Merge branch 'modsplit-Oct31_2011' of git://git.kernel.org/pub/scm/linux/kernel/git...
[pandora-kernel.git] / arch / powerpc / mm / hash_utils_64.c
1 /*
2  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3  *   {mikejc|engebret}@us.ibm.com
4  *
5  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
6  *
7  * SMP scalability work:
8  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9  * 
10  *    Module name: htab.c
11  *
12  *    Description:
13  *      PowerPC Hashed Page Table functions
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  */
20
21 #undef DEBUG
22 #undef DEBUG_LOW
23
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/export.h>
31 #include <linux/ctype.h>
32 #include <linux/cache.h>
33 #include <linux/init.h>
34 #include <linux/signal.h>
35 #include <linux/memblock.h>
36
37 #include <asm/processor.h>
38 #include <asm/pgtable.h>
39 #include <asm/mmu.h>
40 #include <asm/mmu_context.h>
41 #include <asm/page.h>
42 #include <asm/types.h>
43 #include <asm/system.h>
44 #include <asm/uaccess.h>
45 #include <asm/machdep.h>
46 #include <asm/prom.h>
47 #include <asm/abs_addr.h>
48 #include <asm/tlbflush.h>
49 #include <asm/io.h>
50 #include <asm/eeh.h>
51 #include <asm/tlb.h>
52 #include <asm/cacheflush.h>
53 #include <asm/cputable.h>
54 #include <asm/sections.h>
55 #include <asm/spu.h>
56 #include <asm/udbg.h>
57 #include <asm/code-patching.h>
58
59 #ifdef DEBUG
60 #define DBG(fmt...) udbg_printf(fmt)
61 #else
62 #define DBG(fmt...)
63 #endif
64
65 #ifdef DEBUG_LOW
66 #define DBG_LOW(fmt...) udbg_printf(fmt)
67 #else
68 #define DBG_LOW(fmt...)
69 #endif
70
71 #define KB (1024)
72 #define MB (1024*KB)
73 #define GB (1024L*MB)
74
75 /*
76  * Note:  pte   --> Linux PTE
77  *        HPTE  --> PowerPC Hashed Page Table Entry
78  *
79  * Execution context:
80  *   htab_initialize is called with the MMU off (of course), but
81  *   the kernel has been copied down to zero so it can directly
82  *   reference global data.  At this point it is very difficult
83  *   to print debug info.
84  *
85  */
86
87 #ifdef CONFIG_U3_DART
88 extern unsigned long dart_tablebase;
89 #endif /* CONFIG_U3_DART */
90
91 static unsigned long _SDR1;
92 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
93
94 struct hash_pte *htab_address;
95 unsigned long htab_size_bytes;
96 unsigned long htab_hash_mask;
97 EXPORT_SYMBOL_GPL(htab_hash_mask);
98 int mmu_linear_psize = MMU_PAGE_4K;
99 int mmu_virtual_psize = MMU_PAGE_4K;
100 int mmu_vmalloc_psize = MMU_PAGE_4K;
101 #ifdef CONFIG_SPARSEMEM_VMEMMAP
102 int mmu_vmemmap_psize = MMU_PAGE_4K;
103 #endif
104 int mmu_io_psize = MMU_PAGE_4K;
105 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
106 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
107 u16 mmu_slb_size = 64;
108 EXPORT_SYMBOL_GPL(mmu_slb_size);
109 #ifdef CONFIG_PPC_64K_PAGES
110 int mmu_ci_restrictions;
111 #endif
112 #ifdef CONFIG_DEBUG_PAGEALLOC
113 static u8 *linear_map_hash_slots;
114 static unsigned long linear_map_hash_count;
115 static DEFINE_SPINLOCK(linear_map_hash_lock);
116 #endif /* CONFIG_DEBUG_PAGEALLOC */
117
118 /* There are definitions of page sizes arrays to be used when none
119  * is provided by the firmware.
120  */
121
122 /* Pre-POWER4 CPUs (4k pages only)
123  */
124 static struct mmu_psize_def mmu_psize_defaults_old[] = {
125         [MMU_PAGE_4K] = {
126                 .shift  = 12,
127                 .sllp   = 0,
128                 .penc   = 0,
129                 .avpnm  = 0,
130                 .tlbiel = 0,
131         },
132 };
133
134 /* POWER4, GPUL, POWER5
135  *
136  * Support for 16Mb large pages
137  */
138 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
139         [MMU_PAGE_4K] = {
140                 .shift  = 12,
141                 .sllp   = 0,
142                 .penc   = 0,
143                 .avpnm  = 0,
144                 .tlbiel = 1,
145         },
146         [MMU_PAGE_16M] = {
147                 .shift  = 24,
148                 .sllp   = SLB_VSID_L,
149                 .penc   = 0,
150                 .avpnm  = 0x1UL,
151                 .tlbiel = 0,
152         },
153 };
154
155 static unsigned long htab_convert_pte_flags(unsigned long pteflags)
156 {
157         unsigned long rflags = pteflags & 0x1fa;
158
159         /* _PAGE_EXEC -> NOEXEC */
160         if ((pteflags & _PAGE_EXEC) == 0)
161                 rflags |= HPTE_R_N;
162
163         /* PP bits. PAGE_USER is already PP bit 0x2, so we only
164          * need to add in 0x1 if it's a read-only user page
165          */
166         if ((pteflags & _PAGE_USER) && !((pteflags & _PAGE_RW) &&
167                                          (pteflags & _PAGE_DIRTY)))
168                 rflags |= 1;
169
170         /* Always add C */
171         return rflags | HPTE_R_C;
172 }
173
174 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
175                       unsigned long pstart, unsigned long prot,
176                       int psize, int ssize)
177 {
178         unsigned long vaddr, paddr;
179         unsigned int step, shift;
180         int ret = 0;
181
182         shift = mmu_psize_defs[psize].shift;
183         step = 1 << shift;
184
185         prot = htab_convert_pte_flags(prot);
186
187         DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
188             vstart, vend, pstart, prot, psize, ssize);
189
190         for (vaddr = vstart, paddr = pstart; vaddr < vend;
191              vaddr += step, paddr += step) {
192                 unsigned long hash, hpteg;
193                 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
194                 unsigned long va = hpt_va(vaddr, vsid, ssize);
195                 unsigned long tprot = prot;
196
197                 /* Make kernel text executable */
198                 if (overlaps_kernel_text(vaddr, vaddr + step))
199                         tprot &= ~HPTE_R_N;
200
201                 hash = hpt_hash(va, shift, ssize);
202                 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
203
204                 BUG_ON(!ppc_md.hpte_insert);
205                 ret = ppc_md.hpte_insert(hpteg, va, paddr, tprot,
206                                          HPTE_V_BOLTED, psize, ssize);
