Merge branch 'x86-kbuild-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / arch / powerpc / kernel / perf_counter.c
1 /*
2  * Performance counter support - powerpc architecture code
3  *
4  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_counter.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <asm/reg.h>
17 #include <asm/pmc.h>
18 #include <asm/machdep.h>
19 #include <asm/firmware.h>
20 #include <asm/ptrace.h>
21
22 struct cpu_hw_counters {
23         int n_counters;
24         int n_percpu;
25         int disabled;
26         int n_added;
27         int n_limited;
28         u8  pmcs_enabled;
29         struct perf_counter *counter[MAX_HWCOUNTERS];
30         u64 events[MAX_HWCOUNTERS];
31         unsigned int flags[MAX_HWCOUNTERS];
32         unsigned long mmcr[3];
33         struct perf_counter *limited_counter[MAX_LIMITED_HWCOUNTERS];
34         u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
35 };
36 DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters);
37
38 struct power_pmu *ppmu;
39
40 /*
41  * Normally, to ignore kernel events we set the FCS (freeze counters
42  * in supervisor mode) bit in MMCR0, but if the kernel runs with the
43  * hypervisor bit set in the MSR, or if we are running on a processor
44  * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
45  * then we need to use the FCHV bit to ignore kernel events.
46  */
47 static unsigned int freeze_counters_kernel = MMCR0_FCS;
48
49 /*
50  * 32-bit doesn't have MMCRA but does have an MMCR2,
51  * and a few other names are different.
52  */
53 #ifdef CONFIG_PPC32
54
55 #define MMCR0_FCHV              0
56 #define MMCR0_PMCjCE            MMCR0_PMCnCE
57
58 #define SPRN_MMCRA              SPRN_MMCR2
59 #define MMCRA_SAMPLE_ENABLE     0
60
61 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
62 {
63         return 0;
64 }
65 static inline void perf_set_pmu_inuse(int inuse) { }
66 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
67 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
68 {
69         return 0;
70 }
71 static inline void perf_read_regs(struct pt_regs *regs) { }
72 static inline int perf_intr_is_nmi(struct pt_regs *regs)
73 {
74         return 0;
75 }
76
77 #endif /* CONFIG_PPC32 */
78
79 /*
80  * Things that are specific to 64-bit implementations.
81  */
82 #ifdef CONFIG_PPC64
83
84 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
85 {
86         unsigned long mmcra = regs->dsisr;
87
88         if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) {
89                 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
90                 if (slot > 1)
91                         return 4 * (slot - 1);
92         }
93         return 0;
94 }
95
96 static inline void perf_set_pmu_inuse(int inuse)
97 {
98         get_lppaca()->pmcregs_in_use = inuse;
99 }
100
101 /*
102  * The user wants a data address recorded.
103  * If we're not doing instruction sampling, give them the SDAR
104  * (sampled data address).  If we are doing instruction sampling, then
105  * only give them the SDAR if it corresponds to the instruction
106  * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC
107  * bit in MMCRA.
108  */
109 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
110 {
111         unsigned long mmcra = regs->dsisr;
112         unsigned long sdsync = (ppmu->flags & PPMU_ALT_SIPR) ?
113                 POWER6_MMCRA_SDSYNC : MMCRA_SDSYNC;
114
115         if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync))
116                 *addrp = mfspr(SPRN_SDAR);
117 }
118
119 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
120 {
121         unsigned long mmcra = regs->dsisr;
122
123         if (TRAP(regs) != 0xf00)
124                 return 0;       /* not a PMU interrupt */
125
126         if (ppmu->flags & PPMU_ALT_SIPR) {
127                 if (mmcra & POWER6_MMCRA_SIHV)
128                         return PERF_EVENT_MISC_HYPERVISOR;
129                 return (mmcra & POWER6_MMCRA_SIPR) ?
130                         PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL;
131         }
132         if (mmcra & MMCRA_SIHV)
133                 return PERF_EVENT_MISC_HYPERVISOR;
134         return (mmcra & MMCRA_SIPR) ? PERF_EVENT_MISC_USER :
135                 PERF_EVENT_MISC_KERNEL;
136 }
137
138 /*
139  * Overload regs->dsisr to store MMCRA so we only need to read it once
140  * on each interrupt.
141  */
142 static inline void perf_read_regs(struct pt_regs *regs)
143 {
144         regs->dsisr = mfspr(SPRN_MMCRA);
145 }
146
147 /*
148  * If interrupts were soft-disabled when a PMU interrupt occurs, treat
149  * it as an NMI.
