
173  * boot before the buddy or bootmem allocator is setup.
174  */
175 void add_gpage(unsigned long addr, unsigned long page_size,
176         unsigned long number_of_pages)
177 {
178         if (!addr)
179                 return;
180         while (number_of_pages > 0) {
181                 gpage_freearray[nr_gpages] = addr;
182                 nr_gpages++;
183                 number_of_pages--;
184                 addr += page_size;
185         }
186 }
187
188 /* Moves the gigantic page addresses from the temporary list to the
189  * huge_boot_pages list.
190  */
191 int alloc_bootmem_huge_page(struct hstate *hstate)
192 {
193         struct huge_bootmem_page *m;
194         if (nr_gpages == 0)
195                 return 0;
196         m = phys_to_virt(gpage_freearray[--nr_gpages]);
197         gpage_freearray[nr_gpages] = 0;
198         list_add(&m->list, &huge_boot_pages);
199         m->hstate = hstate;
200         return 1;
201 }
202
203 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
204 {
205         return 0;
206 }
207
208 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
209                               unsigned long start, unsigned long end,
210                               unsigned long floor, unsigned long ceiling)
211 {
212         pte_t *hugepte = hugepd_page(*hpdp);
213         unsigned shift = hugepd_shift(*hpdp);
214         unsigned long pdmask = ~((1UL << pdshift) - 1);
215
216         start &= pdmask;
217         if (start < floor)
218                 return;
219         if (ceiling) {
220                 ceiling &= pdmask;
221                 if (! ceiling)
222                         return;
223         }
224         if (end - 1 > ceiling - 1)
225                 return;
226
227         hpdp->pd = 0;
228         tlb->need_flush = 1;
229         pgtable_free_tlb(tlb, hugepte, pdshift - shift);
230 }
231
232 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
233                                    unsigned long addr, unsigned long end,
234                                    unsigned long floor, unsigned long ceiling)
235 {
236         pmd_t *pmd;
237         unsigned long next;
238         unsigned long start;
239
240         start = addr;
241         pmd = pmd_offset(pud, addr);
242         do {
243                 next = pmd_addr_end(addr, end);
244                 if (pmd_none(*pmd))
245                         continue;
246                 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
247                                   addr, next, floor, ceiling);
248         } while (pmd++, addr = next, addr != end);
249
250         start &= PUD_MASK;
251         if (start < floor)
252                 return;
253         if (ceiling) {
254                 ceiling &= PUD_MASK;
255                 if (!ceiling)
256                         return;
257         }
258         if (end - 1 > ceiling - 1)
259                 return;
260
261         pmd = pmd_offset(pud, start);
262         pud_clear(pud);
263         pmd_free_tlb(tlb, pmd, start);
264 }
265
266 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
267                                    unsigned long addr, unsigned long end,
268                                    unsigned long floor, unsigned long ceiling)
269 {
270         pud_t *pud;
271         unsigned long next;
272         unsigned long start;
273
274         start = addr;
275         pud = pud_offset(pgd, addr);
276         do {
277                 next = pud_addr_end(addr, end);
278                 if (!is_hugepd(pud)) {
279                         if (pud_none_or_clear_bad(pud))
280                                 continue;
281                         hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
282                                                ceiling);
283                 } else {
284                         free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
285                                           addr, next, floor, ceiling);
286                 }
287         } while (pud++, addr = next, addr != end);
288
289         start &= PGDIR_MASK;
290         if (start < floor)
291                 return;
292         if (ceiling) {
293                 ceiling &= PGDIR_MASK;
294                 if (!ceiling)
295                         return;
296         }
297         if (end - 1 > ceiling - 1)
298                 return;
299
300         pud = pud_offset(pgd, start);
301         pgd_clear(pgd);
302         pud_free_tlb(tlb, pud, start);
303 }
304
305 /*
306  * This function frees user-level page tables of a process.
307  *
308  * Must be called with pagetable lock held.
309  */
310 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
311                             unsigned long addr, unsigned long end,
312                             unsigned long floor, unsigned long ceiling)
313 {
314         pgd_t *pgd;
315         unsigned long next;
316
317         /*
318          * Because there are a number of different possible pagetable
319          * layouts for hugepage ranges, we limit knowledge of how
320          * things should be laid out to the allocation path
321          * (huge_pte_alloc(), above).  Everything else works out the
322          * structure as it goes from information in the hugepd
323          * pointers.  That means that we can't here use the
324          * optimization used in the normal page free_pgd_range(), of
325          * checking whether we're actually covering a large enough
326          * range to have to do anything at the top level of the walk
327          * instead of at the bottom.
328          *
329          * To make sense of this, you should probably go read the big
330          * block comment at the top of the normal free_pgd_range(),
331          * too.