207
208                 if (ret < 0)
209                         break;
210 #ifdef CONFIG_DEBUG_PAGEALLOC
211                 if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
212                         linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
213 #endif /* CONFIG_DEBUG_PAGEALLOC */
214         }
215         return ret < 0 ? ret : 0;
216 }
217
218 #ifdef CONFIG_MEMORY_HOTPLUG
219 static int htab_remove_mapping(unsigned long vstart, unsigned long vend,
220                       int psize, int ssize)
221 {
222         unsigned long vaddr;
223         unsigned int step, shift;
224
225         shift = mmu_psize_defs[psize].shift;
226         step = 1 << shift;
227
228         if (!ppc_md.hpte_removebolted) {
229                 printk(KERN_WARNING "Platform doesn't implement "
230                                 "hpte_removebolted\n");
231                 return -EINVAL;
232         }
233
234         for (vaddr = vstart; vaddr < vend; vaddr += step)
235                 ppc_md.hpte_removebolted(vaddr, psize, ssize);
236
237         return 0;
238 }
239 #endif /* CONFIG_MEMORY_HOTPLUG */
240
241 static int __init htab_dt_scan_seg_sizes(unsigned long node,
242                                          const char *uname, int depth,
243                                          void *data)
244 {
245         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
246         u32 *prop;
247         unsigned long size = 0;
248
249         /* We are scanning "cpu" nodes only */
250         if (type == NULL || strcmp(type, "cpu") != 0)
251                 return 0;
252
253         prop = (u32 *)of_get_flat_dt_prop(node, "ibm,processor-segment-sizes",
254                                           &size);
255         if (prop == NULL)
256                 return 0;
257         for (; size >= 4; size -= 4, ++prop) {
258                 if (prop[0] == 40) {
259                         DBG("1T segment support detected\n");
260                         cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
261                         return 1;
262                 }
263         }
264         cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
265         return 0;
266 }
267
268 static void __init htab_init_seg_sizes(void)
269 {
270         of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
271 }
272
273 static int __init htab_dt_scan_page_sizes(unsigned long node,
274                                           const char *uname, int depth,
275                                           void *data)
276 {
277         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
278         u32 *prop;
279         unsigned long size = 0;
280
281         /* We are scanning "cpu" nodes only */
282         if (type == NULL || strcmp(type, "cpu") != 0)
283                 return 0;
284
285         prop = (u32 *)of_get_flat_dt_prop(node,
286                                           "ibm,segment-page-sizes", &size);
287         if (prop != NULL) {
288                 DBG("Page sizes from device-tree:\n");
289                 size /= 4;
290                 cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
291                 while(size > 0) {
292                         unsigned int shift = prop[0];
293                         unsigned int slbenc = prop[1];
294                         unsigned int lpnum = prop[2];
295                         unsigned int lpenc = 0;
296                         struct mmu_psize_def *def;
297                         int idx = -1;
298
299                         size -= 3; prop += 3;
300                         while(size > 0 && lpnum) {
301                                 if (prop[0] == shift)
302                                         lpenc = prop[1];
303                                 prop += 2; size -= 2;
304                                 lpnum--;
305                         }
306                         switch(shift) {
307                         case 0xc:
308                                 idx = MMU_PAGE_4K;
309                                 break;
310                         case 0x10:
311                                 idx = MMU_PAGE_64K;
312                                 break;
313                         case 0x14:
314                                 idx = MMU_PAGE_1M;
315                                 break;
316                         case 0x18:
317                                 idx = MMU_PAGE_16M;
318                                 cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
319                                 break;
320                         case 0x22:
321                                 idx = MMU_PAGE_16G;
322                                 break;
323                         }
324                         if (idx < 0)
325                                 continue;
326                         def = &mmu_psize_defs[idx];
327                         def->shift = shift;
328                         if (shift <= 23)
329                                 def->avpnm = 0;
330                         else
331                                 def->avpnm = (1 << (shift - 23)) - 1;
332                         def->sllp = slbenc;
333                         def->penc = lpenc;
334                         /* We don't know for sure what's up with tlbiel, so
335                          * for now we only set it for 4K and 64K pages
336                          */
337                         if (idx == MMU_PAGE_4K || idx == MMU_PAGE_64K)
338                                 def->tlbiel = 1;
339                         else
340                                 def->tlbiel = 0;
341
342                         DBG(" %d: shift=%02x, sllp=%04lx, avpnm=%08lx, "
343                             "tlbiel=%d, penc=%d\n",
344                             idx, shift, def->sllp, def->avpnm, def->tlbiel,
345                             def->penc);
346                 }
347                 return 1;
348         }
349         return 0;
350 }
351
352 #ifdef CONFIG_HUGETLB_PAGE
353 /* Scan for 16G memory blocks that have been set aside for huge pages
354  * and reserve those blocks for 16G huge pages.
