Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/upstream-linus
[pandora-kernel.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpumask.h>
30 #include <linux/spinlock.h>
31 #include <linux/page-flags.h>
32
33 #include <asm/reg.h>
34 #include <asm/cputable.h>
35 #include <asm/cacheflush.h>
36 #include <asm/tlbflush.h>
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/kvm_ppc.h>
40 #include <asm/kvm_book3s.h>
41 #include <asm/mmu_context.h>
42 #include <asm/lppaca.h>
43 #include <asm/processor.h>
44 #include <asm/cputhreads.h>
45 #include <asm/page.h>
46 #include <linux/gfp.h>
47 #include <linux/sched.h>
48 #include <linux/vmalloc.h>
49 #include <linux/highmem.h>
50
51 /*
52  * For now, limit memory to 64GB and require it to be large pages.
53  * This value is chosen because it makes the ram_pginfo array be
54  * 64kB in size, which is about as large as we want to be trying
55  * to allocate with kmalloc.
56  */
57 #define MAX_MEM_ORDER           36
58
59 #define LARGE_PAGE_ORDER        24      /* 16MB pages */
60
61 /* #define EXIT_DEBUG */
62 /* #define EXIT_DEBUG_SIMPLE */
63 /* #define EXIT_DEBUG_INT */
64
65 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
66 {
67         local_paca->kvm_hstate.kvm_vcpu = vcpu;
68         local_paca->kvm_hstate.kvm_vcore = vcpu->arch.vcore;
69 }
70
71 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
72 {
73 }
74
75 static void kvmppc_vcpu_blocked(struct kvm_vcpu *vcpu);
76 static void kvmppc_vcpu_unblocked(struct kvm_vcpu *vcpu);
77
78 void kvmppc_vcpu_block(struct kvm_vcpu *vcpu)
79 {
80         u64 now;
81         unsigned long dec_nsec;
82
83         now = get_tb();
84         if (now >= vcpu->arch.dec_expires && !kvmppc_core_pending_dec(vcpu))
85                 kvmppc_core_queue_dec(vcpu);
86         if (vcpu->arch.pending_exceptions)
87                 return;
88         if (vcpu->arch.dec_expires != ~(u64)0) {
89                 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC /
90                         tb_ticks_per_sec;
91                 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
92                               HRTIMER_MODE_REL);
93         }
94
95         kvmppc_vcpu_blocked(vcpu);
96
97         kvm_vcpu_block(vcpu);
98         vcpu->stat.halt_wakeup++;
99
100         if (vcpu->arch.dec_expires != ~(u64)0)
101                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
102
103         kvmppc_vcpu_unblocked(vcpu);
104 }
105
106 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
107 {
108         vcpu->arch.shregs.msr = msr;
109 }
110
111 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
112 {
113         vcpu->arch.pvr = pvr;
114 }
115
116 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
117 {
118         int r;
119
120         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
121         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
122                vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
123         for (r = 0; r < 16; ++r)
124                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
125                        r, kvmppc_get_gpr(vcpu, r),
126                        r+16, kvmppc_get_gpr(vcpu, r+16));
127         pr_err("ctr = %.16lx  lr  = %.16lx\n",
128                vcpu->arch.ctr, vcpu->arch.lr);
129         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
130                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
131         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
132                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
133         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
134                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
135         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
136                vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
137         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
138         pr_err("fault dar = %.16lx dsisr = %.8x\n",
139                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
140         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
141         for (r = 0; r < vcpu->arch.slb_max; ++r)
142                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
143                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
144         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
145                vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
146                vcpu->arch.last_inst);
147 }
148
149 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
150 {
151         int r;
152         struct kvm_vcpu *v, *ret = NULL;
153
154         mutex_lock(&kvm->lock);
155         kvm_for_each_vcpu(r, v, kvm) {
156                 if (v->vcpu_id == id) {
157                         ret = v;
158                         break;
159                 }
160         }
161         mutex_unlock(&kvm->lock);
162         return ret;
163 }
164
165 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
166 {
167         vpa->shared_proc = 1;
168         vpa->yield_count = 1;
169 }
170
171 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
172                                        unsigned long flags,
173                                        unsigned long vcpuid, unsigned long vpa)
174 {
175         struct kvm *kvm = vcpu->kvm;
176         unsigned long pg_index, ra, len;
177         unsigned long pg_offset;
178         void *va;
179         struct kvm_vcpu *tvcpu;
180
181         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
182         if (!tvcpu)
183                 return H_PARAMETER;
184
185         flags >>= 63 - 18;
186         flags &= 7;
187         if (flags == 0 || flags == 4)
188                 return H_PARAMETER;
189         if (flags < 4) {
190                 if (vpa & 0x7f)
191                         return H_PARAMETER;
192                 /* registering new area; convert logical addr to real */
