ktest: Check parent options for iterated tests
[pandora-kernel.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33
34 #include <asm/reg.h>
35 #include <asm/cputable.h>
36 #include <asm/cacheflush.h>
37 #include <asm/tlbflush.h>
38 #include <asm/uaccess.h>
39 #include <asm/io.h>
40 #include <asm/kvm_ppc.h>
41 #include <asm/kvm_book3s.h>
42 #include <asm/mmu_context.h>
43 #include <asm/lppaca.h>
44 #include <asm/processor.h>
45 #include <asm/cputhreads.h>
46 #include <asm/page.h>
47 #include <linux/gfp.h>
48 #include <linux/sched.h>
49 #include <linux/vmalloc.h>
50 #include <linux/highmem.h>
51
52 /*
53  * For now, limit memory to 64GB and require it to be large pages.
54  * This value is chosen because it makes the ram_pginfo array be
55  * 64kB in size, which is about as large as we want to be trying
56  * to allocate with kmalloc.
57  */
58 #define MAX_MEM_ORDER           36
59
60 #define LARGE_PAGE_ORDER        24      /* 16MB pages */
61
62 /* #define EXIT_DEBUG */
63 /* #define EXIT_DEBUG_SIMPLE */
64 /* #define EXIT_DEBUG_INT */
65
66 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
67
68 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
69 {
70         local_paca->kvm_hstate.kvm_vcpu = vcpu;
71         local_paca->kvm_hstate.kvm_vcore = vcpu->arch.vcore;
72 }
73
74 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
75 {
76 }
77
78 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
79 {
80         vcpu->arch.shregs.msr = msr;
81         kvmppc_end_cede(vcpu);
82 }
83
84 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
85 {
86         vcpu->arch.pvr = pvr;
87 }
88
89 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
90 {
91         int r;
92
93         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
94         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
95                vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
96         for (r = 0; r < 16; ++r)
97                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
98                        r, kvmppc_get_gpr(vcpu, r),
99                        r+16, kvmppc_get_gpr(vcpu, r+16));
100         pr_err("ctr = %.16lx  lr  = %.16lx\n",
101                vcpu->arch.ctr, vcpu->arch.lr);
102         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
103                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
104         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
105                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
106         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
107                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
108         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
109                vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
110         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
111         pr_err("fault dar = %.16lx dsisr = %.8x\n",
112                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
113         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
114         for (r = 0; r < vcpu->arch.slb_max; ++r)
115                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
116                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
117         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
118                vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
119                vcpu->arch.last_inst);
120 }
121
122 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
123 {
124         int r;
125         struct kvm_vcpu *v, *ret = NULL;
126
127         mutex_lock(&kvm->lock);
128         kvm_for_each_vcpu(r, v, kvm) {
129                 if (v->vcpu_id == id) {
130                         ret = v;
131                         break;
132                 }
133         }
134         mutex_unlock(&kvm->lock);
135         return ret;
136 }
137
138 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
139 {
140         vpa->shared_proc = 1;
141         vpa->yield_count = 1;
142 }
143
144 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
145                                        unsigned long flags,
146                                        unsigned long vcpuid, unsigned long vpa)
147 {
148         struct kvm *kvm = vcpu->kvm;
149         unsigned long pg_index, ra, len;
150         unsigned long pg_offset;
151         void *va;
152         struct kvm_vcpu *tvcpu;
153
154         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
155         if (!tvcpu)
156                 return H_PARAMETER;
157
158         flags >>= 63 - 18;
159         flags &= 7;
160         if (flags == 0 || flags == 4)
161                 return H_PARAMETER;
162         if (flags < 4) {
163                 if (vpa & 0x7f)
164                         return H_PARAMETER;
165                 /* registering new area; convert logical addr to real */
166                 pg_index = vpa >> kvm->arch.ram_porder;
167                 pg_offset = vpa & (kvm->arch.ram_psize - 1);
168                 if (pg_index >= kvm->arch.ram_npages)
169                         return H_PARAMETER;
170                 if (kvm->arch.ram_pginfo[pg_index].pfn == 0)
171                         return H_PARAMETER;
172                 ra = kvm->arch.ram_pginfo[pg_index].pfn << PAGE_SHIFT;
173                 ra |= pg_offset;
174                 va = __va(ra);
175                 if (flags <= 1)
176                         len = *(unsigned short *)(va + 4);
177                 else
178                         len = *(unsigned int *)(va + 4);
179                 if (pg_offset + len > kvm->arch.ram_psize)
180                         return H_PARAMETER;
181                 switch (flags) {
182                 case 1:         /* register VPA */
183                         if (len < 640)
184                                 return H_PARAMETER;
185                         tvcpu->arch.vpa = va;
186                         init_vpa(vcpu, va);
187                         break;
188                 case 2:         /* register DTL */
189                         if (len < 48)
190                                 return H_PARAMETER;
191                         if (!tvcpu->arch.vpa)
192                                 return H_RESOURCE;
193                         len -= len % 48;