150  */
151 static inline int perf_intr_is_nmi(struct pt_regs *regs)
152 {
153         return !regs->softe;
154 }
155
156 #endif /* CONFIG_PPC64 */
157
158 static void perf_counter_interrupt(struct pt_regs *regs);
159
160 void perf_counter_print_debug(void)
161 {
162 }
163
164 /*
165  * Read one performance monitor counter (PMC).
166  */
167 static unsigned long read_pmc(int idx)
168 {
169         unsigned long val;
170
171         switch (idx) {
172         case 1:
173                 val = mfspr(SPRN_PMC1);
174                 break;
175         case 2:
176                 val = mfspr(SPRN_PMC2);
177                 break;
178         case 3:
179                 val = mfspr(SPRN_PMC3);
180                 break;
181         case 4:
182                 val = mfspr(SPRN_PMC4);
183                 break;
184         case 5:
185                 val = mfspr(SPRN_PMC5);
186                 break;
187         case 6:
188                 val = mfspr(SPRN_PMC6);
189                 break;
190 #ifdef CONFIG_PPC64
191         case 7:
192                 val = mfspr(SPRN_PMC7);
193                 break;
194         case 8:
195                 val = mfspr(SPRN_PMC8);
196                 break;
197 #endif /* CONFIG_PPC64 */
198         default:
199                 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
200                 val = 0;
201         }
202         return val;
203 }
204
205 /*
206  * Write one PMC.
207  */
208 static void write_pmc(int idx, unsigned long val)
209 {
210         switch (idx) {
211         case 1:
212                 mtspr(SPRN_PMC1, val);
213                 break;
214         case 2:
215                 mtspr(SPRN_PMC2, val);
216                 break;
217         case 3:
218                 mtspr(SPRN_PMC3, val);
219                 break;
220         case 4:
221                 mtspr(SPRN_PMC4, val);
222                 break;
223         case 5:
224                 mtspr(SPRN_PMC5, val);
225                 break;
226         case 6:
227                 mtspr(SPRN_PMC6, val);
228                 break;
229 #ifdef CONFIG_PPC64
230         case 7:
231                 mtspr(SPRN_PMC7, val);
232                 break;
233         case 8:
234                 mtspr(SPRN_PMC8, val);
235                 break;
236 #endif /* CONFIG_PPC64 */
237         default:
238                 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
239         }
240 }
241
242 /*
243  * Check if a set of events can all go on the PMU at once.
244  * If they can't, this will look at alternative codes for the events
245  * and see if any combination of alternative codes is feasible.
246  * The feasible set is returned in event[].
247  */
248 static int power_check_constraints(u64 event[], unsigned int cflags[],
249                                    int n_ev)
250 {
251         unsigned long mask, value, nv;
252         u64 alternatives[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
253         unsigned long amasks[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
254         unsigned long avalues[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
255         unsigned long smasks[MAX_HWCOUNTERS], svalues[MAX_HWCOUNTERS];
256         int n_alt[MAX_HWCOUNTERS], choice[MAX_HWCOUNTERS];
257         int i, j;
258         unsigned long addf = ppmu->add_fields;
259         unsigned long tadd = ppmu->test_adder;
260
261         if (n_ev > ppmu->n_counter)
262                 return -1;
263
264         /* First see if the events will go on as-is */
265         for (i = 0; i < n_ev; ++i) {
266                 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
267                     && !ppmu->limited_pmc_event(event[i])) {
268                         ppmu->get_alternatives(event[i], cflags[i],
269                                                alternatives[i]);
270                         event[i] = alternatives[i][0];
271                 }
272                 if (ppmu->get_constraint(event[i], &amasks[i][0],
273                                          &avalues[i][0]))
274                         return -1;
275         }
276         value = mask = 0;
277         for (i = 0; i < n_ev; ++i) {
278                 nv = (value | avalues[i][0]) + (value & avalues[i][0] & addf);
279                 if ((((nv + tadd) ^ value) & mask) != 0 ||
280                     (((nv + tadd) ^ avalues[i][0]) & amasks[i][0]) != 0)
281                         break;
282                 value = nv;
283                 mask |= amasks[i][0];
284         }
285         if (i == n_ev)
286                 return 0;       /* all OK */
287
288         /* doesn't work, gather alternatives... */
289         if (!ppmu->get_alternatives)
290                 return -1;
291         for (i = 0; i < n_ev; ++i) {
292                 choice[i] = 0;
293                 n_alt[i] = ppmu->get_alternatives(event[i], cflags[i],
294                                                   alternatives[i]);
295                 for (j = 1; j < n_alt[i]; ++j)
296                         ppmu->get_constraint(alternatives[i][j],
297                                              &amasks[i][j], &avalues[i][j]);
298         }
299
300         /* enumerate all possibilities and see if any will work */
301         i = 0;
302         j = -1;
303         value = mask = nv = 0;
304         while (i < n_ev) {
305                 if (j >= 0) {
306                         /* we're backtracking, restore context */
307                         value = svalues[i];
308                         mask = smasks[i];
309                         j = choice[i];
310                 }
311                 /*
312                  * See if any alternative k for event i,
313                  * where k > j, will satisfy the constraints.