193                 pg_index = vpa >> kvm->arch.ram_porder;
194                 pg_offset = vpa & (kvm->arch.ram_psize - 1);
195                 if (pg_index >= kvm->arch.ram_npages)
196                         return H_PARAMETER;
197                 if (kvm->arch.ram_pginfo[pg_index].pfn == 0)
198                         return H_PARAMETER;
199                 ra = kvm->arch.ram_pginfo[pg_index].pfn << PAGE_SHIFT;
200                 ra |= pg_offset;
201                 va = __va(ra);
202                 if (flags <= 1)
203                         len = *(unsigned short *)(va + 4);
204                 else
205                         len = *(unsigned int *)(va + 4);
206                 if (pg_offset + len > kvm->arch.ram_psize)
207                         return H_PARAMETER;
208                 switch (flags) {
209                 case 1:         /* register VPA */
210                         if (len < 640)
211                                 return H_PARAMETER;
212                         tvcpu->arch.vpa = va;
213                         init_vpa(vcpu, va);
214                         break;
215                 case 2:         /* register DTL */
216                         if (len < 48)
217                                 return H_PARAMETER;
218                         if (!tvcpu->arch.vpa)
219                                 return H_RESOURCE;
220                         len -= len % 48;
221                         tvcpu->arch.dtl = va;
222                         tvcpu->arch.dtl_end = va + len;
223                         break;
224                 case 3:         /* register SLB shadow buffer */
225                         if (len < 8)
226                                 return H_PARAMETER;
227                         if (!tvcpu->arch.vpa)
228                                 return H_RESOURCE;
229                         tvcpu->arch.slb_shadow = va;
230                         len = (len - 16) / 16;
231                         tvcpu->arch.slb_shadow = va;
232                         break;
233                 }
234         } else {
235                 switch (flags) {
236                 case 5:         /* unregister VPA */
237                         if (tvcpu->arch.slb_shadow || tvcpu->arch.dtl)
238                                 return H_RESOURCE;
239                         tvcpu->arch.vpa = NULL;
240                         break;
241                 case 6:         /* unregister DTL */
242                         tvcpu->arch.dtl = NULL;
243                         break;
244                 case 7:         /* unregister SLB shadow buffer */
245                         tvcpu->arch.slb_shadow = NULL;
246                         break;
247                 }
248         }
249         return H_SUCCESS;
250 }
251
252 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
253 {
254         unsigned long req = kvmppc_get_gpr(vcpu, 3);
255         unsigned long target, ret = H_SUCCESS;
256         struct kvm_vcpu *tvcpu;
257
258         switch (req) {
259         case H_CEDE:
260                 vcpu->arch.shregs.msr |= MSR_EE;
261                 vcpu->arch.ceded = 1;
262                 smp_mb();
263                 if (!vcpu->arch.prodded)
264                         kvmppc_vcpu_block(vcpu);
265                 else
266                         vcpu->arch.prodded = 0;
267                 smp_mb();
268                 vcpu->arch.ceded = 0;
269                 break;
270         case H_PROD:
271                 target = kvmppc_get_gpr(vcpu, 4);
272                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
273                 if (!tvcpu) {
274                         ret = H_PARAMETER;
275                         break;
276                 }
277                 tvcpu->arch.prodded = 1;
278                 smp_mb();
279                 if (vcpu->arch.ceded) {
280                         if (waitqueue_active(&vcpu->wq)) {
281                                 wake_up_interruptible(&vcpu->wq);
282                                 vcpu->stat.halt_wakeup++;
283                         }
284                 }
285                 break;
286         case H_CONFER:
287                 break;
288         case H_REGISTER_VPA:
289                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
290                                         kvmppc_get_gpr(vcpu, 5),
291                                         kvmppc_get_gpr(vcpu, 6));
292                 break;
293         default:
294                 return RESUME_HOST;
295         }
296         kvmppc_set_gpr(vcpu, 3, ret);
297         vcpu->arch.hcall_needed = 0;
298         return RESUME_GUEST;
299 }
300
301 static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
302                               struct task_struct *tsk)
303 {
304         int r = RESUME_HOST;
305
306         vcpu->stat.sum_exits++;
307
308         run->exit_reason = KVM_EXIT_UNKNOWN;
309         run->ready_for_interrupt_injection = 1;
310         switch (vcpu->arch.trap) {
311         /* We're good on these - the host merely wanted to get our attention */
312         case BOOK3S_INTERRUPT_HV_DECREMENTER:
313                 vcpu->stat.dec_exits++;
314                 r = RESUME_GUEST;
315                 break;
316         case BOOK3S_INTERRUPT_EXTERNAL:
317                 vcpu->stat.ext_intr_exits++;
318                 r = RESUME_GUEST;
319                 break;
320         case BOOK3S_INTERRUPT_PERFMON:
321                 r = RESUME_GUEST;
322                 break;
323         case BOOK3S_INTERRUPT_PROGRAM:
324         {
325                 ulong flags;
326                 /*
327                  * Normally program interrupts are delivered directly
328                  * to the guest by the hardware, but we can get here
329                  * as a result of a hypervisor emulation interrupt
330                  * (e40) getting turned into a 700 by BML RTAS.