355  */
356 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
357                                         const char *uname, int depth,
358                                         void *data) {
359         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
360         unsigned long *addr_prop;
361         u32 *page_count_prop;
362         unsigned int expected_pages;
363         long unsigned int phys_addr;
364         long unsigned int block_size;
365
366         /* We are scanning "memory" nodes only */
367         if (type == NULL || strcmp(type, "memory") != 0)
368                 return 0;
369
370         /* This property is the log base 2 of the number of virtual pages that
371          * will represent this memory block. */
372         page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
373         if (page_count_prop == NULL)
374                 return 0;
375         expected_pages = (1 << page_count_prop[0]);
376         addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
377         if (addr_prop == NULL)
378                 return 0;
379         phys_addr = addr_prop[0];
380         block_size = addr_prop[1];
381         if (block_size != (16 * GB))
382                 return 0;
383         printk(KERN_INFO "Huge page(16GB) memory: "
384                         "addr = 0x%lX size = 0x%lX pages = %d\n",
385                         phys_addr, block_size, expected_pages);
386         if (phys_addr + (16 * GB) <= memblock_end_of_DRAM()) {
387                 memblock_reserve(phys_addr, block_size * expected_pages);
388                 add_gpage(phys_addr, block_size, expected_pages);
389         }
390         return 0;
391 }
392 #endif /* CONFIG_HUGETLB_PAGE */
393
394 static void __init htab_init_page_sizes(void)
395 {
396         int rc;
397
398         /* Default to 4K pages only */
399         memcpy(mmu_psize_defs, mmu_psize_defaults_old,
400                sizeof(mmu_psize_defaults_old));
401
402         /*
403          * Try to find the available page sizes in the device-tree
404          */
405         rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
406         if (rc != 0)  /* Found */
407                 goto found;
408
409         /*
410          * Not in the device-tree, let's fallback on known size
411          * list for 16M capable GP & GR
412          */
413         if (mmu_has_feature(MMU_FTR_16M_PAGE))
414                 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
415                        sizeof(mmu_psize_defaults_gp));
416  found:
417 #ifndef CONFIG_DEBUG_PAGEALLOC
418         /*
419          * Pick a size for the linear mapping. Currently, we only support
420          * 16M, 1M and 4K which is the default
421          */
422         if (mmu_psize_defs[MMU_PAGE_16M].shift)
423                 mmu_linear_psize = MMU_PAGE_16M;
424         else if (mmu_psize_defs[MMU_PAGE_1M].shift)
425                 mmu_linear_psize = MMU_PAGE_1M;
426 #endif /* CONFIG_DEBUG_PAGEALLOC */
427
428 #ifdef CONFIG_PPC_64K_PAGES
429         /*
430          * Pick a size for the ordinary pages. Default is 4K, we support
431          * 64K for user mappings and vmalloc if supported by the processor.
432          * We only use 64k for ioremap if the processor
433          * (and firmware) support cache-inhibited large pages.
434          * If not, we use 4k and set mmu_ci_restrictions so that
435          * hash_page knows to switch processes that use cache-inhibited
436          * mappings to 4k pages.
437          */
438         if (mmu_psize_defs[MMU_PAGE_64K].shift) {
439                 mmu_virtual_psize = MMU_PAGE_64K;
440                 mmu_vmalloc_psize = MMU_PAGE_64K;
441                 if (mmu_linear_psize == MMU_PAGE_4K)
442                         mmu_linear_psize = MMU_PAGE_64K;
443                 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
444                         /*
445                          * Don't use 64k pages for ioremap on pSeries, since
446                          * that would stop us accessing the HEA ethernet.
447                          */
448                         if (!machine_is(pseries))
449                                 mmu_io_psize = MMU_PAGE_64K;
450                 } else
451                         mmu_ci_restrictions = 1;
452         }
453 #endif /* CONFIG_PPC_64K_PAGES */
454
455 #ifdef CONFIG_SPARSEMEM_VMEMMAP
456         /* We try to use 16M pages for vmemmap if that is supported
457          * and we have at least 1G of RAM at boot
458          */
459         if (mmu_psize_defs[MMU_PAGE_16M].shift &&
460             memblock_phys_mem_size() >= 0x40000000)
461                 mmu_vmemmap_psize = MMU_PAGE_16M;
462         else if (mmu_psize_defs[MMU_PAGE_64K].shift)
463                 mmu_vmemmap_psize = MMU_PAGE_64K;
464         else
465                 mmu_vmemmap_psize = MMU_PAGE_4K;
466 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
467
468         printk(KERN_DEBUG "Page orders: linear mapping = %d, "
469                "virtual = %d, io = %d"
470 #ifdef CONFIG_SPARSEMEM_VMEMMAP
471                ", vmemmap = %d"
472 #endif
473                "\n",
474                mmu_psize_defs[mmu_linear_psize].shift,
475                mmu_psize_defs[mmu_virtual_psize].shift,
476                mmu_psize_defs[mmu_io_psize].shift
477 #ifdef CONFIG_SPARSEMEM_VMEMMAP
478                ,mmu_psize_defs[mmu_vmemmap_psize].shift
479 #endif
480                );
481
482 #ifdef CONFIG_HUGETLB_PAGE
483         /* Reserve 16G huge page memory sections for huge pages */
484         of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
