Merge branch 'kbuild' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[pandora-kernel.git] / arch / powerpc / mm / hash_utils_64.c
1 /*
2  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3  *   {mikejc|engebret}@us.ibm.com
4  *
5  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
6  *
7  * SMP scalability work:
8  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9  * 
10  *    Module name: htab.c
11  *
12  *    Description:
13  *      PowerPC Hashed Page Table functions
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  */
20
21 #undef DEBUG
22 #undef DEBUG_LOW
23
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/ctype.h>
31 #include <linux/cache.h>
32 #include <linux/init.h>
33 #include <linux/signal.h>
34 #include <linux/memblock.h>
35
36 #include <asm/processor.h>
37 #include <asm/pgtable.h>
38 #include <asm/mmu.h>
39 #include <asm/mmu_context.h>
40 #include <asm/page.h>
41 #include <asm/types.h>
42 #include <asm/system.h>
43 #include <asm/uaccess.h>
44 #include <asm/machdep.h>
45 #include <asm/prom.h>
46 #include <asm/abs_addr.h>
47 #include <asm/tlbflush.h>
48 #include <asm/io.h>
49 #include <asm/eeh.h>
50 #include <asm/tlb.h>
51 #include <asm/cacheflush.h>
52 #include <asm/cputable.h>
53 #include <asm/sections.h>
54 #include <asm/spu.h>
55 #include <asm/udbg.h>
56 #include <asm/code-patching.h>
57
58 #ifdef DEBUG
59 #define DBG(fmt...) udbg_printf(fmt)
60 #else
61 #define DBG(fmt...)
62 #endif
63
64 #ifdef DEBUG_LOW
65 #define DBG_LOW(fmt...) udbg_printf(fmt)
66 #else
67 #define DBG_LOW(fmt...)
68 #endif
69
70 #define KB (1024)
71 #define MB (1024*KB)
72 #define GB (1024L*MB)
73
74 /*
75  * Note:  pte   --> Linux PTE
76  *        HPTE  --> PowerPC Hashed Page Table Entry
77  *
78  * Execution context:
79  *   htab_initialize is called with the MMU off (of course), but
80  *   the kernel has been copied down to zero so it can directly
81  *   reference global data.  At this point it is very difficult
82  *   to print debug info.
83  *
84  */
85
86 #ifdef CONFIG_U3_DART
87 extern unsigned long dart_tablebase;
88 #endif /* CONFIG_U3_DART */
89
90 static unsigned long _SDR1;
91 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
92
93 struct hash_pte *htab_address;
94 unsigned long htab_size_bytes;
95 unsigned long htab_hash_mask;
96 EXPORT_SYMBOL_GPL(htab_hash_mask);
97 int mmu_linear_psize = MMU_PAGE_4K;
98 int mmu_virtual_psize = MMU_PAGE_4K;
99 int mmu_vmalloc_psize = MMU_PAGE_4K;
100 #ifdef CONFIG_SPARSEMEM_VMEMMAP
101 int mmu_vmemmap_psize = MMU_PAGE_4K;
102 #endif
103 int mmu_io_psize = MMU_PAGE_4K;
104 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
105 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
106 u16 mmu_slb_size = 64;
107 EXPORT_SYMBOL_GPL(mmu_slb_size);
108 #ifdef CONFIG_PPC_64K_PAGES
109 int mmu_ci_restrictions;
110 #endif
111 #ifdef CONFIG_DEBUG_PAGEALLOC
112 static u8 *linear_map_hash_slots;
113 static unsigned long linear_map_hash_count;
114 static DEFINE_SPINLOCK(linear_map_hash_lock);
115 #endif /* CONFIG_DEBUG_PAGEALLOC */
116
117 /* There are definitions of page sizes arrays to be used when none
118  * is provided by the firmware.
119  */
120
121 /* Pre-POWER4 CPUs (4k pages only)
122  */
123 static struct mmu_psize_def mmu_psize_defaults_old[] = {
124         [MMU_PAGE_4K] = {
125                 .shift  = 12,
126                 .sllp   = 0,
127                 .penc   = 0,
128                 .avpnm  = 0,
129                 .tlbiel = 0,
130         },
131 };
132
133 /* POWER4, GPUL, POWER5
134  *
135  * Support for 16Mb large pages
136  */
137 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
138         [MMU_PAGE_4K] = {
139                 .shift  = 12,
140                 .sllp   = 0,
141                 .penc   = 0,
142                 .avpnm  = 0,
143                 .tlbiel = 1,
144         },
145         [MMU_PAGE_16M] = {
146                 .shift  = 24,
147                 .sllp   = SLB_VSID_L,
148                 .penc   = 0,
149                 .avpnm  = 0x1UL,
150                 .tlbiel = 0,
151         },
152 };
153
154 static unsigned long htab_convert_pte_flags(unsigned long pteflags)
155 {
156         unsigned long rflags = pteflags & 0x1fa;
157
158         /* _PAGE_EXEC -> NOEXEC */
159         if ((pteflags & _PAGE_EXEC) == 0)
160                 rflags |= HPTE_R_N;
161
162         /* PP bits. PAGE_USER is already PP bit 0x2, so we only
163          * need to add in 0x1 if it's a read-only user page
164          */
165         if ((pteflags & _PAGE_USER) && !((pteflags & _PAGE_RW) &&
166                                          (pteflags & _PAGE_DIRTY)))
167                 rflags |= 1;
168
169         /* Always add C */
170         return rflags | HPTE_R_C;
171 }
172
173 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
174                       unsigned long pstart, unsigned long prot,
175                       int psize, int ssize)
176 {
177         unsigned long vaddr, paddr;
178         unsigned int step, shift;
179         int ret = 0;
180
181         shift = mmu_psize_defs[psize].shift;
182         step = 1 << shift;
183
184         prot = htab_convert_pte_flags(prot);
185
186         DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
187             vstart, vend, pstart, prot, psize, ssize);
188
189         for (vaddr = vstart, paddr = pstart; vaddr < vend;
190              vaddr += step, paddr += step) {
191                 unsigned long hash, hpteg;
192                 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
193                 unsigned long va = hpt_va(vaddr, vsid, ssize);
194                 unsigned long tprot = prot;
195
196                 /* Make kernel text executable */
197                 if (overlaps_kernel_text(vaddr, vaddr + step))
198                         tprot &= ~HPTE_R_N;
199
200                 hash = hpt_hash(va, shift, ssize);
201                 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
202
203                 BUG_ON(!ppc_md.hpte_insert);
204                 ret = ppc_md.hpte_insert(hpteg, va, paddr, tprot,
205                                          HPTE_V_BOLTED, psize, ssize);