331                  */
332                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
333                 kvmppc_core_queue_program(vcpu, flags);
334                 r = RESUME_GUEST;
335                 break;
336         }
337         case BOOK3S_INTERRUPT_SYSCALL:
338         {
339                 /* hcall - punt to userspace */
340                 int i;
341
342                 if (vcpu->arch.shregs.msr & MSR_PR) {
343                         /* sc 1 from userspace - reflect to guest syscall */
344                         kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
345                         r = RESUME_GUEST;
346                         break;
347                 }
348                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
349                 for (i = 0; i < 9; ++i)
350                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
351                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
352                 vcpu->arch.hcall_needed = 1;
353                 r = RESUME_HOST;
354                 break;
355         }
356         /*
357          * We get these next two if the guest does a bad real-mode access,
358          * as we have enabled VRMA (virtualized real mode area) mode in the
359          * LPCR.  We just generate an appropriate DSI/ISI to the guest.
360          */
361         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
362                 vcpu->arch.shregs.dsisr = vcpu->arch.fault_dsisr;
363                 vcpu->arch.shregs.dar = vcpu->arch.fault_dar;
364                 kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_DATA_STORAGE, 0);
365                 r = RESUME_GUEST;
366                 break;
367         case BOOK3S_INTERRUPT_H_INST_STORAGE:
368                 kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_INST_STORAGE,
369                                         0x08000000);
370                 r = RESUME_GUEST;
371                 break;
372         /*
373          * This occurs if the guest executes an illegal instruction.
374          * We just generate a program interrupt to the guest, since
375          * we don't emulate any guest instructions at this stage.
376          */
377         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
378                 kvmppc_core_queue_program(vcpu, 0x80000);
379                 r = RESUME_GUEST;
380                 break;
381         default:
382                 kvmppc_dump_regs(vcpu);
383                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
384                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
385                         vcpu->arch.shregs.msr);
386                 r = RESUME_HOST;
387                 BUG();
388                 break;
389         }
390
391
392         if (!(r & RESUME_HOST)) {
393                 /* To avoid clobbering exit_reason, only check for signals if
394                  * we aren't already exiting to userspace for some other
395                  * reason. */
396                 if (signal_pending(tsk)) {
397                         vcpu->stat.signal_exits++;
398                         run->exit_reason = KVM_EXIT_INTR;
399                         r = -EINTR;
400                 } else {
401                         kvmppc_core_deliver_interrupts(vcpu);
402                 }
403         }
404
405         return r;
406 }
407
408 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
409                                   struct kvm_sregs *sregs)
410 {
411         int i;
412
413         sregs->pvr = vcpu->arch.pvr;
414
415         memset(sregs, 0, sizeof(struct kvm_sregs));
416         for (i = 0; i < vcpu->arch.slb_max; i++) {
417                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
418                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
419         }
420
421         return 0;
422 }
423
424 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
425                                   struct kvm_sregs *sregs)
426 {
427         int i, j;
428
429         kvmppc_set_pvr(vcpu, sregs->pvr);
430
431         j = 0;
432         for (i = 0; i < vcpu->arch.slb_nr; i++) {
433                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
434                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
435                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
436                         ++j;
437                 }
438         }
439         vcpu->arch.slb_max = j;
440
441         return 0;
442 }
443
444 int kvmppc_core_check_processor_compat(void)
445 {
446         if (cpu_has_feature(CPU_FTR_HVMODE))
447                 return 0;
448         return -EIO;
449 }
450
451 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
452 {
453         struct kvm_vcpu *vcpu;
454         int err = -EINVAL;
455         int core;
456         struct kvmppc_vcore *vcore;
457
458         core = id / threads_per_core;
459         if (core >= KVM_MAX_VCORES)
460                 goto out;
461
462         err = -ENOMEM;
463         vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
464         if (!vcpu)
465                 goto out;
466
467         err = kvm_vcpu_init(vcpu, kvm, id);
468         if (err)
469                 goto free_vcpu;
470
471         vcpu->arch.shared = &vcpu->arch.shregs;
472         vcpu->arch.last_cpu = -1;
473         vcpu->arch.mmcr[0] = MMCR0_FC;
474         vcpu->arch.ctrl = CTRL_RUNLATCH;
475         /* default to host PVR, since we can't spoof it */
476         vcpu->arch.pvr = mfspr(SPRN_PVR);
477         kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
478
479         kvmppc_mmu_book3s_hv_init(vcpu);
480
481         /*
482          * Some vcpus may start out in stopped state.  If we initialize
483          * them to busy-in-host state they will stop other vcpus in the
484          * vcore from running.  Instead we initialize them to blocked
485          * state, effectively considering them to be stopped until we
486          * see the first run ioctl for them.