485 #endif /* CONFIG_HUGETLB_PAGE */
486 }
487
488 static int __init htab_dt_scan_pftsize(unsigned long node,
489                                        const char *uname, int depth,
490                                        void *data)
491 {
492         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
493         u32 *prop;
494
495         /* We are scanning "cpu" nodes only */
496         if (type == NULL || strcmp(type, "cpu") != 0)
497                 return 0;
498
499         prop = (u32 *)of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
500         if (prop != NULL) {
501                 /* pft_size[0] is the NUMA CEC cookie */
502                 ppc64_pft_size = prop[1];
503                 return 1;
504         }
505         return 0;
506 }
507
508 static unsigned long __init htab_get_table_size(void)
509 {
510         unsigned long mem_size, rnd_mem_size, pteg_count, psize;
511
512         /* If hash size isn't already provided by the platform, we try to
513          * retrieve it from the device-tree. If it's not there neither, we
514          * calculate it now based on the total RAM size
515          */
516         if (ppc64_pft_size == 0)
517                 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
518         if (ppc64_pft_size)
519                 return 1UL << ppc64_pft_size;
520
521         /* round mem_size up to next power of 2 */
522         mem_size = memblock_phys_mem_size();
523         rnd_mem_size = 1UL << __ilog2(mem_size);
524         if (rnd_mem_size < mem_size)
525                 rnd_mem_size <<= 1;
526
527         /* # pages / 2 */
528         psize = mmu_psize_defs[mmu_virtual_psize].shift;
529         pteg_count = max(rnd_mem_size >> (psize + 1), 1UL << 11);
530
531         return pteg_count << 7;
532 }
533
534 #ifdef CONFIG_MEMORY_HOTPLUG
535 int create_section_mapping(unsigned long start, unsigned long end)
536 {
537         return htab_bolt_mapping(start, end, __pa(start),
538                                  pgprot_val(PAGE_KERNEL), mmu_linear_psize,
539                                  mmu_kernel_ssize);
540 }
541
542 int remove_section_mapping(unsigned long start, unsigned long end)
543 {
544         return htab_remove_mapping(start, end, mmu_linear_psize,
545                         mmu_kernel_ssize);
546 }
547 #endif /* CONFIG_MEMORY_HOTPLUG */
548
549 #define FUNCTION_TEXT(A)        ((*(unsigned long *)(A)))
550
551 static void __init htab_finish_init(void)
552 {
553         extern unsigned int *htab_call_hpte_insert1;
554         extern unsigned int *htab_call_hpte_insert2;
555         extern unsigned int *htab_call_hpte_remove;
556         extern unsigned int *htab_call_hpte_updatepp;
557
558 #ifdef CONFIG_PPC_HAS_HASH_64K
559         extern unsigned int *ht64_call_hpte_insert1;
560         extern unsigned int *ht64_call_hpte_insert2;
561         extern unsigned int *ht64_call_hpte_remove;
562         extern unsigned int *ht64_call_hpte_updatepp;
563
564         patch_branch(ht64_call_hpte_insert1,
565                 FUNCTION_TEXT(ppc_md.hpte_insert),
566                 BRANCH_SET_LINK);
567         patch_branch(ht64_call_hpte_insert2,
568                 FUNCTION_TEXT(ppc_md.hpte_insert),
569                 BRANCH_SET_LINK);
570         patch_branch(ht64_call_hpte_remove,
571                 FUNCTION_TEXT(ppc_md.hpte_remove),
572                 BRANCH_SET_LINK);
573         patch_branch(ht64_call_hpte_updatepp,
574                 FUNCTION_TEXT(ppc_md.hpte_updatepp),
575                 BRANCH_SET_LINK);
576
577 #endif /* CONFIG_PPC_HAS_HASH_64K */
578
579         patch_branch(htab_call_hpte_insert1,
580                 FUNCTION_TEXT(ppc_md.hpte_insert),
581                 BRANCH_SET_LINK);
582         patch_branch(htab_call_hpte_insert2,
583                 FUNCTION_TEXT(ppc_md.hpte_insert),
584                 BRANCH_SET_LINK);
585         patch_branch(htab_call_hpte_remove,
586                 FUNCTION_TEXT(ppc_md.hpte_remove),
587                 BRANCH_SET_LINK);
588         patch_branch(htab_call_hpte_updatepp,
589                 FUNCTION_TEXT(ppc_md.hpte_updatepp),
590                 BRANCH_SET_LINK);
591 }
592
593 static void __init htab_initialize(void)
594 {
595         unsigned long table;
596         unsigned long pteg_count;
597         unsigned long prot;
598         unsigned long base = 0, size = 0, limit;
599         struct memblock_region *reg;
600
601         DBG(" -> htab_initialize()\n");
602
603         /* Initialize segment sizes */
604         htab_init_seg_sizes();
605
606         /* Initialize page sizes */
607         htab_init_page_sizes();
608
609         if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
610                 mmu_kernel_ssize = MMU_SEGSIZE_1T;
611                 mmu_highuser_ssize = MMU_SEGSIZE_1T;
612                 printk(KERN_INFO "Using 1TB segments\n");
613         }
614
615         /*
616          * Calculate the required size of the htab.  We want the number of
617          * PTEGs to equal one half the number of real pages.
618          */ 
619         htab_size_bytes = htab_get_table_size();
620         pteg_count = htab_size_bytes >> 7;
621
622         htab_hash_mask = pteg_count - 1;
623
624         if (firmware_has_feature(FW_FEATURE_LPAR)) {
625                 /* Using a hypervisor which owns the htab */
626                 htab_address = NULL;
627                 _SDR1 = 0; 
628         } else {
629                 /* Find storage for the HPT.  Must be contiguous in
630                  * the absolute address space. On cell we want it to be
631                  * in the first 2 Gig so we can use it for IOMMU hacks.