206
207                 if (ret < 0)
208                         break;
209 #ifdef CONFIG_DEBUG_PAGEALLOC
210                 if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
211                         linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
212 #endif /* CONFIG_DEBUG_PAGEALLOC */
213         }
214         return ret < 0 ? ret : 0;
215 }
216
217 #ifdef CONFIG_MEMORY_HOTPLUG
218 static int htab_remove_mapping(unsigned long vstart, unsigned long vend,
219                       int psize, int ssize)
220 {
221         unsigned long vaddr;
222         unsigned int step, shift;
223
224         shift = mmu_psize_defs[psize].shift;
225         step = 1 << shift;
226
227         if (!ppc_md.hpte_removebolted) {
228                 printk(KERN_WARNING "Platform doesn't implement "
229                                 "hpte_removebolted\n");
230                 return -EINVAL;
231         }
232
233         for (vaddr = vstart; vaddr < vend; vaddr += step)
234                 ppc_md.hpte_removebolted(vaddr, psize, ssize);
235
236         return 0;
237 }
238 #endif /* CONFIG_MEMORY_HOTPLUG */
239
240 static int __init htab_dt_scan_seg_sizes(unsigned long node,
241                                          const char *uname, int depth,
242                                          void *data)
243 {
244         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
245         u32 *prop;
246         unsigned long size = 0;
247
248         /* We are scanning "cpu" nodes only */
249         if (type == NULL || strcmp(type, "cpu") != 0)
250                 return 0;
251
252         prop = (u32 *)of_get_flat_dt_prop(node, "ibm,processor-segment-sizes",
253                                           &size);
254         if (prop == NULL)
255                 return 0;
256         for (; size >= 4; size -= 4, ++prop) {
257                 if (prop[0] == 40) {
258                         DBG("1T segment support detected\n");
259                         cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
260                         return 1;
261                 }
262         }
263         cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
264         return 0;
265 }
266
267 static void __init htab_init_seg_sizes(void)
268 {
269         of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
270 }
271
272 static int __init htab_dt_scan_page_sizes(unsigned long node,
273                                           const char *uname, int depth,
274                                           void *data)
275 {
276         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
277         u32 *prop;
278         unsigned long size = 0;
279
280         /* We are scanning "cpu" nodes only */
281         if (type == NULL || strcmp(type, "cpu") != 0)
282                 return 0;
283
284         prop = (u32 *)of_get_flat_dt_prop(node,
285                                           "ibm,segment-page-sizes", &size);
286         if (prop != NULL) {
287                 DBG("Page sizes from device-tree:\n");
288                 size /= 4;
289                 cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
290                 while(size > 0) {
291                         unsigned int shift = prop[0];
292                         unsigned int slbenc = prop[1];
293                         unsigned int lpnum = prop[2];
294                         unsigned int lpenc = 0;
295                         struct mmu_psize_def *def;
296                         int idx = -1;
297
298                         size -= 3; prop += 3;
299                         while(size > 0 && lpnum) {
300                                 if (prop[0] == shift)
301                                         lpenc = prop[1];
302                                 prop += 2; size -= 2;
303                                 lpnum--;
304                         }
305                         switch(shift) {
306                         case 0xc:
307                                 idx = MMU_PAGE_4K;
308                                 break;
309                         case 0x10:
310                                 idx = MMU_PAGE_64K;
311                                 break;
312                         case 0x14:
313                                 idx = MMU_PAGE_1M;
314                                 break;
315                         case 0x18:
316                                 idx = MMU_PAGE_16M;
317                                 cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
318                                 break;
319                         case 0x22:
320                                 idx = MMU_PAGE_16G;
321                                 break;
322                         }
323                         if (idx < 0)
324                                 continue;
325                         def = &mmu_psize_defs[idx];
326                         def->shift = shift;
327                         if (shift <= 23)
328                                 def->avpnm = 0;
329                         else
330                                 def->avpnm = (1 << (shift - 23)) - 1;
331                         def->sllp = slbenc;
332                         def->penc = lpenc;
333                         /* We don't know for sure what's up with tlbiel, so
334                          * for now we only set it for 4K and 64K pages
335                          */
336                         if (idx == MMU_PAGE_4K || idx == MMU_PAGE_64K)
337                                 def->tlbiel = 1;
338                         else
339                                 def->tlbiel = 0;
340
341                         DBG(" %d: shift=%02x, sllp=%04lx, avpnm=%08lx, "
342                             "tlbiel=%d, penc=%d\n",
343                             idx, shift, def->sllp, def->avpnm, def->tlbiel,
344                             def->penc);
345                 }
346                 return 1;
347         }
348         return 0;
349 }
350
351 #ifdef CONFIG_HUGETLB_PAGE
352 /* Scan for 16G memory blocks that have been set aside for huge pages
353  * and reserve those blocks for 16G huge pages.