314                  */
315                 while (++j < n_alt[i]) {
316                         nv = (value | avalues[i][j]) +
317                                 (value & avalues[i][j] & addf);
318                         if ((((nv + tadd) ^ value) & mask) == 0 &&
319                             (((nv + tadd) ^ avalues[i][j])
320                              & amasks[i][j]) == 0)
321                                 break;
322                 }
323                 if (j >= n_alt[i]) {
324                         /*
325                          * No feasible alternative, backtrack
326                          * to event i-1 and continue enumerating its
327                          * alternatives from where we got up to.
328                          */
329                         if (--i < 0)
330                                 return -1;
331                 } else {
332                         /*
333                          * Found a feasible alternative for event i,
334                          * remember where we got up to with this event,
335                          * go on to the next event, and start with
336                          * the first alternative for it.
337                          */
338                         choice[i] = j;
339                         svalues[i] = value;
340                         smasks[i] = mask;
341                         value = nv;
342                         mask |= amasks[i][j];
343                         ++i;
344                         j = -1;
345                 }
346         }
347
348         /* OK, we have a feasible combination, tell the caller the solution */
349         for (i = 0; i < n_ev; ++i)
350                 event[i] = alternatives[i][choice[i]];
351         return 0;
352 }
353
354 /*
355  * Check if newly-added counters have consistent settings for
356  * exclude_{user,kernel,hv} with each other and any previously
357  * added counters.
358  */
359 static int check_excludes(struct perf_counter **ctrs, unsigned int cflags[],
360                           int n_prev, int n_new)
361 {
362         int eu = 0, ek = 0, eh = 0;
363         int i, n, first;
364         struct perf_counter *counter;
365
366         n = n_prev + n_new;
367         if (n <= 1)
368                 return 0;
369
370         first = 1;
371         for (i = 0; i < n; ++i) {
372                 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
373                         cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
374                         continue;
375                 }
376                 counter = ctrs[i];
377                 if (first) {
378                         eu = counter->attr.exclude_user;
379                         ek = counter->attr.exclude_kernel;
380                         eh = counter->attr.exclude_hv;
381                         first = 0;
382                 } else if (counter->attr.exclude_user != eu ||
383                            counter->attr.exclude_kernel != ek ||
384                            counter->attr.exclude_hv != eh) {
385                         return -EAGAIN;
386                 }
387         }
388
389         if (eu || ek || eh)
390                 for (i = 0; i < n; ++i)
391                         if (cflags[i] & PPMU_LIMITED_PMC_OK)
392                                 cflags[i] |= PPMU_LIMITED_PMC_REQD;
393
394         return 0;
395 }
396
397 static void power_pmu_read(struct perf_counter *counter)
398 {
399         s64 val, delta, prev;
400
401         if (!counter->hw.idx)
402                 return;
403         /*
404          * Performance monitor interrupts come even when interrupts
405          * are soft-disabled, as long as interrupts are hard-enabled.
406          * Therefore we treat them like NMIs.
407          */
408         do {
409                 prev = atomic64_read(&counter->hw.prev_count);
410                 barrier();
411                 val = read_pmc(counter->hw.idx);
412         } while (atomic64_cmpxchg(&counter->hw.prev_count, prev, val) != prev);
413
414         /* The counters are only 32 bits wide */
415         delta = (val - prev) & 0xfffffffful;
416         atomic64_add(delta, &counter->count);
417         atomic64_sub(delta, &counter->hw.period_left);
418 }
419
420 /*
421  * On some machines, PMC5 and PMC6 can't be written, don't respect
422  * the freeze conditions, and don't generate interrupts.  This tells
423  * us if `counter' is using such a PMC.
