Merge branch 'writeback' of git://git.kernel.dk/linux-2.6-block
[pandora-kernel.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/module.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 #include <linux/ftrace.h>
37 #include <linux/kernel_stat.h>
38 #include <linux/personality.h>
39 #include <linux/random.h>
40
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/system.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/syscalls.h>
51 #ifdef CONFIG_PPC64
52 #include <asm/firmware.h>
53 #endif
54 #include <linux/kprobes.h>
55 #include <linux/kdebug.h>
56
57 extern unsigned long _get_SP(void);
58
59 #ifndef CONFIG_SMP
60 struct task_struct *last_task_used_math = NULL;
61 struct task_struct *last_task_used_altivec = NULL;
62 struct task_struct *last_task_used_vsx = NULL;
63 struct task_struct *last_task_used_spe = NULL;
64 #endif
65
66 /*
67  * Make sure the floating-point register state in the
68  * the thread_struct is up to date for task tsk.
69  */
70 void flush_fp_to_thread(struct task_struct *tsk)
71 {
72         if (tsk->thread.regs) {
73                 /*
74                  * We need to disable preemption here because if we didn't,
75                  * another process could get scheduled after the regs->msr
76                  * test but before we have finished saving the FP registers
77                  * to the thread_struct.  That process could take over the
78                  * FPU, and then when we get scheduled again we would store
79                  * bogus values for the remaining FP registers.
80                  */
81                 preempt_disable();
82                 if (tsk->thread.regs->msr & MSR_FP) {
83 #ifdef CONFIG_SMP
84                         /*
85                          * This should only ever be called for current or
86                          * for a stopped child process.  Since we save away
87                          * the FP register state on context switch on SMP,
88                          * there is something wrong if a stopped child appears
89                          * to still have its FP state in the CPU registers.
90                          */
91                         BUG_ON(tsk != current);
92 #endif
93                         giveup_fpu(tsk);
94                 }
95                 preempt_enable();
96         }
97 }
98
99 void enable_kernel_fp(void)
100 {
101         WARN_ON(preemptible());
102
103 #ifdef CONFIG_SMP
104         if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
105                 giveup_fpu(current);
106         else
107                 giveup_fpu(NULL);       /* just enables FP for kernel */
108 #else
109         giveup_fpu(last_task_used_math);
110 #endif /* CONFIG_SMP */
111 }
112 EXPORT_SYMBOL(enable_kernel_fp);
113
114 #ifdef CONFIG_ALTIVEC
115 void enable_kernel_altivec(void)
116 {
117         WARN_ON(preemptible());
118
119 #ifdef CONFIG_SMP
120         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
121                 giveup_altivec(current);
122         else
123                 giveup_altivec(NULL);   /* just enable AltiVec for kernel - force */
124 #else
125         giveup_altivec(last_task_used_altivec);
126 #endif /* CONFIG_SMP */
127 }
128 EXPORT_SYMBOL(enable_kernel_altivec);
129
130 /*
131  * Make sure the VMX/Altivec register state in the
132  * the thread_struct is up to date for task tsk.
133  */
134 void flush_altivec_to_thread(struct task_struct *tsk)
135 {
136         if (tsk->thread.regs) {
137                 preempt_disable();
138                 if (tsk->thread.regs->msr & MSR_VEC) {
139 #ifdef CONFIG_SMP
140                         BUG_ON(tsk != current);
141 #endif
142                         giveup_altivec(tsk);
143                 }
144                 preempt_enable();
145         }
146 }
147 #endif /* CONFIG_ALTIVEC */
148
149 #ifdef CONFIG_VSX
150 #if 0
151 /* not currently used, but some crazy RAID module might want to later */
152 void enable_kernel_vsx(void)
153 {
154         WARN_ON(preemptible());
155
156 #ifdef CONFIG_SMP
157         if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
158                 giveup_vsx(current);
159         else
160                 giveup_vsx(NULL);       /* just enable vsx for kernel - force */
161 #else
162         giveup_vsx(last_task_used_vsx);
163 #endif /* CONFIG_SMP */
164 }
165 EXPORT_SYMBOL(enable_kernel_vsx);
166 #endif
167
168 void giveup_vsx(struct task_struct *tsk)
169 {
170         giveup_fpu(tsk);
171         giveup_altivec(tsk);
172         __giveup_vsx(tsk);
173 }
174
175 void flush_vsx_to_thread(struct task_struct *tsk)
176 {
177         if (tsk->thread.regs) {
178                 preempt_disable();
179                 if (tsk->thread.regs->msr & MSR_VSX) {
180 #ifdef CONFIG_SMP
181                         BUG_ON(tsk != current);
182 #endif
183                         giveup_vsx(tsk);
184                 }
185                 preempt_enable();
186         }
187 }
188 #endif /* CONFIG_VSX */
189
190 #ifdef CONFIG_SPE
191
192 void enable_kernel_spe(void)
193 {
194         WARN_ON(preemptible());
195
196 #ifdef CONFIG_SMP
197         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
198                 giveup_spe(current);
199         else
200                 giveup_spe(NULL);       /* just enable SPE for kernel - force */
201 #else
202         giveup_spe(last_task_used_spe);
203 #endif /* __SMP __ */
204 }
205 EXPORT_SYMBOL(enable_kernel_spe);
206
207 void flush_spe_to_thread(struct task_struct *tsk)
208 {
209         if (tsk->thread.regs) {
210                 preempt_disable();
211                 if (tsk->thread.regs->msr & MSR_SPE) {
212 #ifdef CONFIG_SMP
213                         BUG_ON(tsk != current);
214 #endif
215                         giveup_spe(tsk);
216                 }
217                 preempt_enable();
218         }
219 }
220 #endif /* CONFIG_SPE */
221
222 #ifndef CONFIG_SMP
223 /*
224  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
225  * and the current task has some state, discard it.