487          */
488         vcpu->arch.state = KVMPPC_VCPU_BLOCKED;
489
490         init_waitqueue_head(&vcpu->arch.cpu_run);
491
492         mutex_lock(&kvm->lock);
493         vcore = kvm->arch.vcores[core];
494         if (!vcore) {
495                 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
496                 if (vcore) {
497                         INIT_LIST_HEAD(&vcore->runnable_threads);
498                         spin_lock_init(&vcore->lock);
499                 }
500                 kvm->arch.vcores[core] = vcore;
501         }
502         mutex_unlock(&kvm->lock);
503
504         if (!vcore)
505                 goto free_vcpu;
506
507         spin_lock(&vcore->lock);
508         ++vcore->num_threads;
509         ++vcore->n_blocked;
510         spin_unlock(&vcore->lock);
511         vcpu->arch.vcore = vcore;
512
513         return vcpu;
514
515 free_vcpu:
516         kfree(vcpu);
517 out:
518         return ERR_PTR(err);
519 }
520
521 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
522 {
523         kvm_vcpu_uninit(vcpu);
524         kfree(vcpu);
525 }
526
527 static void kvmppc_vcpu_blocked(struct kvm_vcpu *vcpu)
528 {
529         struct kvmppc_vcore *vc = vcpu->arch.vcore;
530
531         spin_lock(&vc->lock);
532         vcpu->arch.state = KVMPPC_VCPU_BLOCKED;
533         ++vc->n_blocked;
534         if (vc->n_runnable > 0 &&
535             vc->n_runnable + vc->n_blocked == vc->num_threads) {
536                 vcpu = list_first_entry(&vc->runnable_threads, struct kvm_vcpu,
537                                         arch.run_list);
538                 wake_up(&vcpu->arch.cpu_run);
539         }
540         spin_unlock(&vc->lock);
541 }
542
543 static void kvmppc_vcpu_unblocked(struct kvm_vcpu *vcpu)
544 {
545         struct kvmppc_vcore *vc = vcpu->arch.vcore;
546
547         spin_lock(&vc->lock);
548         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
549         --vc->n_blocked;
550         spin_unlock(&vc->lock);
551 }
552
553 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
554 extern void xics_wake_cpu(int cpu);
555
556 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
557                                    struct kvm_vcpu *vcpu)
558 {
559         struct kvm_vcpu *v;
560
561         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
562                 return;
563         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
564         --vc->n_runnable;
565         /* decrement the physical thread id of each following vcpu */
566         v = vcpu;
567         list_for_each_entry_continue(v, &vc->runnable_threads, arch.run_list)
568                 --v->arch.ptid;
569         list_del(&vcpu->arch.run_list);
570 }
571
572 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
573 {
574         int cpu;
575         struct paca_struct *tpaca;
576         struct kvmppc_vcore *vc = vcpu->arch.vcore;
577
578         cpu = vc->pcpu + vcpu->arch.ptid;
579         tpaca = &paca[cpu];
580         tpaca->kvm_hstate.kvm_vcpu = vcpu;
581         tpaca->kvm_hstate.kvm_vcore = vc;
582         smp_wmb();
583 #ifdef CONFIG_PPC_ICP_NATIVE
584         if (vcpu->arch.ptid) {
585                 tpaca->cpu_start = 0x80;
586                 tpaca->kvm_hstate.in_guest = KVM_GUEST_MODE_GUEST;
587                 wmb();
588                 xics_wake_cpu(cpu);
589                 ++vc->n_woken;
590         }
591 #endif
592 }
593
594 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
595 {
596         int i;
597
598         HMT_low();
599         i = 0;
600         while (vc->nap_count < vc->n_woken) {
601                 if (++i >= 1000000) {
602                         pr_err("kvmppc_wait_for_nap timeout %d %d\n",
603                                vc->nap_count, vc->n_woken);
604                         break;
605                 }
606                 cpu_relax();
607         }
608         HMT_medium();
609 }
610
611 /*
612  * Check that we are on thread 0 and that any other threads in
613  * this core are off-line.
614  */
615 static int on_primary_thread(void)
616 {
617         int cpu = smp_processor_id();
618         int thr = cpu_thread_in_core(cpu);
619
620         if (thr)
621                 return 0;
622         while (++thr < threads_per_core)
623                 if (cpu_online(cpu + thr))
624                         return 0;
625         return 1;
626 }
627
628 /*
629  * Run a set of guest threads on a physical core.
630  * Called with vc->lock held.
631  */
632 static int kvmppc_run_core(struct kvmppc_vcore *vc)
633 {
634         struct kvm_vcpu *vcpu, *vnext;
635         long ret;
636         u64 now;
637
638         /* don't start if any threads have a signal pending */
639         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
640                 if (signal_pending(vcpu->arch.run_task))
641                         return 0;
642
643         /*
644          * Make sure we are running on thread 0, and that
645          * secondary threads are offline.
646          * XXX we should also block attempts to bring any
647          * secondary threads online.