424  */
425 static int is_limited_pmc(int pmcnum)
426 {
427         return (ppmu->flags & PPMU_LIMITED_PMC5_6)
428                 && (pmcnum == 5 || pmcnum == 6);
429 }
430
431 static void freeze_limited_counters(struct cpu_hw_counters *cpuhw,
432                                     unsigned long pmc5, unsigned long pmc6)
433 {
434         struct perf_counter *counter;
435         u64 val, prev, delta;
436         int i;
437
438         for (i = 0; i < cpuhw->n_limited; ++i) {
439                 counter = cpuhw->limited_counter[i];
440                 if (!counter->hw.idx)
441                         continue;
442                 val = (counter->hw.idx == 5) ? pmc5 : pmc6;
443                 prev = atomic64_read(&counter->hw.prev_count);
444                 counter->hw.idx = 0;
445                 delta = (val - prev) & 0xfffffffful;
446                 atomic64_add(delta, &counter->count);
447         }
448 }
449
450 static void thaw_limited_counters(struct cpu_hw_counters *cpuhw,
451                                   unsigned long pmc5, unsigned long pmc6)
452 {
453         struct perf_counter *counter;
454         u64 val;
455         int i;
456
457         for (i = 0; i < cpuhw->n_limited; ++i) {
458                 counter = cpuhw->limited_counter[i];
459                 counter->hw.idx = cpuhw->limited_hwidx[i];
460                 val = (counter->hw.idx == 5) ? pmc5 : pmc6;
461                 atomic64_set(&counter->hw.prev_count, val);
462                 perf_counter_update_userpage(counter);
463         }
464 }
465
466 /*
467  * Since limited counters don't respect the freeze conditions, we
468  * have to read them immediately after freezing or unfreezing the
469  * other counters.  We try to keep the values from the limited
470  * counters as consistent as possible by keeping the delay (in
471  * cycles and instructions) between freezing/unfreezing and reading
472  * the limited counters as small and consistent as possible.
473  * Therefore, if any limited counters are in use, we read them
474  * both, and always in the same order, to minimize variability,
475  * and do it inside the same asm that writes MMCR0.
476  */
477 static void write_mmcr0(struct cpu_hw_counters *cpuhw, unsigned long mmcr0)
478 {
479         unsigned long pmc5, pmc6;
480
481         if (!cpuhw->n_limited) {
482                 mtspr(SPRN_MMCR0, mmcr0);
483                 return;
484         }
485
486         /*
487          * Write MMCR0, then read PMC5 and PMC6 immediately.
488          * To ensure we don't get a performance monitor interrupt
489          * between writing MMCR0 and freezing/thawing the limited
490          * counters, we first write MMCR0 with the counter overflow
491          * interrupt enable bits turned off.
492          */
493         asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
494                      : "=&r" (pmc5), "=&r" (pmc6)
495                      : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
496                        "i" (SPRN_MMCR0),
497                        "i" (SPRN_PMC5), "i" (SPRN_PMC6));
498
499         if (mmcr0 & MMCR0_FC)
500                 freeze_limited_counters(cpuhw, pmc5, pmc6);
501         else
502                 thaw_limited_counters(cpuhw, pmc5, pmc6);
503
504         /*
505          * Write the full MMCR0 including the counter overflow interrupt
506          * enable bits, if necessary.
507          */
508         if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
509                 mtspr(SPRN_MMCR0, mmcr0);
510 }
511
512 /*
513  * Disable all counters to prevent PMU interrupts and to allow
514  * counters to be added or removed.
515  */
516 void hw_perf_disable(void)
517 {
518         struct cpu_hw_counters *cpuhw;
519         unsigned long flags;
520
521         if (!ppmu)
522                 return;
523         local_irq_save(flags);
524         cpuhw = &__get_cpu_var(cpu_hw_counters);
525
526         if (!cpuhw->disabled) {
527                 cpuhw->disabled = 1;
528                 cpuhw->n_added = 0;
529
530                 /*
531                  * Check if we ever enabled the PMU on this cpu.
532                  */
533                 if (!cpuhw->pmcs_enabled) {
534                         if (ppc_md.enable_pmcs)
535                                 ppc_md.enable_pmcs();
536                         cpuhw->pmcs_enabled = 1;
537                 }
538
539                 /*
540                  * Disable instruction sampling if it was enabled
541                  */
542                 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
543                         mtspr(SPRN_MMCRA,
544                               cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
545                         mb();
546                 }
547
548                 /*
549                  * Set the 'freeze counters' bit.
550                  * The barrier is to make sure the mtspr has been
551                  * executed and the PMU has frozen the counters
552                  * before we return.