194                         tvcpu->arch.dtl = va;
195                         tvcpu->arch.dtl_end = va + len;
196                         break;
197                 case 3:         /* register SLB shadow buffer */
198                         if (len < 8)
199                                 return H_PARAMETER;
200                         if (!tvcpu->arch.vpa)
201                                 return H_RESOURCE;
202                         tvcpu->arch.slb_shadow = va;
203                         len = (len - 16) / 16;
204                         tvcpu->arch.slb_shadow = va;
205                         break;
206                 }
207         } else {
208                 switch (flags) {
209                 case 5:         /* unregister VPA */
210                         if (tvcpu->arch.slb_shadow || tvcpu->arch.dtl)
211                                 return H_RESOURCE;
212                         tvcpu->arch.vpa = NULL;
213                         break;
214                 case 6:         /* unregister DTL */
215                         tvcpu->arch.dtl = NULL;
216                         break;
217                 case 7:         /* unregister SLB shadow buffer */
218                         tvcpu->arch.slb_shadow = NULL;
219                         break;
220                 }
221         }
222         return H_SUCCESS;
223 }
224
225 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
226 {
227         unsigned long req = kvmppc_get_gpr(vcpu, 3);
228         unsigned long target, ret = H_SUCCESS;
229         struct kvm_vcpu *tvcpu;
230
231         switch (req) {
232         case H_CEDE:
233                 break;
234         case H_PROD:
235                 target = kvmppc_get_gpr(vcpu, 4);
236                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
237                 if (!tvcpu) {
238                         ret = H_PARAMETER;
239                         break;
240                 }
241                 tvcpu->arch.prodded = 1;
242                 smp_mb();
243                 if (vcpu->arch.ceded) {
244                         if (waitqueue_active(&vcpu->wq)) {
245                                 wake_up_interruptible(&vcpu->wq);
246                                 vcpu->stat.halt_wakeup++;
247                         }
248                 }
249                 break;
250         case H_CONFER:
251                 break;
252         case H_REGISTER_VPA:
253                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
254                                         kvmppc_get_gpr(vcpu, 5),
255                                         kvmppc_get_gpr(vcpu, 6));
256                 break;
257         default:
258                 return RESUME_HOST;
259         }
260         kvmppc_set_gpr(vcpu, 3, ret);
261         vcpu->arch.hcall_needed = 0;
262         return RESUME_GUEST;
263 }
264
265 static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
266                               struct task_struct *tsk)
267 {
268         int r = RESUME_HOST;
269
270         vcpu->stat.sum_exits++;
271
272         run->exit_reason = KVM_EXIT_UNKNOWN;
273         run->ready_for_interrupt_injection = 1;
274         switch (vcpu->arch.trap) {
275         /* We're good on these - the host merely wanted to get our attention */
276         case BOOK3S_INTERRUPT_HV_DECREMENTER:
277                 vcpu->stat.dec_exits++;
278                 r = RESUME_GUEST;
279                 break;
280         case BOOK3S_INTERRUPT_EXTERNAL:
281                 vcpu->stat.ext_intr_exits++;
282                 r = RESUME_GUEST;
283                 break;
284         case BOOK3S_INTERRUPT_PERFMON:
285                 r = RESUME_GUEST;
286                 break;
287         case BOOK3S_INTERRUPT_PROGRAM:
288         {
289                 ulong flags;
290                 /*
291                  * Normally program interrupts are delivered directly
292                  * to the guest by the hardware, but we can get here
293                  * as a result of a hypervisor emulation interrupt
294                  * (e40) getting turned into a 700 by BML RTAS.
295                  */
296                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
297                 kvmppc_core_queue_program(vcpu, flags);
298                 r = RESUME_GUEST;
299                 break;
300         }
301         case BOOK3S_INTERRUPT_SYSCALL:
302         {
303                 /* hcall - punt to userspace */
304                 int i;
305
306                 if (vcpu->arch.shregs.msr & MSR_PR) {
307                         /* sc 1 from userspace - reflect to guest syscall */
308                         kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
309                         r = RESUME_GUEST;
310                         break;
311                 }
312                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
313                 for (i = 0; i < 9; ++i)
314                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
315                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
316                 vcpu->arch.hcall_needed = 1;
317                 r = RESUME_HOST;
318                 break;
319         }
320         /*
321          * We get these next two if the guest does a bad real-mode access,
322          * as we have enabled VRMA (virtualized real mode area) mode in the
323          * LPCR.  We just generate an appropriate DSI/ISI to the guest.
324          */
325         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
326                 vcpu->arch.shregs.dsisr = vcpu->arch.fault_dsisr;
327                 vcpu->arch.shregs.dar = vcpu->arch.fault_dar;
328                 kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_DATA_STORAGE, 0);
329                 r = RESUME_GUEST;
330                 break;
331         case BOOK3S_INTERRUPT_H_INST_STORAGE:
332                 kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_INST_STORAGE,
333                                         0x08000000);
334                 r = RESUME_GUEST;
335                 break;
336         /*
337          * This occurs if the guest executes an illegal instruction.
338          * We just generate a program interrupt to the guest, since
339          * we don't emulate any guest instructions at this stage.