354  */
355 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
356                                         const char *uname, int depth,
357                                         void *data) {
358         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
359         unsigned long *addr_prop;
360         u32 *page_count_prop;
361         unsigned int expected_pages;
362         long unsigned int phys_addr;
363         long unsigned int block_size;
364
365         /* We are scanning "memory" nodes only */
366         if (type == NULL || strcmp(type, "memory") != 0)
367                 return 0;
368
369         /* This property is the log base 2 of the number of virtual pages that
370          * will represent this memory block. */
371         page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
372         if (page_count_prop == NULL)
373                 return 0;
374         expected_pages = (1 << page_count_prop[0]);
375         addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
376         if (addr_prop == NULL)
377                 return 0;
378         phys_addr = addr_prop[0];
379         block_size = addr_prop[1];
380         if (block_size != (16 * GB))
381                 return 0;
382         printk(KERN_INFO "Huge page(16GB) memory: "
383                         "addr = 0x%lX size = 0x%lX pages = %d\n",
384                         phys_addr, block_size, expected_pages);
385         if (phys_addr + (16 * GB) <= memblock_end_of_DRAM()) {
386                 memblock_reserve(phys_addr, block_size * expected_pages);
387                 add_gpage(phys_addr, block_size, expected_pages);
388         }
389         return 0;
390 }
391 #endif /* CONFIG_HUGETLB_PAGE */
392
393 static void __init htab_init_page_sizes(void)
394 {
395         int rc;
396
397         /* Default to 4K pages only */
398         memcpy(mmu_psize_defs, mmu_psize_defaults_old,
399                sizeof(mmu_psize_defaults_old));
400
401         /*
402          * Try to find the available page sizes in the device-tree
403          */
404         rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
405         if (rc != 0)  /* Found */
406                 goto found;
407
408         /*
409          * Not in the device-tree, let's fallback on known size
410          * list for 16M capable GP & GR
411          */
412         if (mmu_has_feature(MMU_FTR_16M_PAGE))
413                 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
414                        sizeof(mmu_psize_defaults_gp));
415  found:
416 #ifndef CONFIG_DEBUG_PAGEALLOC
417         /*
418          * Pick a size for the linear mapping. Currently, we only support
419          * 16M, 1M and 4K which is the default
420          */
421         if (mmu_psize_defs[MMU_PAGE_16M].shift)
422                 mmu_linear_psize = MMU_PAGE_16M;
423         else if (mmu_psize_defs[MMU_PAGE_1M].shift)
424                 mmu_linear_psize = MMU_PAGE_1M;
425 #endif /* CONFIG_DEBUG_PAGEALLOC */
426
427 #ifdef CONFIG_PPC_64K_PAGES
428         /*
429          * Pick a size for the ordinary pages. Default is 4K, we support
430          * 64K for user mappings and vmalloc if supported by the processor.
431          * We only use 64k for ioremap if the processor
432          * (and firmware) support cache-inhibited large pages.
433          * If not, we use 4k and set mmu_ci_restrictions so that
434          * hash_page knows to switch processes that use cache-inhibited
435          * mappings to 4k pages.
436          */
437         if (mmu_psize_defs[MMU_PAGE_64K].shift) {
438                 mmu_virtual_psize = MMU_PAGE_64K;
439                 mmu_vmalloc_psize = MMU_PAGE_64K;
440                 if (mmu_linear_psize == MMU_PAGE_4K)
441                         mmu_linear_psize = MMU_PAGE_64K;
442                 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
443                         /*
444                          * Don't use 64k pages for ioremap on pSeries, since
445                          * that would stop us accessing the HEA ethernet.
446                          */
447                         if (!machine_is(pseries))
448                                 mmu_io_psize = MMU_PAGE_64K;
449                 } else
450                         mmu_ci_restrictions = 1;
451         }
452 #endif /* CONFIG_PPC_64K_PAGES */
453
454 #ifdef CONFIG_SPARSEMEM_VMEMMAP
455         /* We try to use 16M pages for vmemmap if that is supported
456          * and we have at least 1G of RAM at boot
457          */
458         if (mmu_psize_defs[MMU_PAGE_16M].shift &&
459             memblock_phys_mem_size() >= 0x40000000)
460                 mmu_vmemmap_psize = MMU_PAGE_16M;
461         else if (mmu_psize_defs[MMU_PAGE_64K].shift)
462                 mmu_vmemmap_psize = MMU_PAGE_64K;
463         else
464                 mmu_vmemmap_psize = MMU_PAGE_4K;
465 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
466
467         printk(KERN_DEBUG "Page orders: linear mapping = %d, "
468                "virtual = %d, io = %d"
469 #ifdef CONFIG_SPARSEMEM_VMEMMAP
470                ", vmemmap = %d"
471 #endif
472                "\n",
473                mmu_psize_defs[mmu_linear_psize].shift,
474                mmu_psize_defs[mmu_virtual_psize].shift,
475                mmu_psize_defs[mmu_io_psize].shift
476 #ifdef CONFIG_SPARSEMEM_VMEMMAP
477                ,mmu_psize_defs[mmu_vmemmap_psize].shift
478 #endif
479                );
480
481 #ifdef CONFIG_HUGETLB_PAGE
482         /* Reserve 16G huge page memory sections for huge pages */
483         of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