226  */
227 void discard_lazy_cpu_state(void)
228 {
229         preempt_disable();
230         if (last_task_used_math == current)
231                 last_task_used_math = NULL;
232 #ifdef CONFIG_ALTIVEC
233         if (last_task_used_altivec == current)
234                 last_task_used_altivec = NULL;
235 #endif /* CONFIG_ALTIVEC */
236 #ifdef CONFIG_VSX
237         if (last_task_used_vsx == current)
238                 last_task_used_vsx = NULL;
239 #endif /* CONFIG_VSX */
240 #ifdef CONFIG_SPE
241         if (last_task_used_spe == current)
242                 last_task_used_spe = NULL;
243 #endif
244         preempt_enable();
245 }
246 #endif /* CONFIG_SMP */
247
248 void do_dabr(struct pt_regs *regs, unsigned long address,
249                     unsigned long error_code)
250 {
251         siginfo_t info;
252
253         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
254                         11, SIGSEGV) == NOTIFY_STOP)
255                 return;
256
257         if (debugger_dabr_match(regs))
258                 return;
259
260         /* Clear the DAC and struct entries.  One shot trigger */
261 #if defined(CONFIG_BOOKE)
262         mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~(DBSR_DAC1R | DBSR_DAC1W
263                                                         | DBCR0_IDM));
264 #endif
265
266         /* Clear the DABR */
267         set_dabr(0);
268
269         /* Deliver the signal to userspace */
270         info.si_signo = SIGTRAP;
271         info.si_errno = 0;
272         info.si_code = TRAP_HWBKPT;
273         info.si_addr = (void __user *)address;
274         force_sig_info(SIGTRAP, &info, current);
275 }
276
277 static DEFINE_PER_CPU(unsigned long, current_dabr);
278
279 int set_dabr(unsigned long dabr)
280 {
281         __get_cpu_var(current_dabr) = dabr;
282
283         if (ppc_md.set_dabr)
284                 return ppc_md.set_dabr(dabr);
285
286         /* XXX should we have a CPU_FTR_HAS_DABR ? */
287 #if defined(CONFIG_BOOKE)
288         mtspr(SPRN_DAC1, dabr);
289 #elif defined(CONFIG_PPC_BOOK3S)
290         mtspr(SPRN_DABR, dabr);
291 #endif
292
293
294         return 0;
295 }
296
297 #ifdef CONFIG_PPC64
298 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
299 #endif
300
301 struct task_struct *__switch_to(struct task_struct *prev,
302         struct task_struct *new)
303 {
304         struct thread_struct *new_thread, *old_thread;
305         unsigned long flags;
306         struct task_struct *last;
307
308 #ifdef CONFIG_SMP
309         /* avoid complexity of lazy save/restore of fpu
310          * by just saving it every time we switch out if
311          * this task used the fpu during the last quantum.
312          *
313          * If it tries to use the fpu again, it'll trap and
314          * reload its fp regs.  So we don't have to do a restore
315          * every switch, just a save.
316          *  -- Cort
317          */
318         if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
319                 giveup_fpu(prev);
320 #ifdef CONFIG_ALTIVEC
321         /*
322          * If the previous thread used altivec in the last quantum
323          * (thus changing altivec regs) then save them.