553                  */
554                 write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
555                 mb();
556         }
557         local_irq_restore(flags);
558 }
559
560 /*
561  * Re-enable all counters if disable == 0.
562  * If we were previously disabled and counters were added, then
563  * put the new config on the PMU.
564  */
565 void hw_perf_enable(void)
566 {
567         struct perf_counter *counter;
568         struct cpu_hw_counters *cpuhw;
569         unsigned long flags;
570         long i;
571         unsigned long val;
572         s64 left;
573         unsigned int hwc_index[MAX_HWCOUNTERS];
574         int n_lim;
575         int idx;
576
577         if (!ppmu)
578                 return;
579         local_irq_save(flags);
580         cpuhw = &__get_cpu_var(cpu_hw_counters);
581         if (!cpuhw->disabled) {
582                 local_irq_restore(flags);
583                 return;
584         }
585         cpuhw->disabled = 0;
586
587         /*
588          * If we didn't change anything, or only removed counters,
589          * no need to recalculate MMCR* settings and reset the PMCs.
590          * Just reenable the PMU with the current MMCR* settings
591          * (possibly updated for removal of counters).
592          */
593         if (!cpuhw->n_added) {
594                 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
595                 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
596                 if (cpuhw->n_counters == 0)
597                         perf_set_pmu_inuse(0);
598                 goto out_enable;
599         }
600
601         /*
602          * Compute MMCR* values for the new set of counters
603          */
604         if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_counters, hwc_index,
605                                cpuhw->mmcr)) {
606                 /* shouldn't ever get here */
607                 printk(KERN_ERR "oops compute_mmcr failed\n");
608                 goto out;
609         }
610
611         /*
612          * Add in MMCR0 freeze bits corresponding to the
613          * attr.exclude_* bits for the first counter.
614          * We have already checked that all counters have the
615          * same values for these bits as the first counter.
616          */
617         counter = cpuhw->counter[0];
618         if (counter->attr.exclude_user)
619                 cpuhw->mmcr[0] |= MMCR0_FCP;
620         if (counter->attr.exclude_kernel)
621                 cpuhw->mmcr[0] |= freeze_counters_kernel;
622         if (counter->attr.exclude_hv)
623                 cpuhw->mmcr[0] |= MMCR0_FCHV;
624
625         /*
626          * Write the new configuration to MMCR* with the freeze
627          * bit set and set the hardware counters to their initial values.
628          * Then unfreeze the counters.
629          */
630         perf_set_pmu_inuse(1);
631         mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
632         mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
633         mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
634                                 | MMCR0_FC);
635
636         /*
637          * Read off any pre-existing counters that need to move
638          * to another PMC.
639          */
640         for (i = 0; i < cpuhw->n_counters; ++i) {
641                 counter = cpuhw->counter[i];
642                 if (counter->hw.idx && counter->hw.idx != hwc_index[i] + 1) {
643                         power_pmu_read(counter);
644                         write_pmc(counter->hw.idx, 0);
645                         counter->hw.idx = 0;
646                 }
647         }
648
649         /*
650          * Initialize the PMCs for all the new and moved counters.
651          */
652         cpuhw->n_limited = n_lim = 0;
653         for (i = 0; i < cpuhw->n_counters; ++i) {
654                 counter = cpuhw->counter[i];
655                 if (counter->hw.idx)
656                         continue;
657                 idx = hwc_index[i] + 1;
658                 if (is_limited_pmc(idx)) {
659                         cpuhw->limited_counter[n_lim] = counter;
660                         cpuhw->limited_hwidx[n_lim] = idx;
661                         ++n_lim;
662                         continue;
663                 }
664                 val = 0;
665                 if (counter->hw.sample_period) {
666                         left = atomic64_read(&counter->hw.period_left);
667                         if (left < 0x80000000L)
668                                 val = 0x80000000L - left;
669                 }
670                 atomic64_set(&counter->hw.prev_count, val);
671                 counter->hw.idx = idx;
672                 write_pmc(idx, val);
673                 perf_counter_update_userpage(counter);
674         }
675         cpuhw->n_limited = n_lim;
676         cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
677
678  out_enable:
679         mb();
680         write_mmcr0(cpuhw, cpuhw->mmcr[0]);
681
682         /*
683          * Enable instruction sampling if necessary
684          */
685         if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
686                 mb();
687                 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
688         }
689
690  out:
691         local_irq_restore(flags);
692 }
693
694 static int collect_events(struct perf_counter *group, int max_count,
695                           struct perf_counter *ctrs[], u64 *events,
696                           unsigned int *flags)
697 {
698         int n = 0;
699         struct perf_counter *counter;
700
701         if (!is_software_counter(group)) {
702                 if (n >= max_count)
703                         return -1;
704                 ctrs[n] = group;
705                 flags[n] = group->hw.counter_base;
706                 events[n++] = group->hw.config;
707         }
708         list_for_each_entry(counter, &group->sibling_list, list_entry) {
709                 if (!is_software_counter(counter) &&
710                     counter->state != PERF_COUNTER_STATE_OFF) {
711                         if (n >= max_count)
712                                 return -1;
713                         ctrs[n] = counter;
714                         flags[n] = counter->hw.counter_base;
715                         events[n++] = counter->hw.config;
716                 }
717         }
718         return n;
719 }
720
721 static void counter_sched_in(struct perf_counter *counter, int cpu)
722 {
723         counter->state = PERF_COUNTER_STATE_ACTIVE;
724         counter->oncpu = cpu;
725         counter->tstamp_running += counter->ctx->time - counter->tstamp_stopped;
726         if (is_software_counter(counter))
727                 counter->pmu->enable(counter);
728 }
729
730 /*
731  * Called to enable a whole group of counters.