484 #endif /* CONFIG_HUGETLB_PAGE */
485 }
486
487 static int __init htab_dt_scan_pftsize(unsigned long node,
488                                        const char *uname, int depth,
489                                        void *data)
490 {
491         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
492         u32 *prop;
493
494         /* We are scanning "cpu" nodes only */
495         if (type == NULL || strcmp(type, "cpu") != 0)
496                 return 0;
497
498         prop = (u32 *)of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
499         if (prop != NULL) {
500                 /* pft_size[0] is the NUMA CEC cookie */
501                 ppc64_pft_size = prop[1];
502                 return 1;
503         }
504         return 0;
505 }
506
507 static unsigned long __init htab_get_table_size(void)
508 {
509         unsigned long mem_size, rnd_mem_size, pteg_count, psize;
510
511         /* If hash size isn't already provided by the platform, we try to
512          * retrieve it from the device-tree. If it's not there neither, we
513          * calculate it now based on the total RAM size
514          */
515         if (ppc64_pft_size == 0)
516                 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
517         if (ppc64_pft_size)
518                 return 1UL << ppc64_pft_size;
519
520         /* round mem_size up to next power of 2 */
521         mem_size = memblock_phys_mem_size();
522         rnd_mem_size = 1UL << __ilog2(mem_size);
523         if (rnd_mem_size < mem_size)
524                 rnd_mem_size <<= 1;
525
526         /* # pages / 2 */
527         psize = mmu_psize_defs[mmu_virtual_psize].shift;
528         pteg_count = max(rnd_mem_size >> (psize + 1), 1UL << 11);
529
530         return pteg_count << 7;
531 }
532
533 #ifdef CONFIG_MEMORY_HOTPLUG
534 int create_section_mapping(unsigned long start, unsigned long end)
535 {
536         return htab_bolt_mapping(start, end, __pa(start),
537                                  pgprot_val(PAGE_KERNEL), mmu_linear_psize,
538                                  mmu_kernel_ssize);
539 }
540
541 int remove_section_mapping(unsigned long start, unsigned long end)
542 {
543         return htab_remove_mapping(start, end, mmu_linear_psize,
544                         mmu_kernel_ssize);
545 }
546 #endif /* CONFIG_MEMORY_HOTPLUG */
547
548 #define FUNCTION_TEXT(A)        ((*(unsigned long *)(A)))
549
550 static void __init htab_finish_init(void)
551 {
552         extern unsigned int *htab_call_hpte_insert1;
553         extern unsigned int *htab_call_hpte_insert2;
554         extern unsigned int *htab_call_hpte_remove;
555         extern unsigned int *htab_call_hpte_updatepp;
556
557 #ifdef CONFIG_PPC_HAS_HASH_64K
558         extern unsigned int *ht64_call_hpte_insert1;
559         extern unsigned int *ht64_call_hpte_insert2;
560         extern unsigned int *ht64_call_hpte_remove;
561         extern unsigned int *ht64_call_hpte_updatepp;
562
563         patch_branch(ht64_call_hpte_insert1,
564                 FUNCTION_TEXT(ppc_md.hpte_insert),
565                 BRANCH_SET_LINK);
566         patch_branch(ht64_call_hpte_insert2,
567                 FUNCTION_TEXT(ppc_md.hpte_insert),
568                 BRANCH_SET_LINK);
569         patch_branch(ht64_call_hpte_remove,
570                 FUNCTION_TEXT(ppc_md.hpte_remove),
571                 BRANCH_SET_LINK);
572         patch_branch(ht64_call_hpte_updatepp,
573                 FUNCTION_TEXT(ppc_md.hpte_updatepp),
574                 BRANCH_SET_LINK);
575
576 #endif /* CONFIG_PPC_HAS_HASH_64K */
577
578         patch_branch(htab_call_hpte_insert1,
579                 FUNCTION_TEXT(ppc_md.hpte_insert),
580                 BRANCH_SET_LINK);
581         patch_branch(htab_call_hpte_insert2,
582                 FUNCTION_TEXT(ppc_md.hpte_insert),
583                 BRANCH_SET_LINK);
584         patch_branch(htab_call_hpte_remove,
585                 FUNCTION_TEXT(ppc_md.hpte_remove),
586                 BRANCH_SET_LINK);
587         patch_branch(htab_call_hpte_updatepp,
588                 FUNCTION_TEXT(ppc_md.hpte_updatepp),
589                 BRANCH_SET_LINK);
590 }
591
592 static void __init htab_initialize(void)
593 {
594         unsigned long table;
595         unsigned long pteg_count;
596         unsigned long prot;
597         unsigned long base = 0, size = 0, limit;
598         struct memblock_region *reg;
599
600         DBG(" -> htab_initialize()\n");
601
602         /* Initialize segment sizes */
603         htab_init_seg_sizes();
604
605         /* Initialize page sizes */
606         htab_init_page_sizes();
607
608         if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
609                 mmu_kernel_ssize = MMU_SEGSIZE_1T;
610                 mmu_highuser_ssize = MMU_SEGSIZE_1T;
611                 printk(KERN_INFO "Using 1TB segments\n");
612         }
613
614         /*
615          * Calculate the required size of the htab.  We want the number of
616          * PTEGs to equal one half the number of real pages.
617          */ 
618         htab_size_bytes = htab_get_table_size();
619         pteg_count = htab_size_bytes >> 7;
620
621         htab_hash_mask = pteg_count - 1;
622
623         if (firmware_has_feature(FW_FEATURE_LPAR)) {
624                 /* Using a hypervisor which owns the htab */
625                 htab_address = NULL;
626                 _SDR1 = 0; 
627         } else {
628                 /* Find storage for the HPT.  Must be contiguous in
629                  * the absolute address space. On cell we want it to be
630                  * in the first 2 Gig so we can use it for IOMMU hacks.