324          * We used to check the VRSAVE register but not all apps
325          * set it, so we don't rely on it now (and in fact we need
326          * to save & restore VSCR even if VRSAVE == 0).  -- paulus
327          *
328          * On SMP we always save/restore altivec regs just to avoid the
329          * complexity of changing processors.
330          *  -- Cort
331          */
332         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
333                 giveup_altivec(prev);
334 #endif /* CONFIG_ALTIVEC */
335 #ifdef CONFIG_VSX
336         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
337                 /* VMX and FPU registers are already save here */
338                 __giveup_vsx(prev);
339 #endif /* CONFIG_VSX */
340 #ifdef CONFIG_SPE
341         /*
342          * If the previous thread used spe in the last quantum
343          * (thus changing spe regs) then save them.
344          *
345          * On SMP we always save/restore spe regs just to avoid the
346          * complexity of changing processors.
347          */
348         if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
349                 giveup_spe(prev);
350 #endif /* CONFIG_SPE */
351
352 #else  /* CONFIG_SMP */
353 #ifdef CONFIG_ALTIVEC
354         /* Avoid the trap.  On smp this this never happens since
355          * we don't set last_task_used_altivec -- Cort
356          */
357         if (new->thread.regs && last_task_used_altivec == new)
358                 new->thread.regs->msr |= MSR_VEC;
359 #endif /* CONFIG_ALTIVEC */
360 #ifdef CONFIG_VSX
361         if (new->thread.regs && last_task_used_vsx == new)
362                 new->thread.regs->msr |= MSR_VSX;
363 #endif /* CONFIG_VSX */
364 #ifdef CONFIG_SPE
365         /* Avoid the trap.  On smp this this never happens since
366          * we don't set last_task_used_spe
367          */
368         if (new->thread.regs && last_task_used_spe == new)
369                 new->thread.regs->msr |= MSR_SPE;
370 #endif /* CONFIG_SPE */
371
372 #endif /* CONFIG_SMP */
373
374 #if defined(CONFIG_BOOKE)
375         /* If new thread DAC (HW breakpoint) is the same then leave it */
376         if (new->thread.dabr)
377                 set_dabr(new->thread.dabr);
378 #else
379         if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
380                 set_dabr(new->thread.dabr);
381 #endif
382
383
384         new_thread = &new->thread;
385         old_thread = &current->thread;
386
387 #ifdef CONFIG_PPC64
388         /*
389          * Collect processor utilization data per process
390          */
391         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
392                 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
393                 long unsigned start_tb, current_tb;
394                 start_tb = old_thread->start_tb;
395                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
396                 old_thread->accum_tb += (current_tb - start_tb);
397                 new_thread->start_tb = current_tb;
398         }
399 #endif
400
401         local_irq_save(flags);
402
403         account_system_vtime(current);
404         account_process_vtime(current);
405         calculate_steal_time();
406
407         /*
408          * We can't take a PMU exception inside _switch() since there is a
409          * window where the kernel stack SLB and the kernel stack are out
410          * of sync. Hard disable here.
411          */
412         hard_irq_disable();
413         last = _switch(old_thread, new_thread);
414
415         local_irq_restore(flags);
416
417         return last;
418 }
419
420 static int instructions_to_print = 16;
421
422 static void show_instructions(struct pt_regs *regs)
423 {
424         int i;
425         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
426                         sizeof(int));
427
428         printk("Instruction dump:");
429
430         for (i = 0; i < instructions_to_print; i++) {
431                 int instr;
432
433                 if (!(i % 8))
434                         printk("\n");
435
436 #if !defined(CONFIG_BOOKE)
437                 /* If executing with the IMMU off, adjust pc rather
438                  * than print XXXXXXXX.
439                  */
440                 if (!(regs->msr & MSR_IR))
441                         pc = (unsigned long)phys_to_virt(pc);
442 #endif
443
444                 /* We use __get_user here *only* to avoid an OOPS on a
445                  * bad address because the pc *should* only be a
446                  * kernel address.