332          */
333
334         pgd = pgd_offset(tlb->mm, addr);
335         do {
336                 next = pgd_addr_end(addr, end);
337                 if (!is_hugepd(pgd)) {
338                         if (pgd_none_or_clear_bad(pgd))
339                                 continue;
340                         hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
341                 } else {
342                         free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
343                                           addr, next, floor, ceiling);
344                 }
345         } while (pgd++, addr = next, addr != end);
346 }
347
348 struct page *
349 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
350 {
351         pte_t *ptep;
352         struct page *page;
353         unsigned shift;
354         unsigned long mask;
355
356         ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
357
358         /* Verify it is a huge page else bail. */
359         if (!ptep || !shift)
360                 return ERR_PTR(-EINVAL);
361
362         mask = (1UL << shift) - 1;
363         page = pte_page(*ptep);
364         if (page)
365                 page += (address & mask) / PAGE_SIZE;
366
367         return page;
368 }
369
370 int pmd_huge(pmd_t pmd)
371 {
372         return 0;
373 }
374
375 int pud_huge(pud_t pud)
376 {
377         return 0;
378 }
379
380 struct page *
381 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
382                 pmd_t *pmd, int write)
383 {
384         BUG();
385         return NULL;
386 }
387
388 static noinline int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
389                        unsigned long end, int write, struct page **pages, int *nr)
390 {
391         unsigned long mask;
392         unsigned long pte_end;
393         struct page *head, *page;
394         pte_t pte;
395         int refs;
396
397         pte_end = (addr + sz) & ~(sz-1);
398         if (pte_end < end)
399                 end = pte_end;
400
401         pte = *ptep;
402         mask = _PAGE_PRESENT | _PAGE_USER;
403         if (write)
404                 mask |= _PAGE_RW;
405
406         if ((pte_val(pte) & mask) != mask)
407                 return 0;
408
409         /* hugepages are never "special" */
410         VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
411
412         refs = 0;
413         head = pte_page(pte);
414
415         page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
416         do {
417                 VM_BUG_ON(compound_head(page) != head);
418                 pages[*nr] = page;
419                 (*nr)++;
420                 page++;
421                 refs++;
422         } while (addr += PAGE_SIZE, addr != end);
423
424         if (!page_cache_add_speculative(head, refs)) {
425                 *nr -= refs;
426                 return 0;
427         }
428
429         if (unlikely(pte_val(pte) != pte_val(*ptep))) {
430                 /* Could be optimized better */
431                 while (*nr) {
432                         put_page(page);
433                         (*nr)--;
434                 }
435         }
436
437         return 1;
438 }
439
440 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
441                                       unsigned long sz)
442 {
443         unsigned long __boundary = (addr + sz) & ~(sz-1);
444         return (__boundary - 1 < end - 1) ? __boundary : end;
445 }
446
447 int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
448                unsigned long addr, unsigned long end,
449                int write, struct page **pages, int *nr)
450 {
451         pte_t *ptep;
452         unsigned long sz = 1UL << hugepd_shift(*hugepd);
453         unsigned long next;
454
455         ptep = hugepte_offset(hugepd, addr, pdshift);
456         do {
457                 next = hugepte_addr_end(addr, end, sz);
458                 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
459                         return 0;
460         } while (ptep++, addr = next, addr != end);
461
462         return 1;
463 }
464
465 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
466                                         unsigned long len, unsigned long pgoff,
467                                         unsigned long flags)
468 {
469         struct hstate *hstate = hstate_file(file);
470         int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
471
472         return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
473 }
474
475 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
476 {
477         unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
478
479         return 1UL << mmu_psize_to_shift(psize);
480 }
481
482 static int __init add_huge_page_size(unsigned long long size)
483 {
484         int shift = __ffs(size);
485         int mmu_psize;
486
487         /* Check that it is a page size supported by the hardware and
488          * that it fits within pagetable and slice limits. */
489         if (!is_power_of_2(size)
490             || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
491                 return -EINVAL;
492
493         if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
494                 return -EINVAL;
495
496 #ifdef CONFIG_SPU_FS_64K_LS
497         /* Disable support for 64K huge pages when 64K SPU local store
498          * support is enabled as the current implementation conflicts.
499          */
500         if (shift == PAGE_SHIFT_64K)
501                 return -EINVAL;
502 #endif /* CONFIG_SPU_FS_64K_LS */
503
504         BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
505
506         /* Return if huge page size has already been setup */
507         if (size_to_hstate(size))
508                 return 0;
509
510         hugetlb_add_hstate(shift - PAGE_SHIFT);
511
512         return 0;
513 }
514
515 static int __init hugepage_setup_sz(char *str)
516 {
517         unsigned long long size;
518
519         size = memparse(str, &str);
520
521         if (add_huge_page_size(size) != 0)
522                 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
523
524         return 1;
525 }
526 __setup("hugepagesz=", hugepage_setup_sz);
527
528 static int __init hugetlbpage_init(void)
529 {
530         int psize;
531
532         if (!cpu_has_feature(CPU_FTR_16M_PAGE))
533                 return -ENODEV;
534
535         for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
536                 unsigned shift;
537                 unsigned pdshift;
538
539                 if (!mmu_psize_defs[psize].shift)
540                         continue;
541
542                 shift = mmu_psize_to_shift(psize);
543
544                 if (add_huge_page_size(1ULL << shift) < 0)
545                         continue;
546
547                 if (shift < PMD_SHIFT)
548                         pdshift = PMD_SHIFT;
549                 else if (shift < PUD_SHIFT)
550                         pdshift = PUD_SHIFT;
551                 else
552                         pdshift = PGDIR_SHIFT;
553
554                 pgtable_cache_add(pdshift - shift, NULL);
555                 if (!PGT_CACHE(pdshift - shift))
556                         panic("hugetlbpage_init(): could not create "
557                               "pgtable cache for %d bit pagesize\n", shift);
558         }
559
560         /* Set default large page size. Currently, we pick 16M or 1M
561          * depending on what is available
562          */
563         if (mmu_psize_defs[MMU_PAGE_16M].shift)
564                 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
565         else if (mmu_psize_defs[MMU_PAGE_1M].shift)
566                 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
567
568         return 0;
569 }
570
571 module_init(hugetlbpage_init);
572
573 void flush_dcache_icache_hugepage(struct page *page)
574 {
575         int i;
576
577         BUG_ON(!PageCompound(page));
578
579         for (i = 0; i < (1UL << compound_order(page)); i++)
580                 __flush_dcache_icache(page_address(page+i));
581 }