631                  */
632                 if (machine_is(cell))
633                         limit = 0x80000000;
634                 else
635                         limit = MEMBLOCK_ALLOC_ANYWHERE;
636
637                 table = memblock_alloc_base(htab_size_bytes, htab_size_bytes, limit);
638
639                 DBG("Hash table allocated at %lx, size: %lx\n", table,
640                     htab_size_bytes);
641
642                 htab_address = abs_to_virt(table);
643
644                 /* htab absolute addr + encoded htabsize */
645                 _SDR1 = table + __ilog2(pteg_count) - 11;
646
647                 /* Initialize the HPT with no entries */
648                 memset((void *)table, 0, htab_size_bytes);
649
650                 /* Set SDR1 */
651                 mtspr(SPRN_SDR1, _SDR1);
652         }
653
654         prot = pgprot_val(PAGE_KERNEL);
655
656 #ifdef CONFIG_DEBUG_PAGEALLOC
657         linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
658         linear_map_hash_slots = __va(memblock_alloc_base(linear_map_hash_count,
659                                                     1, ppc64_rma_size));
660         memset(linear_map_hash_slots, 0, linear_map_hash_count);
661 #endif /* CONFIG_DEBUG_PAGEALLOC */
662
663         /* On U3 based machines, we need to reserve the DART area and
664          * _NOT_ map it to avoid cache paradoxes as it's remapped non
665          * cacheable later on
666          */
667
668         /* create bolted the linear mapping in the hash table */
669         for_each_memblock(memory, reg) {
670                 base = (unsigned long)__va(reg->base);
671                 size = reg->size;
672
673                 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
674                     base, size, prot);
675
676 #ifdef CONFIG_U3_DART
677                 /* Do not map the DART space. Fortunately, it will be aligned
678                  * in such a way that it will not cross two memblock regions and
679                  * will fit within a single 16Mb page.
680                  * The DART space is assumed to be a full 16Mb region even if
681                  * we only use 2Mb of that space. We will use more of it later
682                  * for AGP GART. We have to use a full 16Mb large page.
683                  */
684                 DBG("DART base: %lx\n", dart_tablebase);
685
686                 if (dart_tablebase != 0 && dart_tablebase >= base
687                     && dart_tablebase < (base + size)) {
688                         unsigned long dart_table_end = dart_tablebase + 16 * MB;
689                         if (base != dart_tablebase)
690                                 BUG_ON(htab_bolt_mapping(base, dart_tablebase,
691                                                         __pa(base), prot,
692                                                         mmu_linear_psize,
693                                                         mmu_kernel_ssize));
694                         if ((base + size) > dart_table_end)
695                                 BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB,
696                                                         base + size,
697                                                         __pa(dart_table_end),
698                                                          prot,
699                                                          mmu_linear_psize,
700                                                          mmu_kernel_ssize));
701                         continue;
702                 }
703 #endif /* CONFIG_U3_DART */
704                 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
705                                 prot, mmu_linear_psize, mmu_kernel_ssize));
706         }
707         memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
708
709         /*
710          * If we have a memory_limit and we've allocated TCEs then we need to
711          * explicitly map the TCE area at the top of RAM. We also cope with the
712          * case that the TCEs start below memory_limit.
713          * tce_alloc_start/end are 16MB aligned so the mapping should work
714          * for either 4K or 16MB pages.
715          */
716         if (tce_alloc_start) {
717                 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
718                 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
719
720                 if (base + size >= tce_alloc_start)
721                         tce_alloc_start = base + size + 1;
722
723                 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
724                                          __pa(tce_alloc_start), prot,
725                                          mmu_linear_psize, mmu_kernel_ssize));
726         }
727
728         htab_finish_init();
729
730         DBG(" <- htab_initialize()\n");
731 }
732 #undef KB
733 #undef MB
734
735 void __init early_init_mmu(void)
736 {
737         /* Setup initial STAB address in the PACA */
738         get_paca()->stab_real = __pa((u64)&initial_stab);
739         get_paca()->stab_addr = (u64)&initial_stab;
740
741         /* Initialize the MMU Hash table and create the linear mapping
742          * of memory. Has to be done before stab/slb initialization as
743          * this is currently where the page size encoding is obtained
744          */
745         htab_initialize();
746
747         /* Initialize stab / SLB management except on iSeries
748          */
749         if (mmu_has_feature(MMU_FTR_SLB))
750                 slb_initialize();
751         else if (!firmware_has_feature(FW_FEATURE_ISERIES))
752                 stab_initialize(get_paca()->stab_real);
753 }
754
755 #ifdef CONFIG_SMP
756 void __cpuinit early_init_mmu_secondary(void)
757 {
758         /* Initialize hash table for that CPU */
759         if (!firmware_has_feature(FW_FEATURE_LPAR))
760                 mtspr(SPRN_SDR1, _SDR1);
761
762         /* Initialize STAB/SLB. We use a virtual address as it works
763          * in real mode on pSeries and we want a virtual address on
764          * iSeries anyway
765          */
766         if (mmu_has_feature(MMU_FTR_SLB))
767                 slb_initialize();
768         else
769                 stab_initialize(get_paca()->stab_addr);
770 }
771 #endif /* CONFIG_SMP */
772
773 /*
774  * Called by asm hashtable.S for doing lazy icache flush
775  */
776 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
777 {
778         struct page *page;
779
780         if (!pfn_valid(pte_pfn(pte)))
781                 return pp;
782
783         page = pte_page(pte);
784
785         /* page is dirty */
786         if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
787                 if (trap == 0x400) {
788                         flush_dcache_icache_page(page);
789                         set_bit(PG_arch_1, &page->flags);
790                 } else
791                         pp |= HPTE_R_N;
792         }
793         return pp;
794 }
795
796 #ifdef CONFIG_PPC_MM_SLICES
797 unsigned int get_paca_psize(unsigned long addr)
798 {
799         unsigned long index, slices;
800
801         if (addr < SLICE_LOW_TOP) {
802                 slices = get_paca()->context.low_slices_psize;
803                 index = GET_LOW_SLICE_INDEX(addr);
804         } else {
805                 slices = get_paca()->context.high_slices_psize;
806                 index = GET_HIGH_SLICE_INDEX(addr);
807         }
808         return (slices >> (index * 4)) & 0xF;
809 }
810
811 #else
812 unsigned int get_paca_psize(unsigned long addr)
813 {
814         return get_paca()->context.user_psize;
815 }
816 #endif
817
818 /*
819  * Demote a segment to using 4k pages.