447                  */
448                 if (!__kernel_text_address(pc) ||
449                      __get_user(instr, (unsigned int __user *)pc)) {
450                         printk("XXXXXXXX ");
451                 } else {
452                         if (regs->nip == pc)
453                                 printk("<%08x> ", instr);
454                         else
455                                 printk("%08x ", instr);
456                 }
457
458                 pc += sizeof(int);
459         }
460
461         printk("\n");
462 }
463
464 static struct regbit {
465         unsigned long bit;
466         const char *name;
467 } msr_bits[] = {
468         {MSR_EE,        "EE"},
469         {MSR_PR,        "PR"},
470         {MSR_FP,        "FP"},
471         {MSR_VEC,       "VEC"},
472         {MSR_VSX,       "VSX"},
473         {MSR_ME,        "ME"},
474         {MSR_CE,        "CE"},
475         {MSR_DE,        "DE"},
476         {MSR_IR,        "IR"},
477         {MSR_DR,        "DR"},
478         {0,             NULL}
479 };
480
481 static void printbits(unsigned long val, struct regbit *bits)
482 {
483         const char *sep = "";
484
485         printk("<");
486         for (; bits->bit; ++bits)
487                 if (val & bits->bit) {
488                         printk("%s%s", sep, bits->name);
489                         sep = ",";
490                 }
491         printk(">");
492 }
493
494 #ifdef CONFIG_PPC64
495 #define REG             "%016lx"
496 #define REGS_PER_LINE   4
497 #define LAST_VOLATILE   13
498 #else
499 #define REG             "%08lx"
500 #define REGS_PER_LINE   8
501 #define LAST_VOLATILE   12
502 #endif
503
504 void show_regs(struct pt_regs * regs)
505 {
506         int i, trap;
507
508         printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
509                regs->nip, regs->link, regs->ctr);
510         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
511                regs, regs->trap, print_tainted(), init_utsname()->release);
512         printk("MSR: "REG" ", regs->msr);
513         printbits(regs->msr, msr_bits);
514         printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
515         trap = TRAP(regs);
516         if (trap == 0x300 || trap == 0x600)
517 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
518                 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
519 #else
520                 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
521 #endif
522         printk("TASK = %p[%d] '%s' THREAD: %p",
523                current, task_pid_nr(current), current->comm, task_thread_info(current));
524
525 #ifdef CONFIG_SMP
526         printk(" CPU: %d", raw_smp_processor_id());
527 #endif /* CONFIG_SMP */
528
529         for (i = 0;  i < 32;  i++) {
530                 if ((i % REGS_PER_LINE) == 0)
531                         printk("\nGPR%02d: ", i);
532                 printk(REG " ", regs->gpr[i]);
533                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
534                         break;
535         }
536         printk("\n");
537 #ifdef CONFIG_KALLSYMS
538         /*
539          * Lookup NIP late so we have the best change of getting the
540          * above info out without failing
541          */
542         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
543         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
544 #endif
545         show_stack(current, (unsigned long *) regs->gpr[1]);
546         if (!user_mode(regs))
547                 show_instructions(regs);
548 }
549
550 void exit_thread(void)
551 {
552         discard_lazy_cpu_state();
553 }
554
555 void flush_thread(void)
556 {
557 #ifdef CONFIG_PPC64
558         struct thread_info *t = current_thread_info();
559
560         if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
561                 clear_ti_thread_flag(t, TIF_ABI_PENDING);
562                 if (test_ti_thread_flag(t, TIF_32BIT))
563                         clear_ti_thread_flag(t, TIF_32BIT);
564                 else
565                         set_ti_thread_flag(t, TIF_32BIT);
566         }
567 #endif
568
569         discard_lazy_cpu_state();
570
571         if (current->thread.dabr) {
572                 current->thread.dabr = 0;
573                 set_dabr(0);
574
575 #if defined(CONFIG_BOOKE)
576                 current->thread.dbcr0 &= ~(DBSR_DAC1R | DBSR_DAC1W);
577 #endif
578         }
579 }
580
581 void
582 release_thread(struct task_struct *t)
583 {
584 }
585
586 /*
587  * This gets called before we allocate a new thread and copy
588  * the current task into it.
589  */
590 void prepare_to_copy(struct task_struct *tsk)
591 {
592         flush_fp_to_thread(current);
593         flush_altivec_to_thread(current);
594         flush_vsx_to_thread(current);
595         flush_spe_to_thread(current);
596 }
597
598 /*
599  * Copy a thread..