648          */
649         if (threads_per_core > 1 && !on_primary_thread()) {
650                 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
651                         vcpu->arch.ret = -EBUSY;
652                 goto out;
653         }
654
655         vc->n_woken = 0;
656         vc->nap_count = 0;
657         vc->entry_exit_count = 0;
658         vc->vcore_running = 1;
659         vc->in_guest = 0;
660         vc->pcpu = smp_processor_id();
661         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
662                 kvmppc_start_thread(vcpu);
663         vcpu = list_first_entry(&vc->runnable_threads, struct kvm_vcpu,
664                                 arch.run_list);
665
666         spin_unlock(&vc->lock);
667
668         preempt_disable();
669         kvm_guest_enter();
670         __kvmppc_vcore_entry(NULL, vcpu);
671
672         /* wait for secondary threads to finish writing their state to memory */
673         spin_lock(&vc->lock);
674         if (vc->nap_count < vc->n_woken)
675                 kvmppc_wait_for_nap(vc);
676         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
677         vc->vcore_running = 2;
678         spin_unlock(&vc->lock);
679
680         /* make sure updates to secondary vcpu structs are visible now */
681         smp_mb();
682         kvm_guest_exit();
683
684         preempt_enable();
685         kvm_resched(vcpu);
686
687         now = get_tb();
688         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
689                 /* cancel pending dec exception if dec is positive */
690                 if (now < vcpu->arch.dec_expires &&
691                     kvmppc_core_pending_dec(vcpu))
692                         kvmppc_core_dequeue_dec(vcpu);
693                 if (!vcpu->arch.trap) {
694                         if (signal_pending(vcpu->arch.run_task)) {
695                                 vcpu->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
696                                 vcpu->arch.ret = -EINTR;
697                         }
698                         continue;               /* didn't get to run */
699                 }
700                 ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
701                                          vcpu->arch.run_task);
702                 vcpu->arch.ret = ret;
703                 vcpu->arch.trap = 0;
704         }
705
706         spin_lock(&vc->lock);
707  out:
708         vc->vcore_running = 0;
709         list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
710                                  arch.run_list) {
711                 if (vcpu->arch.ret != RESUME_GUEST) {
712                         kvmppc_remove_runnable(vc, vcpu);
713                         wake_up(&vcpu->arch.cpu_run);
714                 }
715         }
716
717         return 1;
718 }
719
720 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
721 {
722         int ptid;
723         int wait_state;
724         struct kvmppc_vcore *vc;
725         DEFINE_WAIT(wait);
726
727         /* No need to go into the guest when all we do is going out */
728         if (signal_pending(current)) {
729                 kvm_run->exit_reason = KVM_EXIT_INTR;
730                 return -EINTR;
731         }
732
733         /* On PPC970, check that we have an RMA region */
734         if (!vcpu->kvm->arch.rma && cpu_has_feature(CPU_FTR_ARCH_201))
735                 return -EPERM;
736
737         kvm_run->exit_reason = 0;
738         vcpu->arch.ret = RESUME_GUEST;
739         vcpu->arch.trap = 0;
740
741         flush_fp_to_thread(current);
742         flush_altivec_to_thread(current);
743         flush_vsx_to_thread(current);
744
745         /*
746          * Synchronize with other threads in this virtual core
747          */
748         vc = vcpu->arch.vcore;
749         spin_lock(&vc->lock);
750         /* This happens the first time this is called for a vcpu */
751         if (vcpu->arch.state == KVMPPC_VCPU_BLOCKED)
752                 --vc->n_blocked;
753         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
754         ptid = vc->n_runnable;
755         vcpu->arch.run_task = current;
756         vcpu->arch.kvm_run = kvm_run;
757         vcpu->arch.ptid = ptid;
758         list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
759         ++vc->n_runnable;
760
761         wait_state = TASK_INTERRUPTIBLE;
762         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
763                 if (signal_pending(current)) {
764                         if (!vc->vcore_running) {
765                                 kvm_run->exit_reason = KVM_EXIT_INTR;
766                                 vcpu->arch.ret = -EINTR;
767                                 break;
768                         }
769                         /* have to wait for vcore to stop executing guest */
770                         wait_state = TASK_UNINTERRUPTIBLE;
771                         smp_send_reschedule(vc->pcpu);
772                 }
773
774                 if (!vc->vcore_running &&
775                     vc->n_runnable + vc->n_blocked == vc->num_threads) {
776                         /* we can run now */
777                         if (kvmppc_run_core(vc))
778                                 continue;
779                 }
780
781                 if (vc->vcore_running == 1 && VCORE_EXIT_COUNT(vc) == 0)
782                         kvmppc_start_thread(vcpu);
783
784                 /* wait for other threads to come in, or wait for vcore */
785                 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
786                 spin_unlock(&vc->lock);
787                 schedule();