732  * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
733  * Assumes the caller has disabled interrupts and has
734  * frozen the PMU with hw_perf_save_disable.
735  */
736 int hw_perf_group_sched_in(struct perf_counter *group_leader,
737                struct perf_cpu_context *cpuctx,
738                struct perf_counter_context *ctx, int cpu)
739 {
740         struct cpu_hw_counters *cpuhw;
741         long i, n, n0;
742         struct perf_counter *sub;
743
744         if (!ppmu)
745                 return 0;
746         cpuhw = &__get_cpu_var(cpu_hw_counters);
747         n0 = cpuhw->n_counters;
748         n = collect_events(group_leader, ppmu->n_counter - n0,
749                            &cpuhw->counter[n0], &cpuhw->events[n0],
750                            &cpuhw->flags[n0]);
751         if (n < 0)
752                 return -EAGAIN;
753         if (check_excludes(cpuhw->counter, cpuhw->flags, n0, n))
754                 return -EAGAIN;
755         i = power_check_constraints(cpuhw->events, cpuhw->flags, n + n0);
756         if (i < 0)
757                 return -EAGAIN;
758         cpuhw->n_counters = n0 + n;
759         cpuhw->n_added += n;
760
761         /*
762          * OK, this group can go on; update counter states etc.,
763          * and enable any software counters
764          */
765         for (i = n0; i < n0 + n; ++i)
766                 cpuhw->counter[i]->hw.config = cpuhw->events[i];
767         cpuctx->active_oncpu += n;
768         n = 1;
769         counter_sched_in(group_leader, cpu);
770         list_for_each_entry(sub, &group_leader->sibling_list, list_entry) {
771                 if (sub->state != PERF_COUNTER_STATE_OFF) {
772                         counter_sched_in(sub, cpu);
773                         ++n;
774                 }
775         }
776         ctx->nr_active += n;
777
778         return 1;
779 }
780
781 /*
782  * Add a counter to the PMU.
783  * If all counters are not already frozen, then we disable and
784  * re-enable the PMU in order to get hw_perf_enable to do the
785  * actual work of reconfiguring the PMU.
786  */
787 static int power_pmu_enable(struct perf_counter *counter)
788 {
789         struct cpu_hw_counters *cpuhw;
790         unsigned long flags;
791         int n0;
792         int ret = -EAGAIN;
793
794         local_irq_save(flags);
795         perf_disable();
796
797         /*
798          * Add the counter to the list (if there is room)
799          * and check whether the total set is still feasible.
800          */
801         cpuhw = &__get_cpu_var(cpu_hw_counters);
802         n0 = cpuhw->n_counters;
803         if (n0 >= ppmu->n_counter)
804                 goto out;
805         cpuhw->counter[n0] = counter;
806         cpuhw->events[n0] = counter->hw.config;
807         cpuhw->flags[n0] = counter->hw.counter_base;
808         if (check_excludes(cpuhw->counter, cpuhw->flags, n0, 1))
809                 goto out;
810         if (power_check_constraints(cpuhw->events, cpuhw->flags, n0 + 1))
811                 goto out;
812
813         counter->hw.config = cpuhw->events[n0];
814         ++cpuhw->n_counters;
815         ++cpuhw->n_added;
816
817         ret = 0;
818  out:
819         perf_enable();
820         local_irq_restore(flags);
821         return ret;
822 }
823
824 /*
825  * Remove a counter from the PMU.