340          */
341         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
342                 kvmppc_core_queue_program(vcpu, 0x80000);
343                 r = RESUME_GUEST;
344                 break;
345         default:
346                 kvmppc_dump_regs(vcpu);
347                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
348                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
349                         vcpu->arch.shregs.msr);
350                 r = RESUME_HOST;
351                 BUG();
352                 break;
353         }
354
355         return r;
356 }
357
358 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
359                                   struct kvm_sregs *sregs)
360 {
361         int i;
362
363         sregs->pvr = vcpu->arch.pvr;
364
365         memset(sregs, 0, sizeof(struct kvm_sregs));
366         for (i = 0; i < vcpu->arch.slb_max; i++) {
367                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
368                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
369         }
370
371         return 0;
372 }
373
374 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
375                                   struct kvm_sregs *sregs)
376 {
377         int i, j;
378
379         kvmppc_set_pvr(vcpu, sregs->pvr);
380
381         j = 0;
382         for (i = 0; i < vcpu->arch.slb_nr; i++) {
383                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
384                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
385                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
386                         ++j;
387                 }
388         }
389         vcpu->arch.slb_max = j;
390
391         return 0;
392 }
393
394 int kvmppc_core_check_processor_compat(void)
395 {
396         if (cpu_has_feature(CPU_FTR_HVMODE))
397                 return 0;
398         return -EIO;
399 }
400
401 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
402 {
403         struct kvm_vcpu *vcpu;
404         int err = -EINVAL;
405         int core;
406         struct kvmppc_vcore *vcore;
407
408         core = id / threads_per_core;
409         if (core >= KVM_MAX_VCORES)
410                 goto out;
411
412         err = -ENOMEM;
413         vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
414         if (!vcpu)
415                 goto out;
416
417         err = kvm_vcpu_init(vcpu, kvm, id);
418         if (err)
419                 goto free_vcpu;
420
421         vcpu->arch.shared = &vcpu->arch.shregs;
422         vcpu->arch.last_cpu = -1;
423         vcpu->arch.mmcr[0] = MMCR0_FC;
424         vcpu->arch.ctrl = CTRL_RUNLATCH;
425         /* default to host PVR, since we can't spoof it */
426         vcpu->arch.pvr = mfspr(SPRN_PVR);
427         kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
428
429         kvmppc_mmu_book3s_hv_init(vcpu);
430
431         /*
432          * We consider the vcpu stopped until we see the first run ioctl for it.
433          */
434         vcpu->arch.state = KVMPPC_VCPU_STOPPED;
435
436         init_waitqueue_head(&vcpu->arch.cpu_run);
437
438         mutex_lock(&kvm->lock);
439         vcore = kvm->arch.vcores[core];
440         if (!vcore) {
441                 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
442                 if (vcore) {
443                         INIT_LIST_HEAD(&vcore->runnable_threads);
444                         spin_lock_init(&vcore->lock);
445                         init_waitqueue_head(&vcore->wq);
446                 }
447                 kvm->arch.vcores[core] = vcore;
448         }
449         mutex_unlock(&kvm->lock);
450
451         if (!vcore)
452                 goto free_vcpu;
453
454         spin_lock(&vcore->lock);
455         ++vcore->num_threads;
456         spin_unlock(&vcore->lock);
457         vcpu->arch.vcore = vcore;
458
459         vcpu->arch.cpu_type = KVM_CPU_3S_64;
460         kvmppc_sanity_check(vcpu);
461
462         return vcpu;
463
464 free_vcpu:
465         kfree(vcpu);
466 out:
467         return ERR_PTR(err);
468 }
469
470 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
471 {
472         kvm_vcpu_uninit(vcpu);
473         kfree(vcpu);
474 }
475
476 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
477 {
478         unsigned long dec_nsec, now;
479
480         now = get_tb();
481         if (now > vcpu->arch.dec_expires) {
482                 /* decrementer has already gone negative */
483                 kvmppc_core_queue_dec(vcpu);
484                 kvmppc_core_deliver_interrupts(vcpu);
485                 return;
486         }
487         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
488                    / tb_ticks_per_sec;
489         hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
490                       HRTIMER_MODE_REL);
491         vcpu->arch.timer_running = 1;
492 }
493
494 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
495 {
496         vcpu->arch.ceded = 0;
497         if (vcpu->arch.timer_running) {
498                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
499                 vcpu->arch.timer_running = 0;
500         }
501 }
502
503 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
504 extern void xics_wake_cpu(int cpu);
505
506 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
507                                    struct kvm_vcpu *vcpu)
508 {
509         struct kvm_vcpu *v;
510
511         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
512                 return;
513         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
514         --vc->n_runnable;
515         ++vc->n_busy;
516         /* decrement the physical thread id of each following vcpu */
517         v = vcpu;
518         list_for_each_entry_continue(v, &vc->runnable_threads, arch.run_list)
519                 --v->arch.ptid;
520         list_del(&vcpu->arch.run_list);
521 }
522
523 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
524 {
525         int cpu;
526         struct paca_struct *tpaca;
527         struct kvmppc_vcore *vc = vcpu->arch.vcore;
528
529         if (vcpu->arch.timer_running) {
530                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
531                 vcpu->arch.timer_running = 0;
532         }
533         cpu = vc->pcpu + vcpu->arch.ptid;
534         tpaca = &paca[cpu];
535         tpaca->kvm_hstate.kvm_vcpu = vcpu;
536         tpaca->kvm_hstate.kvm_vcore = vc;
537         tpaca->kvm_hstate.napping = 0;
538         vcpu->cpu = vc->pcpu;
539         smp_wmb();
540 #ifdef CONFIG_PPC_ICP_NATIVE
541         if (vcpu->arch.ptid) {
542                 tpaca->cpu_start = 0x80;
543                 wmb();
544                 xics_wake_cpu(cpu);
545                 ++vc->n_woken;
546         }
547 #endif
548 }
549
550 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
551 {
552         int i;
553
554         HMT_low();
555         i = 0;
556         while (vc->nap_count < vc->n_woken) {
557                 if (++i >= 1000000) {
558                         pr_err("kvmppc_wait_for_nap timeout %d %d\n",
559                                vc->nap_count, vc->n_woken);
560                         break;
561                 }
562                 cpu_relax();
563         }
564         HMT_medium();
565 }
566
567 /*
568  * Check that we are on thread 0 and that any other threads in
569  * this core are off-line.