788                 finish_wait(&vcpu->arch.cpu_run, &wait);
789                 spin_lock(&vc->lock);
790         }
791
792         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
793                 kvmppc_remove_runnable(vc, vcpu);
794         spin_unlock(&vc->lock);
795
796         return vcpu->arch.ret;
797 }
798
799 int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
800 {
801         int r;
802
803         do {
804                 r = kvmppc_run_vcpu(run, vcpu);
805
806                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
807                     !(vcpu->arch.shregs.msr & MSR_PR)) {
808                         r = kvmppc_pseries_do_hcall(vcpu);
809                         kvmppc_core_deliver_interrupts(vcpu);
810                 }
811         } while (r == RESUME_GUEST);
812         return r;
813 }
814
815 static long kvmppc_stt_npages(unsigned long window_size)
816 {
817         return ALIGN((window_size >> SPAPR_TCE_SHIFT)
818                      * sizeof(u64), PAGE_SIZE) / PAGE_SIZE;
819 }
820
821 static void release_spapr_tce_table(struct kvmppc_spapr_tce_table *stt)
822 {
823         struct kvm *kvm = stt->kvm;
824         int i;
825
826         mutex_lock(&kvm->lock);
827         list_del(&stt->list);
828         for (i = 0; i < kvmppc_stt_npages(stt->window_size); i++)
829                 __free_page(stt->pages[i]);
830         kfree(stt);
831         mutex_unlock(&kvm->lock);
832
833         kvm_put_kvm(kvm);
834 }
835
836 static int kvm_spapr_tce_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
837 {
838         struct kvmppc_spapr_tce_table *stt = vma->vm_file->private_data;
839         struct page *page;
840
841         if (vmf->pgoff >= kvmppc_stt_npages(stt->window_size))
842                 return VM_FAULT_SIGBUS;
843
844         page = stt->pages[vmf->pgoff];
845         get_page(page);
846         vmf->page = page;
847         return 0;
848 }
849
850 static const struct vm_operations_struct kvm_spapr_tce_vm_ops = {
851         .fault = kvm_spapr_tce_fault,
852 };
853
854 static int kvm_spapr_tce_mmap(struct file *file, struct vm_area_struct *vma)
855 {
856         vma->vm_ops = &kvm_spapr_tce_vm_ops;
857         return 0;
858 }
859
860 static int kvm_spapr_tce_release(struct inode *inode, struct file *filp)
861 {
862         struct kvmppc_spapr_tce_table *stt = filp->private_data;
863
864         release_spapr_tce_table(stt);
865         return 0;
866 }
867
868 static struct file_operations kvm_spapr_tce_fops = {
869         .mmap           = kvm_spapr_tce_mmap,
870         .release        = kvm_spapr_tce_release,
871 };
872
873 long kvm_vm_ioctl_create_spapr_tce(struct kvm *kvm,
874                                    struct kvm_create_spapr_tce *args)
875 {
876         struct kvmppc_spapr_tce_table *stt = NULL;
877         long npages;
878         int ret = -ENOMEM;
879         int i;
880
881         /* Check this LIOBN hasn't been previously allocated */
882         list_for_each_entry(stt, &kvm->arch.spapr_tce_tables, list) {
883                 if (stt->liobn == args->liobn)
884                         return -EBUSY;
885         }
886
887         npages = kvmppc_stt_npages(args->window_size);
888
889         stt = kzalloc(sizeof(*stt) + npages* sizeof(struct page *),
890                       GFP_KERNEL);
891         if (!stt)
892                 goto fail;
893
894         stt->liobn = args->liobn;
895         stt->window_size = args->window_size;
896         stt->kvm = kvm;
897
898         for (i = 0; i < npages; i++) {
899                 stt->pages[i] = alloc_page(GFP_KERNEL | __GFP_ZERO);
900                 if (!stt->pages[i])
901                         goto fail;
902         }
903
904         kvm_get_kvm(kvm);
905
906         mutex_lock(&kvm->lock);
907         list_add(&stt->list, &kvm->arch.spapr_tce_tables);
908
909         mutex_unlock(&kvm->lock);
910
911         return anon_inode_getfd("kvm-spapr-tce", &kvm_spapr_tce_fops,
912                                 stt, O_RDWR);
913
914 fail:
915         if (stt) {
916                 for (i = 0; i < npages; i++)
917                         if (stt->pages[i])
918                                 __free_page(stt->pages[i]);
919
920                 kfree(stt);
921         }
922         return ret;
923 }
924
925 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
926    Assumes POWER7 or PPC970. */
927 static inline int lpcr_rmls(unsigned long rma_size)
928 {
929         switch (rma_size) {
930         case 32ul << 20:        /* 32 MB */
931                 if (cpu_has_feature(CPU_FTR_ARCH_206))
932                         return 8;       /* only supported on POWER7 */
933                 return -1;
934         case 64ul << 20:        /* 64 MB */
935                 return 3;
936         case 128ul << 20:       /* 128 MB */
937                 return 7;
938         case 256ul << 20:       /* 256 MB */
939                 return 4;
940         case 1ul << 30:         /* 1 GB */
941                 return 2;
942         case 16ul << 30:        /* 16 GB */
943                 return 1;
944         case 256ul << 30:       /* 256 GB */
945                 return 0;
946         default:
947                 return -1;
948         }
949 }
950
951 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
952 {
953         struct kvmppc_rma_info *ri = vma->vm_file->private_data;
954         struct page *page;
955
956         if (vmf->pgoff >= ri->npages)
957                 return VM_FAULT_SIGBUS;
958
959         page = pfn_to_page(ri->base_pfn + vmf->pgoff);
960         get_page(page);
961         vmf->page = page;
962         return 0;