826  */
827 static void power_pmu_disable(struct perf_counter *counter)
828 {
829         struct cpu_hw_counters *cpuhw;
830         long i;
831         unsigned long flags;
832
833         local_irq_save(flags);
834         perf_disable();
835
836         power_pmu_read(counter);
837
838         cpuhw = &__get_cpu_var(cpu_hw_counters);
839         for (i = 0; i < cpuhw->n_counters; ++i) {
840                 if (counter == cpuhw->counter[i]) {
841                         while (++i < cpuhw->n_counters)
842                                 cpuhw->counter[i-1] = cpuhw->counter[i];
843                         --cpuhw->n_counters;
844                         ppmu->disable_pmc(counter->hw.idx - 1, cpuhw->mmcr);
845                         if (counter->hw.idx) {
846                                 write_pmc(counter->hw.idx, 0);
847                                 counter->hw.idx = 0;
848                         }
849                         perf_counter_update_userpage(counter);
850                         break;
851                 }
852         }
853         for (i = 0; i < cpuhw->n_limited; ++i)
854                 if (counter == cpuhw->limited_counter[i])
855                         break;
856         if (i < cpuhw->n_limited) {
857                 while (++i < cpuhw->n_limited) {
858                         cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
859                         cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
860                 }
861                 --cpuhw->n_limited;
862         }
863         if (cpuhw->n_counters == 0) {
864                 /* disable exceptions if no counters are running */
865                 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
866         }
867
868         perf_enable();
869         local_irq_restore(flags);
870 }
871
872 /*
873  * Re-enable interrupts on a counter after they were throttled
874  * because they were coming too fast.
875  */
876 static void power_pmu_unthrottle(struct perf_counter *counter)
877 {
878         s64 val, left;
879         unsigned long flags;
880
881         if (!counter->hw.idx || !counter->hw.sample_period)
882                 return;
883         local_irq_save(flags);
884         perf_disable();
885         power_pmu_read(counter);
886         left = counter->hw.sample_period;
887         counter->hw.last_period = left;
888         val = 0;
889         if (left < 0x80000000L)
890                 val = 0x80000000L - left;
891         write_pmc(counter->hw.idx, val);
892         atomic64_set(&counter->hw.prev_count, val);
893         atomic64_set(&counter->hw.period_left, left);
894         perf_counter_update_userpage(counter);
895         perf_enable();
896         local_irq_restore(flags);
897 }
898
899 struct pmu power_pmu = {
900         .enable         = power_pmu_enable,
901         .disable        = power_pmu_disable,
902         .read           = power_pmu_read,
903         .unthrottle     = power_pmu_unthrottle,
904 };
905
906 /*
907  * Return 1 if we might be able to put counter on a limited PMC,
908  * or 0 if not.
909  * A counter can only go on a limited PMC if it counts something
910  * that a limited PMC can count, doesn't require interrupts, and
911  * doesn't exclude any processor mode.
912  */
913 static int can_go_on_limited_pmc(struct perf_counter *counter, u64 ev,
914                                  unsigned int flags)
915 {
916         int n;
917         u64 alt[MAX_EVENT_ALTERNATIVES];
918
919         if (counter->attr.exclude_user
920             || counter->attr.exclude_kernel
921             || counter->attr.exclude_hv
922             || counter->attr.sample_period)
923                 return 0;
924
925         if (ppmu->limited_pmc_event(ev))
926                 return 1;
927
928         /*
929          * The requested event isn't on a limited PMC already;
930          * see if any alternative code goes on a limited PMC.
931          */
932         if (!ppmu->get_alternatives)
933                 return 0;
934
935         flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
936         n = ppmu->get_alternatives(ev, flags, alt);
937
938         return n > 0;
939 }
940
941 /*
942  * Find an alternative event that goes on a normal PMC, if possible,
943  * and return the event code, or 0 if there is no such alternative.
944  * (Note: event code 0 is "don't count" on all machines.)
945  */
946 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
947 {
948         u64 alt[MAX_EVENT_ALTERNATIVES];
949         int n;
950
951         flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
952         n = ppmu->get_alternatives(ev, flags, alt);
953         if (!n)
954                 return 0;
955         return alt[0];
956 }
957
958 /* Number of perf_counters counting hardware events */
959 static atomic_t num_counters;
960 /* Used to avoid races in calling reserve/release_pmc_hardware */
961 static DEFINE_MUTEX(pmc_reserve_mutex);
962
963 /*
964  * Release the PMU if this is the last perf_counter.