820  * For now this makes the whole process use 4k pages.
821  */
822 #ifdef CONFIG_PPC_64K_PAGES
823 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
824 {
825         if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
826                 return;
827         slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
828 #ifdef CONFIG_SPU_BASE
829         spu_flush_all_slbs(mm);
830 #endif
831         if (get_paca_psize(addr) != MMU_PAGE_4K) {
832                 get_paca()->context = mm->context;
833                 slb_flush_and_rebolt();
834         }
835 }
836 #endif /* CONFIG_PPC_64K_PAGES */
837
838 #ifdef CONFIG_PPC_SUBPAGE_PROT
839 /*
840  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
841  * Userspace sets the subpage permissions using the subpage_prot system call.
842  *
843  * Result is 0: full permissions, _PAGE_RW: read-only,
844  * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
845  */
846 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
847 {
848         struct subpage_prot_table *spt = &mm->context.spt;
849         u32 spp = 0;
850         u32 **sbpm, *sbpp;
851
852         if (ea >= spt->maxaddr)
853                 return 0;
854         if (ea < 0x100000000) {
855                 /* addresses below 4GB use spt->low_prot */
856                 sbpm = spt->low_prot;
857         } else {
858                 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
859                 if (!sbpm)
860                         return 0;
861         }
862         sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
863         if (!sbpp)
864                 return 0;
865         spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
866
867         /* extract 2-bit bitfield for this 4k subpage */
868         spp >>= 30 - 2 * ((ea >> 12) & 0xf);
869
870         /* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
871         spp = ((spp & 2) ? _PAGE_USER : 0) | ((spp & 1) ? _PAGE_RW : 0);
872         return spp;
873 }
874
875 #else /* CONFIG_PPC_SUBPAGE_PROT */
876 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
877 {
878         return 0;
879 }
880 #endif
881
882 void hash_failure_debug(unsigned long ea, unsigned long access,
883                         unsigned long vsid, unsigned long trap,
884                         int ssize, int psize, unsigned long pte)
885 {
886         if (!printk_ratelimit())
887                 return;
888         pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
889                 ea, access, current->comm);
890         pr_info("    trap=0x%lx vsid=0x%lx ssize=%d psize=%d pte=0x%lx\n",
891                 trap, vsid, ssize, psize, pte);
892 }
893
894 /* Result code is:
895  *  0 - handled
896  *  1 - normal page fault
897  * -1 - critical hash insertion error
898  * -2 - access not permitted by subpage protection mechanism
899  */
900 int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
901 {
902         pgd_t *pgdir;
903         unsigned long vsid;
904         struct mm_struct *mm;
905         pte_t *ptep;
906         unsigned hugeshift;
907         const struct cpumask *tmp;
908         int rc, user_region = 0, local = 0;
909         int psize, ssize;
910
911         DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
912                 ea, access, trap);
913
914         if ((ea & ~REGION_MASK) >= PGTABLE_RANGE) {
915                 DBG_LOW(" out of pgtable range !\n");
916                 return 1;
917         }
918
919         /* Get region & vsid */
920         switch (REGION_ID(ea)) {
921         case USER_REGION_ID:
922                 user_region = 1;
923                 mm = current->mm;
924                 if (! mm) {
925                         DBG_LOW(" user region with no mm !\n");
926                         return 1;
927                 }
928                 psize = get_slice_psize(mm, ea);
929                 ssize = user_segment_size(ea);
930                 vsid = get_vsid(mm->context.id, ea, ssize);
931                 break;
932         case VMALLOC_REGION_ID:
933                 mm = &init_mm;
934                 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
935                 if (ea < VMALLOC_END)
936                         psize = mmu_vmalloc_psize;
937                 else
938                         psize = mmu_io_psize;
939                 ssize = mmu_kernel_ssize;
940                 break;
941         default:
942                 /* Not a valid range
943                  * Send the problem up to do_page_fault 
944                  */
945                 return 1;
946         }
947         DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
948
949         /* Get pgdir */
950         pgdir = mm->pgd;
951         if (pgdir == NULL)
952                 return 1;
953
954         /* Check CPU locality */
955         tmp = cpumask_of(smp_processor_id());
956         if (user_region && cpumask_equal(mm_cpumask(mm), tmp))
957                 local = 1;
958
959 #ifndef CONFIG_PPC_64K_PAGES
960         /* If we use 4K pages and our psize is not 4K, then we might
961          * be hitting a special driver mapping, and need to align the
962          * address before we fetch the PTE.
963          *
964          * It could also be a hugepage mapping, in which case this is
965          * not necessary, but it's not harmful, either.