570  */
571 static int on_primary_thread(void)
572 {
573         int cpu = smp_processor_id();
574         int thr = cpu_thread_in_core(cpu);
575
576         if (thr)
577                 return 0;
578         while (++thr < threads_per_core)
579                 if (cpu_online(cpu + thr))
580                         return 0;
581         return 1;
582 }
583
584 /*
585  * Run a set of guest threads on a physical core.
586  * Called with vc->lock held.
587  */
588 static int kvmppc_run_core(struct kvmppc_vcore *vc)
589 {
590         struct kvm_vcpu *vcpu, *vcpu0, *vnext;
591         long ret;
592         u64 now;
593         int ptid;
594
595         /* don't start if any threads have a signal pending */
596         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
597                 if (signal_pending(vcpu->arch.run_task))
598                         return 0;
599
600         /*
601          * Make sure we are running on thread 0, and that
602          * secondary threads are offline.
603          * XXX we should also block attempts to bring any
604          * secondary threads online.
605          */
606         if (threads_per_core > 1 && !on_primary_thread()) {
607                 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
608                         vcpu->arch.ret = -EBUSY;
609                 goto out;
610         }
611
612         /*
613          * Assign physical thread IDs, first to non-ceded vcpus
614          * and then to ceded ones.
615          */
616         ptid = 0;
617         vcpu0 = NULL;
618         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
619                 if (!vcpu->arch.ceded) {
620                         if (!ptid)
621                                 vcpu0 = vcpu;
622                         vcpu->arch.ptid = ptid++;
623                 }
624         }
625         if (!vcpu0)
626                 return 0;               /* nothing to run */
627         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
628                 if (vcpu->arch.ceded)
629                         vcpu->arch.ptid = ptid++;
630
631         vc->n_woken = 0;
632         vc->nap_count = 0;
633         vc->entry_exit_count = 0;
634         vc->vcore_state = VCORE_RUNNING;
635         vc->in_guest = 0;
636         vc->pcpu = smp_processor_id();
637         vc->napping_threads = 0;
638         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
639                 kvmppc_start_thread(vcpu);
640
641         preempt_disable();
642         spin_unlock(&vc->lock);
643
644         kvm_guest_enter();
645         __kvmppc_vcore_entry(NULL, vcpu0);
646
647         spin_lock(&vc->lock);
648         /* disable sending of IPIs on virtual external irqs */
649         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
650                 vcpu->cpu = -1;
651         /* wait for secondary threads to finish writing their state to memory */
652         if (vc->nap_count < vc->n_woken)
653                 kvmppc_wait_for_nap(vc);
654         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
655         vc->vcore_state = VCORE_EXITING;
656         spin_unlock(&vc->lock);
657
658         /* make sure updates to secondary vcpu structs are visible now */
659         smp_mb();
660         kvm_guest_exit();
661
662         preempt_enable();
663         kvm_resched(vcpu);
664
665         now = get_tb();
666         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
667                 /* cancel pending dec exception if dec is positive */
668                 if (now < vcpu->arch.dec_expires &&
669                     kvmppc_core_pending_dec(vcpu))
670                         kvmppc_core_dequeue_dec(vcpu);
671
672                 ret = RESUME_GUEST;
673                 if (vcpu->arch.trap)
674                         ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
675                                                  vcpu->arch.run_task);
676
677                 vcpu->arch.ret = ret;
678                 vcpu->arch.trap = 0;
679
680                 if (vcpu->arch.ceded) {
681                         if (ret != RESUME_GUEST)
682                                 kvmppc_end_cede(vcpu);
683                         else
684                                 kvmppc_set_timer(vcpu);
685                 }
686         }
687
688         spin_lock(&vc->lock);
689  out:
690         vc->vcore_state = VCORE_INACTIVE;
691         list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
692                                  arch.run_list) {
693                 if (vcpu->arch.ret != RESUME_GUEST) {
694                         kvmppc_remove_runnable(vc, vcpu);
695                         wake_up(&vcpu->arch.cpu_run);
696                 }
697         }
698
699         return 1;
700 }
701
702 /*
703  * Wait for some other vcpu thread to execute us, and
704  * wake us up when we need to handle something in the host.