600  */
601 int copy_thread(unsigned long clone_flags, unsigned long usp,
602                 unsigned long unused, struct task_struct *p,
603                 struct pt_regs *regs)
604 {
605         struct pt_regs *childregs, *kregs;
606         extern void ret_from_fork(void);
607         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
608
609         CHECK_FULL_REGS(regs);
610         /* Copy registers */
611         sp -= sizeof(struct pt_regs);
612         childregs = (struct pt_regs *) sp;
613         *childregs = *regs;
614         if ((childregs->msr & MSR_PR) == 0) {
615                 /* for kernel thread, set `current' and stackptr in new task */
616                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
617 #ifdef CONFIG_PPC32
618                 childregs->gpr[2] = (unsigned long) p;
619 #else
620                 clear_tsk_thread_flag(p, TIF_32BIT);
621 #endif
622                 p->thread.regs = NULL;  /* no user register state */
623         } else {
624                 childregs->gpr[1] = usp;
625                 p->thread.regs = childregs;
626                 if (clone_flags & CLONE_SETTLS) {
627 #ifdef CONFIG_PPC64
628                         if (!test_thread_flag(TIF_32BIT))
629                                 childregs->gpr[13] = childregs->gpr[6];
630                         else
631 #endif
632                                 childregs->gpr[2] = childregs->gpr[6];
633                 }
634         }
635         childregs->gpr[3] = 0;  /* Result from fork() */
636         sp -= STACK_FRAME_OVERHEAD;
637
638         /*
639          * The way this works is that at some point in the future
640          * some task will call _switch to switch to the new task.
641          * That will pop off the stack frame created below and start
642          * the new task running at ret_from_fork.  The new task will
643          * do some house keeping and then return from the fork or clone
644          * system call, using the stack frame created above.
645          */
646         sp -= sizeof(struct pt_regs);
647         kregs = (struct pt_regs *) sp;
648         sp -= STACK_FRAME_OVERHEAD;
649         p->thread.ksp = sp;
650         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
651                                 _ALIGN_UP(sizeof(struct thread_info), 16);
652
653 #ifdef CONFIG_PPC_STD_MMU_64
654         if (cpu_has_feature(CPU_FTR_SLB)) {
655                 unsigned long sp_vsid;
656                 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
657
658                 if (cpu_has_feature(CPU_FTR_1T_SEGMENT))
659                         sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
660                                 << SLB_VSID_SHIFT_1T;
661                 else
662                         sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
663                                 << SLB_VSID_SHIFT;
664                 sp_vsid |= SLB_VSID_KERNEL | llp;
665                 p->thread.ksp_vsid = sp_vsid;
666         }
667 #endif /* CONFIG_PPC_STD_MMU_64 */
668
669         /*
670          * The PPC64 ABI makes use of a TOC to contain function 
671          * pointers.  The function (ret_from_except) is actually a pointer
672          * to the TOC entry.  The first entry is a pointer to the actual
673          * function.
674          */
675 #ifdef CONFIG_PPC64
676         kregs->nip = *((unsigned long *)ret_from_fork);
677 #else
678         kregs->nip = (unsigned long)ret_from_fork;
679 #endif
680
681         return 0;
682 }
683
684 /*
685  * Set up a thread for executing a new program
686  */
687 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
688 {
689 #ifdef CONFIG_PPC64
690         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
691 #endif
692
693         set_fs(USER_DS);
694
695         /*
696          * If we exec out of a kernel thread then thread.regs will not be
697          * set.  Do it now.
698          */
699         if (!current->thread.regs) {
700                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
701                 current->thread.regs = regs - 1;
702         }
703
704         memset(regs->gpr, 0, sizeof(regs->gpr));
705         regs->ctr = 0;
706         regs->link = 0;
707         regs->xer = 0;
708         regs->ccr = 0;
709         regs->gpr[1] = sp;
710
711         /*
712          * We have just cleared all the nonvolatile GPRs, so make
713          * FULL_REGS(regs) return true.  This is necessary to allow
714          * ptrace to examine the thread immediately after exec.
715          */
716         regs->trap &= ~1UL;
717
718 #ifdef CONFIG_PPC32
719         regs->mq = 0;
720         regs->nip = start;
721         regs->msr = MSR_USER;
722 #else
723         if (!test_thread_flag(TIF_32BIT)) {
724                 unsigned long entry, toc;
725
726                 /* start is a relocated pointer to the function descriptor for
727                  * the elf _start routine.  The first entry in the function
728                  * descriptor is the entry address of _start and the second
729                  * entry is the TOC value we need to use.
730                  */
731                 __get_user(entry, (unsigned long __user *)start);
732                 __get_user(toc, (unsigned long __user *)start+1);
733
734                 /* Check whether the e_entry function descriptor entries
735                  * need to be relocated before we can use them.