966          */
967         if (psize != MMU_PAGE_4K)
968                 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
969 #endif /* CONFIG_PPC_64K_PAGES */
970
971         /* Get PTE and page size from page tables */
972         ptep = find_linux_pte_or_hugepte(pgdir, ea, &hugeshift);
973         if (ptep == NULL || !pte_present(*ptep)) {
974                 DBG_LOW(" no PTE !\n");
975                 return 1;
976         }
977
978         /* Add _PAGE_PRESENT to the required access perm */
979         access |= _PAGE_PRESENT;
980
981         /* Pre-check access permissions (will be re-checked atomically
982          * in __hash_page_XX but this pre-check is a fast path
983          */
984         if (access & ~pte_val(*ptep)) {
985                 DBG_LOW(" no access !\n");
986                 return 1;
987         }
988
989 #ifdef CONFIG_HUGETLB_PAGE
990         if (hugeshift)
991                 return __hash_page_huge(ea, access, vsid, ptep, trap, local,
992                                         ssize, hugeshift, psize);
993 #endif /* CONFIG_HUGETLB_PAGE */
994
995 #ifndef CONFIG_PPC_64K_PAGES
996         DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
997 #else
998         DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
999                 pte_val(*(ptep + PTRS_PER_PTE)));
1000 #endif
1001         /* Do actual hashing */
1002 #ifdef CONFIG_PPC_64K_PAGES
1003         /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
1004         if ((pte_val(*ptep) & _PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1005                 demote_segment_4k(mm, ea);
1006                 psize = MMU_PAGE_4K;
1007         }
1008
1009         /* If this PTE is non-cacheable and we have restrictions on
1010          * using non cacheable large pages, then we switch to 4k
1011          */
1012         if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
1013             (pte_val(*ptep) & _PAGE_NO_CACHE)) {
1014                 if (user_region) {
1015                         demote_segment_4k(mm, ea);
1016                         psize = MMU_PAGE_4K;
1017                 } else if (ea < VMALLOC_END) {
1018                         /*
1019                          * some driver did a non-cacheable mapping
1020                          * in vmalloc space, so switch vmalloc
1021                          * to 4k pages
1022                          */
1023                         printk(KERN_ALERT "Reducing vmalloc segment "
1024                                "to 4kB pages because of "
1025                                "non-cacheable mapping\n");
1026                         psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1027 #ifdef CONFIG_SPU_BASE
1028                         spu_flush_all_slbs(mm);
1029 #endif
1030                 }
1031         }
1032         if (user_region) {
1033                 if (psize != get_paca_psize(ea)) {
1034                         get_paca()->context = mm->context;
1035                         slb_flush_and_rebolt();
1036                 }
1037         } else if (get_paca()->vmalloc_sllp !=
1038                    mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1039                 get_paca()->vmalloc_sllp =
1040                         mmu_psize_defs[mmu_vmalloc_psize].sllp;
1041                 slb_vmalloc_update();
1042         }
1043 #endif /* CONFIG_PPC_64K_PAGES */
1044
1045 #ifdef CONFIG_PPC_HAS_HASH_64K
1046         if (psize == MMU_PAGE_64K)
1047                 rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1048         else
1049 #endif /* CONFIG_PPC_HAS_HASH_64K */
1050         {
1051                 int spp = subpage_protection(mm, ea);
1052                 if (access & spp)
1053                         rc = -2;
1054                 else
1055                         rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1056                                             local, ssize, spp);
1057         }
1058
1059         /* Dump some info in case of hash insertion failure, they should
1060          * never happen so it is really useful to know if/when they do
1061          */
1062         if (rc == -1)
1063                 hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1064                                    pte_val(*ptep));
1065 #ifndef CONFIG_PPC_64K_PAGES
1066         DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1067 #else
1068         DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1069                 pte_val(*(ptep + PTRS_PER_PTE)));
1070 #endif
1071         DBG_LOW(" -> rc=%d\n", rc);
1072         return rc;
1073 }
1074 EXPORT_SYMBOL_GPL(hash_page);
1075
1076 void hash_preload(struct mm_struct *mm, unsigned long ea,
1077                   unsigned long access, unsigned long trap)
1078 {
1079         unsigned long vsid;
1080         pgd_t *pgdir;
1081         pte_t *ptep;
1082         unsigned long flags;
1083         int rc, ssize, local = 0;
1084
1085         BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1086
1087 #ifdef CONFIG_PPC_MM_SLICES
1088         /* We only prefault standard pages for now */
1089         if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
1090                 return;
1091 #endif
1092
1093         DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1094                 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1095
1096         /* Get Linux PTE if available */
1097         pgdir = mm->pgd;
1098         if (pgdir == NULL)
1099                 return;
1100         ptep = find_linux_pte(pgdir, ea);
1101         if (!ptep)
1102                 return;
1103
1104 #ifdef CONFIG_PPC_64K_PAGES
1105         /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1106          * a 64K kernel), then we don't preload, hash_page() will take
1107          * care of it once we actually try to access the page.