705  */
706 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
707 {
708         DEFINE_WAIT(wait);
709
710         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
711         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
712                 schedule();
713         finish_wait(&vcpu->arch.cpu_run, &wait);
714 }
715
716 /*
717  * All the vcpus in this vcore are idle, so wait for a decrementer
718  * or external interrupt to one of the vcpus.  vc->lock is held.
719  */
720 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
721 {
722         DEFINE_WAIT(wait);
723         struct kvm_vcpu *v;
724         int all_idle = 1;
725
726         prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
727         vc->vcore_state = VCORE_SLEEPING;
728         spin_unlock(&vc->lock);
729         list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
730                 if (!v->arch.ceded || v->arch.pending_exceptions) {
731                         all_idle = 0;
732                         break;
733                 }
734         }
735         if (all_idle)
736                 schedule();
737         finish_wait(&vc->wq, &wait);
738         spin_lock(&vc->lock);
739         vc->vcore_state = VCORE_INACTIVE;
740 }
741
742 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
743 {
744         int n_ceded;
745         int prev_state;
746         struct kvmppc_vcore *vc;
747         struct kvm_vcpu *v, *vn;
748
749         kvm_run->exit_reason = 0;
750         vcpu->arch.ret = RESUME_GUEST;
751         vcpu->arch.trap = 0;
752
753         /*
754          * Synchronize with other threads in this virtual core
755          */
756         vc = vcpu->arch.vcore;
757         spin_lock(&vc->lock);
758         vcpu->arch.ceded = 0;
759         vcpu->arch.run_task = current;
760         vcpu->arch.kvm_run = kvm_run;
761         prev_state = vcpu->arch.state;
762         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
763         list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
764         ++vc->n_runnable;
765
766         /*
767          * This happens the first time this is called for a vcpu.
768          * If the vcore is already running, we may be able to start
769          * this thread straight away and have it join in.
770          */
771         if (prev_state == KVMPPC_VCPU_STOPPED) {
772                 if (vc->vcore_state == VCORE_RUNNING &&
773                     VCORE_EXIT_COUNT(vc) == 0) {
774                         vcpu->arch.ptid = vc->n_runnable - 1;
775                         kvmppc_start_thread(vcpu);
776                 }
777
778         } else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST)
779                 --vc->n_busy;
780
781         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
782                !signal_pending(current)) {
783                 if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) {
784                         spin_unlock(&vc->lock);
785                         kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
786                         spin_lock(&vc->lock);
787                         continue;
788                 }
789                 n_ceded = 0;
790                 list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
791                         n_ceded += v->arch.ceded;
792                 if (n_ceded == vc->n_runnable)
793                         kvmppc_vcore_blocked(vc);
794                 else
795                         kvmppc_run_core(vc);
796
797                 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
798                                          arch.run_list) {
799                         kvmppc_core_deliver_interrupts(v);
800                         if (signal_pending(v->arch.run_task)) {
801                                 kvmppc_remove_runnable(vc, v);
802                                 v->stat.signal_exits++;
803                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
804                                 v->arch.ret = -EINTR;
805                                 wake_up(&v->arch.cpu_run);
806                         }
807                 }
808         }
809
810         if (signal_pending(current)) {
811                 if (vc->vcore_state == VCORE_RUNNING ||
812                     vc->vcore_state == VCORE_EXITING) {
813                         spin_unlock(&vc->lock);
814                         kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
815                         spin_lock(&vc->lock);
816                 }
817                 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
818                         kvmppc_remove_runnable(vc, vcpu);
819                         vcpu->stat.signal_exits++;
820                         kvm_run->exit_reason = KVM_EXIT_INTR;
821                         vcpu->arch.ret = -EINTR;
822                 }
823         }
824
825         spin_unlock(&vc->lock);
826         return vcpu->arch.ret;
827 }
828
829 int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
830 {
831         int r;
832
833         if (!vcpu->arch.sane) {
834                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
835                 return -EINVAL;
836         }
837
838         /* No need to go into the guest when all we'll do is come back out */
839         if (signal_pending(current)) {
840                 run->exit_reason = KVM_EXIT_INTR;
841                 return -EINTR;
842         }
843
844         /* On PPC970, check that we have an RMA region */
845         if (!vcpu->kvm->arch.rma && cpu_has_feature(CPU_FTR_ARCH_201))