963 }
964
965 static const struct vm_operations_struct kvm_rma_vm_ops = {
966         .fault = kvm_rma_fault,
967 };
968
969 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
970 {
971         vma->vm_flags |= VM_RESERVED;
972         vma->vm_ops = &kvm_rma_vm_ops;
973         return 0;
974 }
975
976 static int kvm_rma_release(struct inode *inode, struct file *filp)
977 {
978         struct kvmppc_rma_info *ri = filp->private_data;
979
980         kvm_release_rma(ri);
981         return 0;
982 }
983
984 static struct file_operations kvm_rma_fops = {
985         .mmap           = kvm_rma_mmap,
986         .release        = kvm_rma_release,
987 };
988
989 long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
990 {
991         struct kvmppc_rma_info *ri;
992         long fd;
993
994         ri = kvm_alloc_rma();
995         if (!ri)
996                 return -ENOMEM;
997
998         fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
999         if (fd < 0)
1000                 kvm_release_rma(ri);
1001
1002         ret->rma_size = ri->npages << PAGE_SHIFT;
1003         return fd;
1004 }
1005
1006 static struct page *hva_to_page(unsigned long addr)
1007 {
1008         struct page *page[1];
1009         int npages;
1010
1011         might_sleep();
1012
1013         npages = get_user_pages_fast(addr, 1, 1, page);
1014
1015         if (unlikely(npages != 1))
1016                 return 0;
1017
1018         return page[0];
1019 }
1020
1021 int kvmppc_core_prepare_memory_region(struct kvm *kvm,
1022                                 struct kvm_userspace_memory_region *mem)
1023 {
1024         unsigned long psize, porder;
1025         unsigned long i, npages, totalpages;
1026         unsigned long pg_ix;
1027         struct kvmppc_pginfo *pginfo;
1028         unsigned long hva;
1029         struct kvmppc_rma_info *ri = NULL;
1030         struct page *page;
1031
1032         /* For now, only allow 16MB pages */
1033         porder = LARGE_PAGE_ORDER;
1034         psize = 1ul << porder;
1035         if ((mem->memory_size & (psize - 1)) ||
1036             (mem->guest_phys_addr & (psize - 1))) {
1037                 pr_err("bad memory_size=%llx @ %llx\n",
1038                        mem->memory_size, mem->guest_phys_addr);
1039                 return -EINVAL;
1040         }
1041
1042         npages = mem->memory_size >> porder;
1043         totalpages = (mem->guest_phys_addr + mem->memory_size) >> porder;
1044
1045         /* More memory than we have space to track? */
1046         if (totalpages > (1ul << (MAX_MEM_ORDER - LARGE_PAGE_ORDER)))
1047                 return -EINVAL;
1048
1049         /* Do we already have an RMA registered? */
1050         if (mem->guest_phys_addr == 0 && kvm->arch.rma)
1051                 return -EINVAL;
1052
1053         if (totalpages > kvm->arch.ram_npages)
1054                 kvm->arch.ram_npages = totalpages;
1055
1056         /* Is this one of our preallocated RMAs? */
1057         if (mem->guest_phys_addr == 0) {
1058                 struct vm_area_struct *vma;
1059
1060                 down_read(&current->mm->mmap_sem);
1061                 vma = find_vma(current->mm, mem->userspace_addr);
1062                 if (vma && vma->vm_file &&
1063                     vma->vm_file->f_op == &kvm_rma_fops &&
1064                     mem->userspace_addr == vma->vm_start)
1065                         ri = vma->vm_file->private_data;
1066                 up_read(&current->mm->mmap_sem);
1067                 if (!ri && cpu_has_feature(CPU_FTR_ARCH_201)) {
1068                         pr_err("CPU requires an RMO\n");
1069                         return -EINVAL;
1070                 }
1071         }
1072
1073         if (ri) {
1074                 unsigned long rma_size;
1075                 unsigned long lpcr;
1076                 long rmls;
1077
1078                 rma_size = ri->npages << PAGE_SHIFT;
1079                 if (rma_size > mem->memory_size)
1080                         rma_size = mem->memory_size;
1081                 rmls = lpcr_rmls(rma_size);
1082                 if (rmls < 0) {
1083                         pr_err("Can't use RMA of 0x%lx bytes\n", rma_size);
1084                         return -EINVAL;
1085                 }
1086                 atomic_inc(&ri->use_count);
1087                 kvm->arch.rma = ri;
1088                 kvm->arch.n_rma_pages = rma_size >> porder;
1089
1090                 /* Update LPCR and RMOR */
1091                 lpcr = kvm->arch.lpcr;
1092                 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1093                         /* PPC970; insert RMLS value (split field) in HID4 */
1094                         lpcr &= ~((1ul << HID4_RMLS0_SH) |
1095                                   (3ul << HID4_RMLS2_SH));
1096                         lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
1097                                 ((rmls & 3) << HID4_RMLS2_SH);
1098                         /* RMOR is also in HID4 */
1099                         lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
1100                                 << HID4_RMOR_SH;
1101                 } else {
1102                         /* POWER7 */
1103                         lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
1104                         lpcr |= rmls << LPCR_RMLS_SH;
1105                         kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
1106                 }
1107                 kvm->arch.lpcr = lpcr;
1108                 pr_info("Using RMO at %lx size %lx (LPCR = %lx)\n",
1109                         ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