1108          * That way we don't have to duplicate all of the logic for segment
1109          * page size demotion here
1110          */
1111         if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
1112                 return;
1113 #endif /* CONFIG_PPC_64K_PAGES */
1114
1115         /* Get VSID */
1116         ssize = user_segment_size(ea);
1117         vsid = get_vsid(mm->context.id, ea, ssize);
1118
1119         /* Hash doesn't like irqs */
1120         local_irq_save(flags);
1121
1122         /* Is that local to this CPU ? */
1123         if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1124                 local = 1;
1125
1126         /* Hash it in */
1127 #ifdef CONFIG_PPC_HAS_HASH_64K
1128         if (mm->context.user_psize == MMU_PAGE_64K)
1129                 rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1130         else
1131 #endif /* CONFIG_PPC_HAS_HASH_64K */
1132                 rc = __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize,
1133                                     subpage_protection(mm, ea));
1134
1135         /* Dump some info in case of hash insertion failure, they should
1136          * never happen so it is really useful to know if/when they do
1137          */
1138         if (rc == -1)
1139                 hash_failure_debug(ea, access, vsid, trap, ssize,
1140                                    mm->context.user_psize, pte_val(*ptep));
1141
1142         local_irq_restore(flags);
1143 }
1144
1145 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1146  *          do not forget to update the assembly call site !
1147  */
1148 void flush_hash_page(unsigned long va, real_pte_t pte, int psize, int ssize,
1149                      int local)
1150 {
1151         unsigned long hash, index, shift, hidx, slot;
1152
1153         DBG_LOW("flush_hash_page(va=%016lx)\n", va);
1154         pte_iterate_hashed_subpages(pte, psize, va, index, shift) {
1155                 hash = hpt_hash(va, shift, ssize);
1156                 hidx = __rpte_to_hidx(pte, index);
1157                 if (hidx & _PTEIDX_SECONDARY)
1158                         hash = ~hash;
1159                 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1160                 slot += hidx & _PTEIDX_GROUP_IX;
1161                 DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx);
1162                 ppc_md.hpte_invalidate(slot, va, psize, ssize, local);
1163         } pte_iterate_hashed_end();
1164 }
1165
1166 void flush_hash_range(unsigned long number, int local)
1167 {
1168         if (ppc_md.flush_hash_range)
1169                 ppc_md.flush_hash_range(number, local);
1170         else {
1171                 int i;
1172                 struct ppc64_tlb_batch *batch =
1173                         &__get_cpu_var(ppc64_tlb_batch);
1174
1175                 for (i = 0; i < number; i++)
1176                         flush_hash_page(batch->vaddr[i], batch->pte[i],
1177                                         batch->psize, batch->ssize, local);
1178         }
1179 }
1180
1181 /*
1182  * low_hash_fault is called when we the low level hash code failed
1183  * to instert a PTE due to an hypervisor error
1184  */
1185 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1186 {
1187         if (user_mode(regs)) {
1188 #ifdef CONFIG_PPC_SUBPAGE_PROT
1189                 if (rc == -2)
1190                         _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1191                 else
1192 #endif
1193                         _exception(SIGBUS, regs, BUS_ADRERR, address);
1194         } else
1195                 bad_page_fault(regs, address, SIGBUS);
1196 }
1197
1198 #ifdef CONFIG_DEBUG_PAGEALLOC
1199 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1200 {
1201         unsigned long hash, hpteg;
1202         unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1203         unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1204         unsigned long mode = htab_convert_pte_flags(PAGE_KERNEL);
1205         int ret;
1206
1207         hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1208         hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
1209
1210         ret = ppc_md.hpte_insert(hpteg, va, __pa(vaddr),
1211                                  mode, HPTE_V_BOLTED,
1212                                  mmu_linear_psize, mmu_kernel_ssize);
1213         BUG_ON (ret < 0);
1214         spin_lock(&linear_map_hash_lock);
1215         BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1216         linear_map_hash_slots[lmi] = ret | 0x80;
1217         spin_unlock(&linear_map_hash_lock);
1218 }
1219
1220 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1221 {
1222         unsigned long hash, hidx, slot;
1223         unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1224         unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1225
1226         hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1227         spin_lock(&linear_map_hash_lock);
1228         BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1229         hidx = linear_map_hash_slots[lmi] & 0x7f;
1230         linear_map_hash_slots[lmi] = 0;
1231         spin_unlock(&linear_map_hash_lock);
1232         if (hidx & _PTEIDX_SECONDARY)
1233                 hash = ~hash;
1234         slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1235         slot += hidx & _PTEIDX_GROUP_IX;
1236         ppc_md.hpte_invalidate(slot, va, mmu_linear_psize, mmu_kernel_ssize, 0);
1237 }
1238
1239 void kernel_map_pages(struct page *page, int numpages, int enable)
1240 {
1241         unsigned long flags, vaddr, lmi;
1242         int i;
1243
1244         local_irq_save(flags);
1245         for (i = 0; i < numpages; i++, page++) {
1246                 vaddr = (unsigned long)page_address(page);
1247                 lmi = __pa(vaddr) >> PAGE_SHIFT;
1248                 if (lmi >= linear_map_hash_count)
1249                         continue;
1250                 if (enable)
1251                         kernel_map_linear_page(vaddr, lmi);
1252                 else
1253                         kernel_unmap_linear_page(vaddr, lmi);
1254         }
1255         local_irq_restore(flags);
1256 }
1257 #endif /* CONFIG_DEBUG_PAGEALLOC */
1258
1259 void setup_initial_memory_limit(phys_addr_t first_memblock_base,
1260                                 phys_addr_t first_memblock_size)
1261 {
1262         /* We don't currently support the first MEMBLOCK not mapping 0
1263          * physical on those processors
1264          */
1265         BUG_ON(first_memblock_base != 0);
1266
1267         /* On LPAR systems, the first entry is our RMA region,
1268          * non-LPAR 64-bit hash MMU systems don't have a limitation
1269          * on real mode access, but using the first entry works well
1270          * enough. We also clamp it to 1G to avoid some funky things
1271          * such as RTAS bugs etc...
1272          */
1273         ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
1274
1275         /* Finally limit subsequent allocations */
1276         memblock_set_current_limit(ppc64_rma_size);
1277 }