632                  */
633                 if (machine_is(cell))
634                         limit = 0x80000000;
635                 else
636                         limit = MEMBLOCK_ALLOC_ANYWHERE;
637
638                 table = memblock_alloc_base(htab_size_bytes, htab_size_bytes, limit);
639
640                 DBG("Hash table allocated at %lx, size: %lx\n", table,
641                     htab_size_bytes);
642
643                 htab_address = abs_to_virt(table);
644
645                 /* htab absolute addr + encoded htabsize */
646                 _SDR1 = table + __ilog2(pteg_count) - 11;
647
648                 /* Initialize the HPT with no entries */
649                 memset((void *)table, 0, htab_size_bytes);
650
651                 /* Set SDR1 */
652                 mtspr(SPRN_SDR1, _SDR1);
653         }
654
655         prot = pgprot_val(PAGE_KERNEL);
656
657 #ifdef CONFIG_DEBUG_PAGEALLOC
658         linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
659         linear_map_hash_slots = __va(memblock_alloc_base(linear_map_hash_count,
660                                                     1, ppc64_rma_size));
661         memset(linear_map_hash_slots, 0, linear_map_hash_count);
662 #endif /* CONFIG_DEBUG_PAGEALLOC */
663
664         /* On U3 based machines, we need to reserve the DART area and
665          * _NOT_ map it to avoid cache paradoxes as it's remapped non
666          * cacheable later on
667          */
668
669         /* create bolted the linear mapping in the hash table */
670         for_each_memblock(memory, reg) {
671                 base = (unsigned long)__va(reg->base);
672                 size = reg->size;
673
674                 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
675                     base, size, prot);
676
677 #ifdef CONFIG_U3_DART
678                 /* Do not map the DART space. Fortunately, it will be aligned
679                  * in such a way that it will not cross two memblock regions and
680                  * will fit within a single 16Mb page.
681                  * The DART space is assumed to be a full 16Mb region even if
682                  * we only use 2Mb of that space. We will use more of it later
683                  * for AGP GART. We have to use a full 16Mb large page.
684                  */
685                 DBG("DART base: %lx\n", dart_tablebase);
686
687                 if (dart_tablebase != 0 && dart_tablebase >= base
688                     && dart_tablebase < (base + size)) {
689                         unsigned long dart_table_end = dart_tablebase + 16 * MB;
690                         if (base != dart_tablebase)
691                                 BUG_ON(htab_bolt_mapping(base, dart_tablebase,
692                                                         __pa(base), prot,
693                                                         mmu_linear_psize,
694                                                         mmu_kernel_ssize));
695                         if ((base + size) > dart_table_end)
696                                 BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB,
697                                                         base + size,
698                                                         __pa(dart_table_end),
699                                                          prot,
700                                                          mmu_linear_psize,
701                                                          mmu_kernel_ssize));
702                         continue;
703                 }
704 #endif /* CONFIG_U3_DART */
705                 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
706                                 prot, mmu_linear_psize, mmu_kernel_ssize));
707         }
708         memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
709
710         /*
711          * If we have a memory_limit and we've allocated TCEs then we need to
712          * explicitly map the TCE area at the top of RAM. We also cope with the
713          * case that the TCEs start below memory_limit.
714          * tce_alloc_start/end are 16MB aligned so the mapping should work
715          * for either 4K or 16MB pages.
716          */
717         if (tce_alloc_start) {
718                 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
719                 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
720
721                 if (base + size >= tce_alloc_start)
722                         tce_alloc_start = base + size + 1;
723
724                 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
725                                          __pa(tce_alloc_start), prot,
726                                          mmu_linear_psize, mmu_kernel_ssize));
727         }
728
729         htab_finish_init();
730
731         DBG(" <- htab_initialize()\n");
732 }
733 #undef KB
734 #undef MB
735
736 void __init early_init_mmu(void)
737 {
738         /* Setup initial STAB address in the PACA */
739         get_paca()->stab_real = __pa((u64)&initial_stab);
740         get_paca()->stab_addr = (u64)&initial_stab;
741
742         /* Initialize the MMU Hash table and create the linear mapping
743          * of memory. Has to be done before stab/slb initialization as
744          * this is currently where the page size encoding is obtained
745          */
746         htab_initialize();
747
748         /* Initialize stab / SLB management except on iSeries
749          */
750         if (mmu_has_feature(MMU_FTR_SLB))
751                 slb_initialize();
752         else if (!firmware_has_feature(FW_FEATURE_ISERIES))
753                 stab_initialize(get_paca()->stab_real);
754 }
755
756 #ifdef CONFIG_SMP
757 void __cpuinit early_init_mmu_secondary(void)
758 {
759         /* Initialize hash table for that CPU */
760         if (!firmware_has_feature(FW_FEATURE_LPAR))
761                 mtspr(SPRN_SDR1, _SDR1);
762
763         /* Initialize STAB/SLB. We use a virtual address as it works
764          * in real mode on pSeries and we want a virtual address on
765          * iSeries anyway
766          */
767         if (mmu_has_feature(MMU_FTR_SLB))
768                 slb_initialize();
769         else
770                 stab_initialize(get_paca()->stab_addr);
771 }
772 #endif /* CONFIG_SMP */
773
774 /*
775  * Called by asm hashtable.S for doing lazy icache flush
776  */
777 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
778 {
779         struct page *page;
780
781         if (!pfn_valid(pte_pfn(pte)))
782                 return pp;
783
784         page = pte_page(pte);
785
786         /* page is dirty */
787         if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
788                 if (trap == 0x400) {
789                         flush_dcache_icache_page(page);
790                         set_bit(PG_arch_1, &page->flags);
791                 } else
792                         pp |= HPTE_R_N;
793         }
794         return pp;
795 }
796
797 #ifdef CONFIG_PPC_MM_SLICES
798 unsigned int get_paca_psize(unsigned long addr)
799 {
800         unsigned long index, slices;
801
802         if (addr < SLICE_LOW_TOP) {
803                 slices = get_paca()->context.low_slices_psize;
804                 index = GET_LOW_SLICE_INDEX(addr);
805         } else {
806                 slices = get_paca()->context.high_slices_psize;
807                 index = GET_HIGH_SLICE_INDEX(addr);
808         }
809         return (slices >> (index * 4)) & 0xF;
810 }
811
812 #else
813 unsigned int get_paca_psize(unsigned long addr)
814 {
815         return get_paca()->context.user_psize;
816 }
817 #endif
818
819 /*
820  * Demote a segment to using 4k pages.