846                 return -EPERM;
847
848         flush_fp_to_thread(current);
849         flush_altivec_to_thread(current);
850         flush_vsx_to_thread(current);
851         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
852
853         do {
854                 r = kvmppc_run_vcpu(run, vcpu);
855
856                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
857                     !(vcpu->arch.shregs.msr & MSR_PR)) {
858                         r = kvmppc_pseries_do_hcall(vcpu);
859                         kvmppc_core_deliver_interrupts(vcpu);
860                 }
861         } while (r == RESUME_GUEST);
862         return r;
863 }
864
865 static long kvmppc_stt_npages(unsigned long window_size)
866 {
867         return ALIGN((window_size >> SPAPR_TCE_SHIFT)
868                      * sizeof(u64), PAGE_SIZE) / PAGE_SIZE;
869 }
870
871 static void release_spapr_tce_table(struct kvmppc_spapr_tce_table *stt)
872 {
873         struct kvm *kvm = stt->kvm;
874         int i;
875
876         mutex_lock(&kvm->lock);
877         list_del(&stt->list);
878         for (i = 0; i < kvmppc_stt_npages(stt->window_size); i++)
879                 __free_page(stt->pages[i]);
880         kfree(stt);
881         mutex_unlock(&kvm->lock);
882
883         kvm_put_kvm(kvm);
884 }
885
886 static int kvm_spapr_tce_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
887 {
888         struct kvmppc_spapr_tce_table *stt = vma->vm_file->private_data;
889         struct page *page;
890
891         if (vmf->pgoff >= kvmppc_stt_npages(stt->window_size))
892                 return VM_FAULT_SIGBUS;
893
894         page = stt->pages[vmf->pgoff];
895         get_page(page);
896         vmf->page = page;
897         return 0;
898 }
899
900 static const struct vm_operations_struct kvm_spapr_tce_vm_ops = {
901         .fault = kvm_spapr_tce_fault,
902 };
903
904 static int kvm_spapr_tce_mmap(struct file *file, struct vm_area_struct *vma)
905 {
906         vma->vm_ops = &kvm_spapr_tce_vm_ops;
907         return 0;
908 }
909
910 static int kvm_spapr_tce_release(struct inode *inode, struct file *filp)
911 {
912         struct kvmppc_spapr_tce_table *stt = filp->private_data;
913
914         release_spapr_tce_table(stt);
915         return 0;
916 }
917
918 static struct file_operations kvm_spapr_tce_fops = {
919         .mmap           = kvm_spapr_tce_mmap,
920         .release        = kvm_spapr_tce_release,
921 };
922
923 long kvm_vm_ioctl_create_spapr_tce(struct kvm *kvm,
924                                    struct kvm_create_spapr_tce *args)
925 {
926         struct kvmppc_spapr_tce_table *stt = NULL;
927         long npages;
928         int ret = -ENOMEM;
929         int i;
930
931         /* Check this LIOBN hasn't been previously allocated */
932         list_for_each_entry(stt, &kvm->arch.spapr_tce_tables, list) {
933                 if (stt->liobn == args->liobn)
934                         return -EBUSY;
935         }
936
937         npages = kvmppc_stt_npages(args->window_size);
938
939         stt = kzalloc(sizeof(*stt) + npages* sizeof(struct page *),
940                       GFP_KERNEL);
941         if (!stt)
942                 goto fail;
943
944         stt->liobn = args->liobn;
945         stt->window_size = args->window_size;
946         stt->kvm = kvm;
947
948         for (i = 0; i < npages; i++) {
949                 stt->pages[i] = alloc_page(GFP_KERNEL | __GFP_ZERO);
950                 if (!stt->pages[i])
951                         goto fail;
952         }
953
954         kvm_get_kvm(kvm);
955
956         mutex_lock(&kvm->lock);
957         list_add(&stt->list, &kvm->arch.spapr_tce_tables);
958
959         mutex_unlock(&kvm->lock);
960
961         return anon_inode_getfd("kvm-spapr-tce", &kvm_spapr_tce_fops,
962                                 stt, O_RDWR);
963
964 fail:
965         if (stt) {
966                 for (i = 0; i < npages; i++)
967                         if (stt->pages[i])
968                                 __free_page(stt->pages[i]);
969
970                 kfree(stt);
971         }
972         return ret;
973 }
974
975 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
976    Assumes POWER7 or PPC970. */
977 static inline int lpcr_rmls(unsigned long rma_size)
978 {
979         switch (rma_size) {
980         case 32ul << 20:        /* 32 MB */
981                 if (cpu_has_feature(CPU_FTR_ARCH_206))
982                         return 8;       /* only supported on POWER7 */
983                 return -1;
984         case 64ul << 20:        /* 64 MB */
985                 return 3;
986         case 128ul << 20:       /* 128 MB */
987                 return 7;
988         case 256ul << 20:       /* 256 MB */
989                 return 4;
990         case 1ul << 30:         /* 1 GB */
991                 return 2;
992         case 16ul << 30:        /* 16 GB */
993                 return 1;
994         case 256ul << 30:       /* 256 GB */
995                 return 0;
996         default:
997                 return -1;
998         }
999 }
1000
1001 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1002 {
1003         struct kvmppc_rma_info *ri = vma->vm_file->private_data;
1004         struct page *page;
1005
1006         if (vmf->pgoff >= ri->npages)
1007                 return VM_FAULT_SIGBUS;
1008
1009         page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1010         get_page(page);
1011         vmf->page = page;
1012         return 0;
1013 }
1014
1015 static const struct vm_operations_struct kvm_rma_vm_ops = {
1016         .fault = kvm_rma_fault,
1017 };
1018