736                  */
737                 if (load_addr != 0) {
738                         entry += load_addr;
739                         toc   += load_addr;
740                 }
741                 regs->nip = entry;
742                 regs->gpr[2] = toc;
743                 regs->msr = MSR_USER64;
744         } else {
745                 regs->nip = start;
746                 regs->gpr[2] = 0;
747                 regs->msr = MSR_USER32;
748         }
749 #endif
750
751         discard_lazy_cpu_state();
752 #ifdef CONFIG_VSX
753         current->thread.used_vsr = 0;
754 #endif
755         memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
756         current->thread.fpscr.val = 0;
757 #ifdef CONFIG_ALTIVEC
758         memset(current->thread.vr, 0, sizeof(current->thread.vr));
759         memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
760         current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
761         current->thread.vrsave = 0;
762         current->thread.used_vr = 0;
763 #endif /* CONFIG_ALTIVEC */
764 #ifdef CONFIG_SPE
765         memset(current->thread.evr, 0, sizeof(current->thread.evr));
766         current->thread.acc = 0;
767         current->thread.spefscr = 0;
768         current->thread.used_spe = 0;
769 #endif /* CONFIG_SPE */
770 }
771
772 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
773                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
774
775 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
776 {
777         struct pt_regs *regs = tsk->thread.regs;
778
779         /* This is a bit hairy.  If we are an SPE enabled  processor
780          * (have embedded fp) we store the IEEE exception enable flags in
781          * fpexc_mode.  fpexc_mode is also used for setting FP exception
782          * mode (asyn, precise, disabled) for 'Classic' FP. */
783         if (val & PR_FP_EXC_SW_ENABLE) {
784 #ifdef CONFIG_SPE
785                 if (cpu_has_feature(CPU_FTR_SPE)) {
786                         tsk->thread.fpexc_mode = val &
787                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
788                         return 0;
789                 } else {
790                         return -EINVAL;
791                 }
792 #else
793                 return -EINVAL;
794 #endif
795         }
796
797         /* on a CONFIG_SPE this does not hurt us.  The bits that
798          * __pack_fe01 use do not overlap with bits used for
799          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
800          * on CONFIG_SPE implementations are reserved so writing to
801          * them does not change anything */
802         if (val > PR_FP_EXC_PRECISE)
803                 return -EINVAL;
804         tsk->thread.fpexc_mode = __pack_fe01(val);
805         if (regs != NULL && (regs->msr & MSR_FP) != 0)
806                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
807                         | tsk->thread.fpexc_mode;
808         return 0;
809 }
810
811 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
812 {
813         unsigned int val;
814
815         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
816 #ifdef CONFIG_SPE
817                 if (cpu_has_feature(CPU_FTR_SPE))
818                         val = tsk->thread.fpexc_mode;
819                 else
820                         return -EINVAL;
821 #else
822                 return -EINVAL;
823 #endif
824         else
825                 val = __unpack_fe01(tsk->thread.fpexc_mode);
826         return put_user(val, (unsigned int __user *) adr);
827 }
828
829 int set_endian(struct task_struct *tsk, unsigned int val)
830 {
831         struct pt_regs *regs = tsk->thread.regs;
832
833         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
834             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
835                 return -EINVAL;
836
837         if (regs == NULL)
838                 return -EINVAL;
839
840         if (val == PR_ENDIAN_BIG)
841                 regs->msr &= ~MSR_LE;
842         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
843                 regs->msr |= MSR_LE;
844         else
845                 return -EINVAL;
846
847         return 0;
848 }
849
850 int get_endian(struct task_struct *tsk, unsigned long adr)
851 {
852         struct pt_regs *regs = tsk->thread.regs;
853         unsigned int val;
854
855         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
856             !cpu_has_feature(CPU_FTR_REAL_LE))
857                 return -EINVAL;
858
859         if (regs == NULL)
860                 return -EINVAL;
861
862         if (regs->msr & MSR_LE) {
863                 if (cpu_has_feature(CPU_FTR_REAL_LE))
864                         val = PR_ENDIAN_LITTLE;
865                 else
866                         val = PR_ENDIAN_PPC_LITTLE;
867         } else
868                 val = PR_ENDIAN_BIG;
869
870         return put_user(val, (unsigned int __user *)adr);
871 }
872
873 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
874 {
875         tsk->thread.align_ctl = val;
876         return 0;
877 }
878
879 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
880 {
881         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
882 }
883
884 #define TRUNC_PTR(x)    ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
885
886 int sys_clone(unsigned long clone_flags, unsigned long usp,
887               int __user *parent_tidp, void __user *child_threadptr,
888               int __user *child_tidp, int p6,
889               struct pt_regs *regs)
890 {
891         CHECK_FULL_REGS(regs);
892         if (usp == 0)
893                 usp = regs->gpr[1];     /* stack pointer for child */
894 #ifdef CONFIG_PPC64
895         if (test_thread_flag(TIF_32BIT)) {
896                 parent_tidp = TRUNC_PTR(parent_tidp);
897                 child_tidp = TRUNC_PTR(child_tidp);