821  * For now this makes the whole process use 4k pages.
822  */
823 #ifdef CONFIG_PPC_64K_PAGES
824 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
825 {
826         if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
827                 return;
828         slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
829 #ifdef CONFIG_SPU_BASE
830         spu_flush_all_slbs(mm);
831 #endif
832         if (get_paca_psize(addr) != MMU_PAGE_4K) {
833                 get_paca()->context = mm->context;
834                 slb_flush_and_rebolt();
835         }
836 }
837 #endif /* CONFIG_PPC_64K_PAGES */
838
839 #ifdef CONFIG_PPC_SUBPAGE_PROT
840 /*
841  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
842  * Userspace sets the subpage permissions using the subpage_prot system call.
843  *
844  * Result is 0: full permissions, _PAGE_RW: read-only,
845  * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
846  */
847 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
848 {
849         struct subpage_prot_table *spt = &mm->context.spt;
850         u32 spp = 0;
851         u32 **sbpm, *sbpp;
852
853         if (ea >= spt->maxaddr)
854                 return 0;
855         if (ea < 0x100000000) {
856                 /* addresses below 4GB use spt->low_prot */
857                 sbpm = spt->low_prot;
858         } else {
859                 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
860                 if (!sbpm)
861                         return 0;
862         }
863         sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
864         if (!sbpp)
865                 return 0;
866         spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
867
868         /* extract 2-bit bitfield for this 4k subpage */
869         spp >>= 30 - 2 * ((ea >> 12) & 0xf);
870
871         /* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
872         spp = ((spp & 2) ? _PAGE_USER : 0) | ((spp & 1) ? _PAGE_RW : 0);
873         return spp;
874 }
875
876 #else /* CONFIG_PPC_SUBPAGE_PROT */
877 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
878 {
879         return 0;
880 }
881 #endif
882
883 void hash_failure_debug(unsigned long ea, unsigned long access,
884                         unsigned long vsid, unsigned long trap,
885                         int ssize, int psize, unsigned long pte)
886 {
887         if (!printk_ratelimit())
888                 return;
889         pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
890                 ea, access, current->comm);
891         pr_info("    trap=0x%lx vsid=0x%lx ssize=%d psize=%d pte=0x%lx\n",
892                 trap, vsid, ssize, psize, pte);
893 }
894
895 /* Result code is:
896  *  0 - handled
897  *  1 - normal page fault
898  * -1 - critical hash insertion error
899  * -2 - access not permitted by subpage protection mechanism
900  */
901 int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
902 {
903         pgd_t *pgdir;
904         unsigned long vsid;
905         struct mm_struct *mm;
906         pte_t *ptep;
907         unsigned hugeshift;
908         const struct cpumask *tmp;
909         int rc, user_region = 0, local = 0;
910         int psize, ssize;
911
912         DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
913                 ea, access, trap);
914
915         if ((ea & ~REGION_MASK) >= PGTABLE_RANGE) {
916                 DBG_LOW(" out of pgtable range !\n");
917                 return 1;
918         }
919
920         /* Get region & vsid */
921         switch (REGION_ID(ea)) {
922         case USER_REGION_ID:
923                 user_region = 1;
924                 mm = current->mm;
925                 if (! mm) {
926                         DBG_LOW(" user region with no mm !\n");
927                         return 1;
928                 }
929                 psize = get_slice_psize(mm, ea);
930                 ssize = user_segment_size(ea);
931                 vsid = get_vsid(mm->context.id, ea, ssize);
932                 break;
933         case VMALLOC_REGION_ID:
934                 mm = &init_mm;
935                 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
936                 if (ea < VMALLOC_END)
937                         psize = mmu_vmalloc_psize;
938                 else
939                         psize = mmu_io_psize;
940                 ssize = mmu_kernel_ssize;
941                 break;
942         default:
943                 /* Not a valid range
944                  * Send the problem up to do_page_fault 
945                  */
946                 return 1;
947         }
948         DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
949
950         /* Get pgdir */
951         pgdir = mm->pgd;
952         if (pgdir == NULL)
953                 return 1;
954
955         /* Check CPU locality */
956         tmp = cpumask_of(smp_processor_id());
957         if (user_region && cpumask_equal(mm_cpumask(mm), tmp))
958                 local = 1;
959
960 #ifndef CONFIG_PPC_64K_PAGES
961         /* If we use 4K pages and our psize is not 4K, then we might
962          * be hitting a special driver mapping, and need to align the
963          * address before we fetch the PTE.
964          *
965          * It could also be a hugepage mapping, in which case this is
966          * not necessary, but it's not harmful, either.