1019 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1020 {
1021         vma->vm_flags |= VM_RESERVED;
1022         vma->vm_ops = &kvm_rma_vm_ops;
1023         return 0;
1024 }
1025
1026 static int kvm_rma_release(struct inode *inode, struct file *filp)
1027 {
1028         struct kvmppc_rma_info *ri = filp->private_data;
1029
1030         kvm_release_rma(ri);
1031         return 0;
1032 }
1033
1034 static struct file_operations kvm_rma_fops = {
1035         .mmap           = kvm_rma_mmap,
1036         .release        = kvm_rma_release,
1037 };
1038
1039 long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
1040 {
1041         struct kvmppc_rma_info *ri;
1042         long fd;
1043
1044         ri = kvm_alloc_rma();
1045         if (!ri)
1046                 return -ENOMEM;
1047
1048         fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
1049         if (fd < 0)
1050                 kvm_release_rma(ri);
1051
1052         ret->rma_size = ri->npages << PAGE_SHIFT;
1053         return fd;
1054 }
1055
1056 static struct page *hva_to_page(unsigned long addr)
1057 {
1058         struct page *page[1];
1059         int npages;
1060
1061         might_sleep();
1062
1063         npages = get_user_pages_fast(addr, 1, 1, page);
1064
1065         if (unlikely(npages != 1))
1066                 return 0;
1067
1068         return page[0];
1069 }
1070
1071 int kvmppc_core_prepare_memory_region(struct kvm *kvm,
1072                                 struct kvm_userspace_memory_region *mem)
1073 {
1074         unsigned long psize, porder;
1075         unsigned long i, npages, totalpages;
1076         unsigned long pg_ix;
1077         struct kvmppc_pginfo *pginfo;
1078         unsigned long hva;
1079         struct kvmppc_rma_info *ri = NULL;
1080         struct page *page;
1081
1082         /* For now, only allow 16MB pages */
1083         porder = LARGE_PAGE_ORDER;
1084         psize = 1ul << porder;
1085         if ((mem->memory_size & (psize - 1)) ||
1086             (mem->guest_phys_addr & (psize - 1))) {
1087                 pr_err("bad memory_size=%llx @ %llx\n",
1088                        mem->memory_size, mem->guest_phys_addr);
1089                 return -EINVAL;
1090         }
1091
1092         npages = mem->memory_size >> porder;
1093         totalpages = (mem->guest_phys_addr + mem->memory_size) >> porder;
1094
1095         /* More memory than we have space to track? */
1096         if (totalpages > (1ul << (MAX_MEM_ORDER - LARGE_PAGE_ORDER)))
1097                 return -EINVAL;
1098
1099         /* Do we already have an RMA registered? */
1100         if (mem->guest_phys_addr == 0 && kvm->arch.rma)
1101                 return -EINVAL;
1102
1103         if (totalpages > kvm->arch.ram_npages)
1104                 kvm->arch.ram_npages = totalpages;
1105
1106         /* Is this one of our preallocated RMAs? */
1107         if (mem->guest_phys_addr == 0) {
1108                 struct vm_area_struct *vma;
1109
1110                 down_read(&current->mm->mmap_sem);
1111                 vma = find_vma(current->mm, mem->userspace_addr);
1112                 if (vma && vma->vm_file &&
1113                     vma->vm_file->f_op == &kvm_rma_fops &&
1114                     mem->userspace_addr == vma->vm_start)
1115                         ri = vma->vm_file->private_data;
1116                 up_read(&current->mm->mmap_sem);
1117                 if (!ri && cpu_has_feature(CPU_FTR_ARCH_201)) {
1118                         pr_err("CPU requires an RMO\n");
1119                         return -EINVAL;
1120                 }
1121         }
1122
1123         if (ri) {
1124                 unsigned long rma_size;
1125                 unsigned long lpcr;
1126                 long rmls;
1127
1128                 rma_size = ri->npages << PAGE_SHIFT;
1129                 if (rma_size > mem->memory_size)
1130                         rma_size = mem->memory_size;
1131                 rmls = lpcr_rmls(rma_size);
1132                 if (rmls < 0) {
1133                         pr_err("Can't use RMA of 0x%lx bytes\n", rma_size);
1134                         return -EINVAL;
1135                 }
1136                 atomic_inc(&ri->use_count);
1137                 kvm->arch.rma = ri;
1138                 kvm->arch.n_rma_pages = rma_size >> porder;
1139
1140                 /* Update LPCR and RMOR */
1141                 lpcr = kvm->arch.lpcr;
1142                 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1143                         /* PPC970; insert RMLS value (split field) in HID4 */
1144                         lpcr &= ~((1ul << HID4_RMLS0_SH) |
1145                                   (3ul << HID4_RMLS2_SH));
1146                         lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
1147                                 ((rmls & 3) << HID4_RMLS2_SH);
1148                         /* RMOR is also in HID4 */
1149                         lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
1150                                 << HID4_RMOR_SH;
1151                 } else {
1152                         /* POWER7 */
1153                         lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
1154                         lpcr |= rmls << LPCR_RMLS_SH;
1155                         kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
1156                 }
1157                 kvm->arch.lpcr = lpcr;
1158                 pr_info("Using RMO at %lx size %lx (LPCR = %lx)\n",
1159                         ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
1160         }
1161