898         }
899 #endif
900         return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
901 }
902
903 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
904              unsigned long p4, unsigned long p5, unsigned long p6,
905              struct pt_regs *regs)
906 {
907         CHECK_FULL_REGS(regs);
908         return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
909 }
910
911 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
912               unsigned long p4, unsigned long p5, unsigned long p6,
913               struct pt_regs *regs)
914 {
915         CHECK_FULL_REGS(regs);
916         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
917                         regs, 0, NULL, NULL);
918 }
919
920 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
921                unsigned long a3, unsigned long a4, unsigned long a5,
922                struct pt_regs *regs)
923 {
924         int error;
925         char *filename;
926
927         filename = getname((char __user *) a0);
928         error = PTR_ERR(filename);
929         if (IS_ERR(filename))
930                 goto out;
931         flush_fp_to_thread(current);
932         flush_altivec_to_thread(current);
933         flush_spe_to_thread(current);
934         error = do_execve(filename, (char __user * __user *) a1,
935                           (char __user * __user *) a2, regs);
936         putname(filename);
937 out:
938         return error;
939 }
940
941 #ifdef CONFIG_IRQSTACKS
942 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
943                                   unsigned long nbytes)
944 {
945         unsigned long stack_page;
946         unsigned long cpu = task_cpu(p);
947
948         /*
949          * Avoid crashing if the stack has overflowed and corrupted
950          * task_cpu(p), which is in the thread_info struct.
951          */
952         if (cpu < NR_CPUS && cpu_possible(cpu)) {
953                 stack_page = (unsigned long) hardirq_ctx[cpu];
954                 if (sp >= stack_page + sizeof(struct thread_struct)
955                     && sp <= stack_page + THREAD_SIZE - nbytes)
956                         return 1;
957
958                 stack_page = (unsigned long) softirq_ctx[cpu];
959                 if (sp >= stack_page + sizeof(struct thread_struct)
960                     && sp <= stack_page + THREAD_SIZE - nbytes)
961                         return 1;
962         }
963         return 0;
964 }
965
966 #else
967 #define valid_irq_stack(sp, p, nb)      0
968 #endif /* CONFIG_IRQSTACKS */
969
970 int validate_sp(unsigned long sp, struct task_struct *p,
971                        unsigned long nbytes)
972 {
973         unsigned long stack_page = (unsigned long)task_stack_page(p);
974
975         if (sp >= stack_page + sizeof(struct thread_struct)
976             && sp <= stack_page + THREAD_SIZE - nbytes)
977                 return 1;
978
979         return valid_irq_stack(sp, p, nbytes);
980 }
981
982 EXPORT_SYMBOL(validate_sp);
983
984 unsigned long get_wchan(struct task_struct *p)
985 {
986         unsigned long ip, sp;
987         int count = 0;
988
989         if (!p || p == current || p->state == TASK_RUNNING)
990                 return 0;
991
992         sp = p->thread.ksp;
993         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
994                 return 0;
995
996         do {
997                 sp = *(unsigned long *)sp;
998                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
999                         return 0;
1000                 if (count > 0) {
1001                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1002                         if (!in_sched_functions(ip))
1003                                 return ip;
1004                 }
1005         } while (count++ < 16);
1006         return 0;
1007 }
1008
1009 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1010
1011 void show_stack(struct task_struct *tsk, unsigned long *stack)
1012 {
1013         unsigned long sp, ip, lr, newsp;
1014         int count = 0;
1015         int firstframe = 1;
1016 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1017         int curr_frame = current->curr_ret_stack;
1018         extern void return_to_handler(void);
1019         unsigned long addr = (unsigned long)return_to_handler;
1020 #ifdef CONFIG_PPC64
1021         addr = *(unsigned long*)addr;
1022 #endif
1023 #endif
1024
1025         sp = (unsigned long) stack;
1026         if (tsk == NULL)
1027                 tsk = current;
1028         if (sp == 0) {
1029                 if (tsk == current)
1030                         asm("mr %0,1" : "=r" (sp));
1031                 else
1032                         sp = tsk->thread.ksp;
1033         }
1034
1035         lr = 0;
1036         printk("Call Trace:\n");
1037         do {
1038                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1039                         return;
1040
1041                 stack = (unsigned long *) sp;
1042                 newsp = stack[0];
1043                 ip = stack[STACK_FRAME_LR_SAVE];
1044                 if (!firstframe || ip != lr) {
1045                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1046 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1047                         if (ip == addr && curr_frame >= 0) {
1048                                 printk(" (%pS)",
1049                                        (void *)current->ret_stack[curr_frame].ret);
1050                                 curr_frame--;
1051                         }
1052 #endif
1053                         if (firstframe)
1054                                 printk(" (unreliable)");
1055                         printk("\n");
1056                 }
1057                 firstframe = 0;
1058
1059                 /*
1060                  * See if this is an exception frame.