967          */
968         if (psize != MMU_PAGE_4K)
969                 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
970 #endif /* CONFIG_PPC_64K_PAGES */
971
972         /* Get PTE and page size from page tables */
973         ptep = find_linux_pte_or_hugepte(pgdir, ea, &hugeshift);
974         if (ptep == NULL || !pte_present(*ptep)) {
975                 DBG_LOW(" no PTE !\n");
976                 return 1;
977         }
978
979         /* Add _PAGE_PRESENT to the required access perm */
980         access |= _PAGE_PRESENT;
981
982         /* Pre-check access permissions (will be re-checked atomically
983          * in __hash_page_XX but this pre-check is a fast path
984          */
985         if (access & ~pte_val(*ptep)) {
986                 DBG_LOW(" no access !\n");
987                 return 1;
988         }
989
990 #ifdef CONFIG_HUGETLB_PAGE
991         if (hugeshift)
992                 return __hash_page_huge(ea, access, vsid, ptep, trap, local,
993                                         ssize, hugeshift, psize);
994 #endif /* CONFIG_HUGETLB_PAGE */
995
996 #ifndef CONFIG_PPC_64K_PAGES
997         DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
998 #else
999         DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1000                 pte_val(*(ptep + PTRS_PER_PTE)));
1001 #endif
1002         /* Do actual hashing */
1003 #ifdef CONFIG_PPC_64K_PAGES
1004         /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
1005         if ((pte_val(*ptep) & _PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1006                 demote_segment_4k(mm, ea);
1007                 psize = MMU_PAGE_4K;
1008         }
1009
1010         /* If this PTE is non-cacheable and we have restrictions on
1011          * using non cacheable large pages, then we switch to 4k
1012          */
1013         if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
1014             (pte_val(*ptep) & _PAGE_NO_CACHE)) {
1015                 if (user_region) {
1016                         demote_segment_4k(mm, ea);
1017                         psize = MMU_PAGE_4K;
1018                 } else if (ea < VMALLOC_END) {
1019                         /*
1020                          * some driver did a non-cacheable mapping
1021                          * in vmalloc space, so switch vmalloc
1022                          * to 4k pages
1023                          */
1024                         printk(KERN_ALERT "Reducing vmalloc segment "
1025                                "to 4kB pages because of "
1026                                "non-cacheable mapping\n");
1027                         psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1028 #ifdef CONFIG_SPU_BASE
1029                         spu_flush_all_slbs(mm);
1030 #endif
1031                 }
1032         }
1033         if (user_region) {
1034                 if (psize != get_paca_psize(ea)) {
1035                         get_paca()->context = mm->context;
1036                         slb_flush_and_rebolt();
1037                 }
1038         } else if (get_paca()->vmalloc_sllp !=
1039                    mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1040                 get_paca()->vmalloc_sllp =
1041                         mmu_psize_defs[mmu_vmalloc_psize].sllp;
1042                 slb_vmalloc_update();
1043         }
1044 #endif /* CONFIG_PPC_64K_PAGES */
1045
1046 #ifdef CONFIG_PPC_HAS_HASH_64K
1047         if (psize == MMU_PAGE_64K)
1048                 rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1049         else
1050 #endif /* CONFIG_PPC_HAS_HASH_64K */
1051         {
1052                 int spp = subpage_protection(mm, ea);
1053                 if (access & spp)
1054                         rc = -2;
1055                 else
1056                         rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1057                                             local, ssize, spp);
1058         }
1059
1060         /* Dump some info in case of hash insertion failure, they should
1061          * never happen so it is really useful to know if/when they do
1062          */
1063         if (rc == -1)
1064                 hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1065                                    pte_val(*ptep));
1066 #ifndef CONFIG_PPC_64K_PAGES
1067         DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1068 #else
1069         DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1070                 pte_val(*(ptep + PTRS_PER_PTE)));
1071 #endif
1072         DBG_LOW(" -> rc=%d\n", rc);
1073         return rc;
1074 }
1075 EXPORT_SYMBOL_GPL(hash_page);
1076
1077 void hash_preload(struct mm_struct *mm, unsigned long ea,
1078                   unsigned long access, unsigned long trap)
1079 {
1080         unsigned long vsid;
1081         pgd_t *pgdir;
1082         pte_t *ptep;
1083         unsigned long flags;
1084         int rc, ssize, local = 0;
1085
1086         BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1087
1088 #ifdef CONFIG_PPC_MM_SLICES
1089         /* We only prefault standard pages for now */
1090         if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
1091                 return;
1092 #endif
1093
1094         DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1095                 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1096
1097         /* Get Linux PTE if available */
1098         pgdir = mm->pgd;
1099         if (pgdir == NULL)
1100                 return;
1101         ptep = find_linux_pte(pgdir, ea);
1102         if (!ptep)
1103                 return;
1104
1105 #ifdef CONFIG_PPC_64K_PAGES
1106         /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1107          * a 64K kernel), then we don't preload, hash_page() will take
1108          * care of it once we actually try to access the page.