1162         pg_ix = mem->guest_phys_addr >> porder;
1163         pginfo = kvm->arch.ram_pginfo + pg_ix;
1164         for (i = 0; i < npages; ++i, ++pg_ix) {
1165                 if (ri && pg_ix < kvm->arch.n_rma_pages) {
1166                         pginfo[i].pfn = ri->base_pfn +
1167                                 (pg_ix << (porder - PAGE_SHIFT));
1168                         continue;
1169                 }
1170                 hva = mem->userspace_addr + (i << porder);
1171                 page = hva_to_page(hva);
1172                 if (!page) {
1173                         pr_err("oops, no pfn for hva %lx\n", hva);
1174                         goto err;
1175                 }
1176                 /* Check it's a 16MB page */
1177                 if (!PageHead(page) ||
1178                     compound_order(page) != (LARGE_PAGE_ORDER - PAGE_SHIFT)) {
1179                         pr_err("page at %lx isn't 16MB (o=%d)\n",
1180                                hva, compound_order(page));
1181                         goto err;
1182                 }
1183                 pginfo[i].pfn = page_to_pfn(page);
1184         }
1185
1186         return 0;
1187
1188  err:
1189         return -EINVAL;
1190 }
1191
1192 void kvmppc_core_commit_memory_region(struct kvm *kvm,
1193                                 struct kvm_userspace_memory_region *mem)
1194 {
1195         if (mem->guest_phys_addr == 0 && mem->memory_size != 0 &&
1196             !kvm->arch.rma)
1197                 kvmppc_map_vrma(kvm, mem);
1198 }
1199
1200 int kvmppc_core_init_vm(struct kvm *kvm)
1201 {
1202         long r;
1203         unsigned long npages = 1ul << (MAX_MEM_ORDER - LARGE_PAGE_ORDER);
1204         long err = -ENOMEM;
1205         unsigned long lpcr;
1206
1207         /* Allocate hashed page table */
1208         r = kvmppc_alloc_hpt(kvm);
1209         if (r)
1210                 return r;
1211
1212         INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1213
1214         kvm->arch.ram_pginfo = kzalloc(npages * sizeof(struct kvmppc_pginfo),
1215                                        GFP_KERNEL);
1216         if (!kvm->arch.ram_pginfo) {
1217                 pr_err("kvmppc_core_init_vm: couldn't alloc %lu bytes\n",
1218                        npages * sizeof(struct kvmppc_pginfo));
1219                 goto out_free;
1220         }
1221
1222         kvm->arch.ram_npages = 0;
1223         kvm->arch.ram_psize = 1ul << LARGE_PAGE_ORDER;
1224         kvm->arch.ram_porder = LARGE_PAGE_ORDER;
1225         kvm->arch.rma = NULL;
1226         kvm->arch.n_rma_pages = 0;
1227
1228         kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1229
1230         if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1231                 /* PPC970; HID4 is effectively the LPCR */
1232                 unsigned long lpid = kvm->arch.lpid;
1233                 kvm->arch.host_lpid = 0;
1234                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
1235                 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
1236                 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
1237                         ((lpid & 0xf) << HID4_LPID5_SH);
1238         } else {
1239                 /* POWER7; init LPCR for virtual RMA mode */
1240                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
1241                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
1242                 lpcr &= LPCR_PECE | LPCR_LPES;
1243                 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1244                         LPCR_VPM0 | LPCR_VRMA_L;
1245         }
1246         kvm->arch.lpcr = lpcr;
1247
1248         return 0;
1249
1250  out_free:
1251         kvmppc_free_hpt(kvm);
1252         return err;
1253 }
1254
1255 void kvmppc_core_destroy_vm(struct kvm *kvm)
1256 {
1257         struct kvmppc_pginfo *pginfo;
1258         unsigned long i;
1259
1260         if (kvm->arch.ram_pginfo) {
1261                 pginfo = kvm->arch.ram_pginfo;
1262                 kvm->arch.ram_pginfo = NULL;
1263                 for (i = kvm->arch.n_rma_pages; i < kvm->arch.ram_npages; ++i)
1264                         if (pginfo[i].pfn)
1265                                 put_page(pfn_to_page(pginfo[i].pfn));
1266                 kfree(pginfo);
1267         }
1268         if (kvm->arch.rma) {
1269                 kvm_release_rma(kvm->arch.rma);
1270                 kvm->arch.rma = NULL;
1271         }
1272
1273         kvmppc_free_hpt(kvm);
1274         WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1275 }
1276
1277 /* These are stubs for now */
1278 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
1279 {
1280 }
1281
1282 /* We don't need to emulate any privileged instructions or dcbz */
1283 int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
1284                            unsigned int inst, int *advance)
1285 {
1286         return EMULATE_FAIL;
1287 }
1288
1289 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs)
1290 {
1291         return EMULATE_FAIL;
1292 }
1293
1294 int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt)
1295 {
1296         return EMULATE_FAIL;
1297 }
1298
1299 static int kvmppc_book3s_hv_init(void)
1300 {
1301         int r;
1302
1303         r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1304
1305         if (r)
1306                 return r;
1307
1308         r = kvmppc_mmu_hv_init();
1309
1310         return r;
1311 }
1312
1313 static void kvmppc_book3s_hv_exit(void)
1314 {
1315         kvm_exit();
1316 }
1317
1318 module_init(kvmppc_book3s_hv_init);
1319 module_exit(kvmppc_book3s_hv_exit);