1110         }
1111
1112         pg_ix = mem->guest_phys_addr >> porder;
1113         pginfo = kvm->arch.ram_pginfo + pg_ix;
1114         for (i = 0; i < npages; ++i, ++pg_ix) {
1115                 if (ri && pg_ix < kvm->arch.n_rma_pages) {
1116                         pginfo[i].pfn = ri->base_pfn +
1117                                 (pg_ix << (porder - PAGE_SHIFT));
1118                         continue;
1119                 }
1120                 hva = mem->userspace_addr + (i << porder);
1121                 page = hva_to_page(hva);
1122                 if (!page) {
1123                         pr_err("oops, no pfn for hva %lx\n", hva);
1124                         goto err;
1125                 }
1126                 /* Check it's a 16MB page */
1127                 if (!PageHead(page) ||
1128                     compound_order(page) != (LARGE_PAGE_ORDER - PAGE_SHIFT)) {
1129                         pr_err("page at %lx isn't 16MB (o=%d)\n",
1130                                hva, compound_order(page));
1131                         goto err;
1132                 }
1133                 pginfo[i].pfn = page_to_pfn(page);
1134         }
1135
1136         return 0;
1137
1138  err:
1139         return -EINVAL;
1140 }
1141
1142 void kvmppc_core_commit_memory_region(struct kvm *kvm,
1143                                 struct kvm_userspace_memory_region *mem)
1144 {
1145         if (mem->guest_phys_addr == 0 && mem->memory_size != 0 &&
1146             !kvm->arch.rma)
1147                 kvmppc_map_vrma(kvm, mem);
1148 }
1149
1150 int kvmppc_core_init_vm(struct kvm *kvm)
1151 {
1152         long r;
1153         unsigned long npages = 1ul << (MAX_MEM_ORDER - LARGE_PAGE_ORDER);
1154         long err = -ENOMEM;
1155         unsigned long lpcr;
1156
1157         /* Allocate hashed page table */
1158         r = kvmppc_alloc_hpt(kvm);
1159         if (r)
1160                 return r;
1161
1162         INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1163
1164         kvm->arch.ram_pginfo = kzalloc(npages * sizeof(struct kvmppc_pginfo),
1165                                        GFP_KERNEL);
1166         if (!kvm->arch.ram_pginfo) {
1167                 pr_err("kvmppc_core_init_vm: couldn't alloc %lu bytes\n",
1168                        npages * sizeof(struct kvmppc_pginfo));
1169                 goto out_free;
1170         }
1171
1172         kvm->arch.ram_npages = 0;
1173         kvm->arch.ram_psize = 1ul << LARGE_PAGE_ORDER;
1174         kvm->arch.ram_porder = LARGE_PAGE_ORDER;
1175         kvm->arch.rma = NULL;
1176         kvm->arch.n_rma_pages = 0;
1177
1178         kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1179
1180         if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1181                 /* PPC970; HID4 is effectively the LPCR */
1182                 unsigned long lpid = kvm->arch.lpid;
1183                 kvm->arch.host_lpid = 0;
1184                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
1185                 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
1186                 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
1187                         ((lpid & 0xf) << HID4_LPID5_SH);
1188         } else {
1189                 /* POWER7; init LPCR for virtual RMA mode */
1190                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
1191                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
1192                 lpcr &= LPCR_PECE | LPCR_LPES;
1193                 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1194                         LPCR_VPM0 | LPCR_VRMA_L;
1195         }
1196         kvm->arch.lpcr = lpcr;
1197
1198         return 0;
1199
1200  out_free:
1201         kvmppc_free_hpt(kvm);
1202         return err;
1203 }
1204
1205 void kvmppc_core_destroy_vm(struct kvm *kvm)
1206 {
1207         struct kvmppc_pginfo *pginfo;
1208         unsigned long i;
1209
1210         if (kvm->arch.ram_pginfo) {
1211                 pginfo = kvm->arch.ram_pginfo;
1212                 kvm->arch.ram_pginfo = NULL;
1213                 for (i = kvm->arch.n_rma_pages; i < kvm->arch.ram_npages; ++i)
1214                         if (pginfo[i].pfn)
1215                                 put_page(pfn_to_page(pginfo[i].pfn));
1216                 kfree(pginfo);
1217         }
1218         if (kvm->arch.rma) {
1219                 kvm_release_rma(kvm->arch.rma);
1220                 kvm->arch.rma = NULL;
1221         }
1222
1223         kvmppc_free_hpt(kvm);
1224         WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1225 }
1226
1227 /* These are stubs for now */
1228 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
1229 {
1230 }
1231
1232 /* We don't need to emulate any privileged instructions or dcbz */
1233 int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
1234                            unsigned int inst, int *advance)
1235 {
1236         return EMULATE_FAIL;
1237 }
1238
1239 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs)
1240 {
1241         return EMULATE_FAIL;
1242 }
1243
1244 int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt)
1245 {
1246         return EMULATE_FAIL;
1247 }
1248
1249 static int kvmppc_book3s_hv_init(void)
1250 {
1251         int r;
1252
1253         r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1254
1255         if (r)
1256                 return r;
1257
1258         r = kvmppc_mmu_hv_init();
1259
1260         return r;
1261 }
1262
1263 static void kvmppc_book3s_hv_exit(void)
1264 {
1265         kvm_exit();
1266 }
1267
1268 module_init(kvmppc_book3s_hv_init);
1269 module_exit(kvmppc_book3s_hv_exit);