1061                  * We look for the "regshere" marker in the current frame.
1062                  */
1063                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1064                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1065                         struct pt_regs *regs = (struct pt_regs *)
1066                                 (sp + STACK_FRAME_OVERHEAD);
1067                         lr = regs->link;
1068                         printk("--- Exception: %lx at %pS\n    LR = %pS\n",
1069                                regs->trap, (void *)regs->nip, (void *)lr);
1070                         firstframe = 1;
1071                 }
1072
1073                 sp = newsp;
1074         } while (count++ < kstack_depth_to_print);
1075 }
1076
1077 void dump_stack(void)
1078 {
1079         show_stack(current, NULL);
1080 }
1081 EXPORT_SYMBOL(dump_stack);
1082
1083 #ifdef CONFIG_PPC64
1084 void ppc64_runlatch_on(void)
1085 {
1086         unsigned long ctrl;
1087
1088         if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
1089                 HMT_medium();
1090
1091                 ctrl = mfspr(SPRN_CTRLF);
1092                 ctrl |= CTRL_RUNLATCH;
1093                 mtspr(SPRN_CTRLT, ctrl);
1094
1095                 set_thread_flag(TIF_RUNLATCH);
1096         }
1097 }
1098
1099 void ppc64_runlatch_off(void)
1100 {
1101         unsigned long ctrl;
1102
1103         if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
1104                 HMT_medium();
1105
1106                 clear_thread_flag(TIF_RUNLATCH);
1107
1108                 ctrl = mfspr(SPRN_CTRLF);
1109                 ctrl &= ~CTRL_RUNLATCH;
1110                 mtspr(SPRN_CTRLT, ctrl);
1111         }
1112 }
1113 #endif
1114
1115 #if THREAD_SHIFT < PAGE_SHIFT
1116
1117 static struct kmem_cache *thread_info_cache;
1118
1119 struct thread_info *alloc_thread_info(struct task_struct *tsk)
1120 {
1121         struct thread_info *ti;
1122
1123         ti = kmem_cache_alloc(thread_info_cache, GFP_KERNEL);
1124         if (unlikely(ti == NULL))
1125                 return NULL;
1126 #ifdef CONFIG_DEBUG_STACK_USAGE
1127         memset(ti, 0, THREAD_SIZE);
1128 #endif
1129         return ti;
1130 }
1131
1132 void free_thread_info(struct thread_info *ti)
1133 {
1134         kmem_cache_free(thread_info_cache, ti);
1135 }
1136
1137 void thread_info_cache_init(void)
1138 {
1139         thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
1140                                               THREAD_SIZE, 0, NULL);
1141         BUG_ON(thread_info_cache == NULL);
1142 }
1143
1144 #endif /* THREAD_SHIFT < PAGE_SHIFT */
1145
1146 unsigned long arch_align_stack(unsigned long sp)
1147 {
1148         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1149                 sp -= get_random_int() & ~PAGE_MASK;
1150         return sp & ~0xf;
1151 }
1152
1153 static inline unsigned long brk_rnd(void)
1154 {
1155         unsigned long rnd = 0;
1156
1157         /* 8MB for 32bit, 1GB for 64bit */
1158         if (is_32bit_task())
1159                 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1160         else
1161                 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1162
1163         return rnd << PAGE_SHIFT;
1164 }
1165
1166 unsigned long arch_randomize_brk(struct mm_struct *mm)
1167 {
1168         unsigned long base = mm->brk;
1169         unsigned long ret;
1170
1171 #ifdef CONFIG_PPC64
1172         /*
1173          * If we are using 1TB segments and we are allowed to randomise
1174          * the heap, we can put it above 1TB so it is backed by a 1TB
1175          * segment. Otherwise the heap will be in the bottom 1TB
1176          * which always uses 256MB segments and this may result in a
1177          * performance penalty.
1178          */
1179         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1180                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1181 #endif
1182
1183         ret = PAGE_ALIGN(base + brk_rnd());
1184
1185         if (ret < mm->brk)
1186                 return mm->brk;
1187
1188         return ret;
1189 }
1190
1191 unsigned long randomize_et_dyn(unsigned long base)
1192 {
1193         unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1194
1195         if (ret < base)
1196                 return base;
1197
1198         return ret;
1199 }