1109          * That way we don't have to duplicate all of the logic for segment
1110          * page size demotion here
1111          */
1112         if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
1113                 return;
1114 #endif /* CONFIG_PPC_64K_PAGES */
1115
1116         /* Get VSID */
1117         ssize = user_segment_size(ea);
1118         vsid = get_vsid(mm->context.id, ea, ssize);
1119
1120         /* Hash doesn't like irqs */
1121         local_irq_save(flags);
1122
1123         /* Is that local to this CPU ? */
1124         if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1125                 local = 1;
1126
1127         /* Hash it in */
1128 #ifdef CONFIG_PPC_HAS_HASH_64K
1129         if (mm->context.user_psize == MMU_PAGE_64K)
1130                 rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1131         else
1132 #endif /* CONFIG_PPC_HAS_HASH_64K */
1133                 rc = __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize,
1134                                     subpage_protection(mm, ea));
1135
1136         /* Dump some info in case of hash insertion failure, they should
1137          * never happen so it is really useful to know if/when they do
1138          */
1139         if (rc == -1)
1140                 hash_failure_debug(ea, access, vsid, trap, ssize,
1141                                    mm->context.user_psize, pte_val(*ptep));
1142
1143         local_irq_restore(flags);
1144 }
1145
1146 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1147  *          do not forget to update the assembly call site !
1148  */
1149 void flush_hash_page(unsigned long va, real_pte_t pte, int psize, int ssize,
1150                      int local)
1151 {
1152         unsigned long hash, index, shift, hidx, slot;
1153
1154         DBG_LOW("flush_hash_page(va=%016lx)\n", va);
1155         pte_iterate_hashed_subpages(pte, psize, va, index, shift) {
1156                 hash = hpt_hash(va, shift, ssize);
1157                 hidx = __rpte_to_hidx(pte, index);
1158                 if (hidx & _PTEIDX_SECONDARY)
1159                         hash = ~hash;
1160                 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1161                 slot += hidx & _PTEIDX_GROUP_IX;
1162                 DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx);
1163                 ppc_md.hpte_invalidate(slot, va, psize, ssize, local);
1164         } pte_iterate_hashed_end();
1165 }
1166
1167 void flush_hash_range(unsigned long number, int local)
1168 {
1169         if (ppc_md.flush_hash_range)
1170                 ppc_md.flush_hash_range(number, local);
1171         else {
1172                 int i;
1173                 struct ppc64_tlb_batch *batch =
1174                         &__get_cpu_var(ppc64_tlb_batch);
1175
1176                 for (i = 0; i < number; i++)
1177                         flush_hash_page(batch->vaddr[i], batch->pte[i],
1178                                         batch->psize, batch->ssize, local);
1179         }
1180 }
1181
1182 /*
1183  * low_hash_fault is called when we the low level hash code failed
1184  * to instert a PTE due to an hypervisor error
1185  */
1186 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1187 {
1188         if (user_mode(regs)) {
1189 #ifdef CONFIG_PPC_SUBPAGE_PROT
1190                 if (rc == -2)
1191                         _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1192                 else
1193 #endif
1194                         _exception(SIGBUS, regs, BUS_ADRERR, address);
1195         } else
1196                 bad_page_fault(regs, address, SIGBUS);
1197 }
1198
1199 #ifdef CONFIG_DEBUG_PAGEALLOC
1200 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1201 {
1202         unsigned long hash, hpteg;
1203         unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1204         unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1205         unsigned long mode = htab_convert_pte_flags(PAGE_KERNEL);
1206         int ret;
1207
1208         hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1209         hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
1210
1211         ret = ppc_md.hpte_insert(hpteg, va, __pa(vaddr),
1212                                  mode, HPTE_V_BOLTED,
1213                                  mmu_linear_psize, mmu_kernel_ssize);
1214         BUG_ON (ret < 0);
1215         spin_lock(&linear_map_hash_lock);
1216         BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1217         linear_map_hash_slots[lmi] = ret | 0x80;
1218         spin_unlock(&linear_map_hash_lock);
1219 }
1220
1221 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1222 {
1223         unsigned long hash, hidx, slot;
1224         unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1225         unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1226
1227         hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1228         spin_lock(&linear_map_hash_lock);
1229         BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1230         hidx = linear_map_hash_slots[lmi] & 0x7f;
1231         linear_map_hash_slots[lmi] = 0;
1232         spin_unlock(&linear_map_hash_lock);
1233         if (hidx & _PTEIDX_SECONDARY)
1234                 hash = ~hash;
1235         slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1236         slot += hidx & _PTEIDX_GROUP_IX;
1237         ppc_md.hpte_invalidate(slot, va, mmu_linear_psize, mmu_kernel_ssize, 0);
1238 }
1239
1240 void kernel_map_pages(struct page *page, int numpages, int enable)
1241 {
1242         unsigned long flags, vaddr, lmi;
1243         int i;
1244
1245         local_irq_save(flags);
1246         for (i = 0; i < numpages; i++, page++) {
1247                 vaddr = (unsigned long)page_address(page);
1248                 lmi = __pa(vaddr) >> PAGE_SHIFT;
1249                 if (lmi >= linear_map_hash_count)
1250                         continue;
1251                 if (enable)
1252                         kernel_map_linear_page(vaddr, lmi);
1253                 else
1254                         kernel_unmap_linear_page(vaddr, lmi);
1255         }
1256         local_irq_restore(flags);
1257 }
1258 #endif /* CONFIG_DEBUG_PAGEALLOC */
1259
1260 void setup_initial_memory_limit(phys_addr_t first_memblock_base,
1261                                 phys_addr_t first_memblock_size)
1262 {
1263         /* We don't currently support the first MEMBLOCK not mapping 0
1264          * physical on those processors
1265          */
1266         BUG_ON(first_memblock_base != 0);
1267
1268         /* On LPAR systems, the first entry is our RMA region,
1269          * non-LPAR 64-bit hash MMU systems don't have a limitation
1270          * on real mode access, but using the first entry works well
1271          * enough. We also clamp it to 1G to avoid some funky things
1272          * such as RTAS bugs etc...
1273          */
1274         ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
1275
1276         /* Finally limit subsequent allocations */
1277         memblock_set_current_limit(ppc64_rma_size);
1278 }