965  */
966 static void hw_perf_counter_destroy(struct perf_counter *counter)
967 {
968         if (!atomic_add_unless(&num_counters, -1, 1)) {
969                 mutex_lock(&pmc_reserve_mutex);
970                 if (atomic_dec_return(&num_counters) == 0)
971                         release_pmc_hardware();
972                 mutex_unlock(&pmc_reserve_mutex);
973         }
974 }
975
976 /*
977  * Translate a generic cache event config to a raw event code.
978  */
979 static int hw_perf_cache_event(u64 config, u64 *eventp)
980 {
981         unsigned long type, op, result;
982         int ev;
983
984         if (!ppmu->cache_events)
985                 return -EINVAL;
986
987         /* unpack config */
988         type = config & 0xff;
989         op = (config >> 8) & 0xff;
990         result = (config >> 16) & 0xff;
991
992         if (type >= PERF_COUNT_HW_CACHE_MAX ||
993             op >= PERF_COUNT_HW_CACHE_OP_MAX ||
994             result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
995                 return -EINVAL;
996
997         ev = (*ppmu->cache_events)[type][op][result];
998         if (ev == 0)
999                 return -EOPNOTSUPP;
1000         if (ev == -1)
1001                 return -EINVAL;
1002         *eventp = ev;
1003         return 0;
1004 }
1005
1006 const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
1007 {
1008         u64 ev;
1009         unsigned long flags;
1010         struct perf_counter *ctrs[MAX_HWCOUNTERS];
1011         u64 events[MAX_HWCOUNTERS];
1012         unsigned int cflags[MAX_HWCOUNTERS];
1013         int n;
1014         int err;
1015
1016         if (!ppmu)
1017                 return ERR_PTR(-ENXIO);
1018         switch (counter->attr.type) {
1019         case PERF_TYPE_HARDWARE:
1020                 ev = counter->attr.config;
1021                 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1022                         return ERR_PTR(-EOPNOTSUPP);
1023                 ev = ppmu->generic_events[ev];
1024                 break;
1025         case PERF_TYPE_HW_CACHE:
1026                 err = hw_perf_cache_event(counter->attr.config, &ev);
1027                 if (err)
1028                         return ERR_PTR(err);
1029                 break;
1030         case PERF_TYPE_RAW:
1031                 ev = counter->attr.config;
1032                 break;
1033         default:
1034                 return ERR_PTR(-EINVAL);
1035         }
1036         counter->hw.config_base = ev;
1037         counter->hw.idx = 0;
1038
1039         /*
1040          * If we are not running on a hypervisor, force the
1041          * exclude_hv bit to 0 so that we don't care what
1042          * the user set it to.
1043          */
1044         if (!firmware_has_feature(FW_FEATURE_LPAR))
1045                 counter->attr.exclude_hv = 0;
1046
1047         /*
1048          * If this is a per-task counter, then we can use
1049          * PM_RUN_* events interchangeably with their non RUN_*
1050          * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1051          * XXX we should check if the task is an idle task.
1052          */
1053         flags = 0;
1054         if (counter->ctx->task)
1055                 flags |= PPMU_ONLY_COUNT_RUN;
1056
1057         /*
1058          * If this machine has limited counters, check whether this
1059          * event could go on a limited counter.
1060          */
1061         if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1062                 if (can_go_on_limited_pmc(counter, ev, flags)) {
1063                         flags |= PPMU_LIMITED_PMC_OK;
1064                 } else if (ppmu->limited_pmc_event(ev)) {
1065                         /*
1066                          * The requested event is on a limited PMC,
1067                          * but we can't use a limited PMC; see if any
1068                          * alternative goes on a normal PMC.
1069                          */
1070                         ev = normal_pmc_alternative(ev, flags);
1071                         if (!ev)
1072                                 return ERR_PTR(-EINVAL);
1073                 }
1074         }
1075
1076         /*
1077          * If this is in a group, check if it can go on with all the
1078          * other hardware counters in the group.  We assume the counter
1079          * hasn't been linked into its leader's sibling list at this point.
1080          */
1081         n = 0;
1082         if (counter->group_leader != counter) {
1083                 n = collect_events(counter->group_leader, ppmu->n_counter - 1,
1084                                    ctrs, events, cflags);
1085                 if (n < 0)
1086                         return ERR_PTR(-EINVAL);
1087         }
1088         events[n] = ev;
1089         ctrs[n] = counter;
1090         cflags[n] = flags;
1091         if (check_excludes(ctrs, cflags, n, 1))
1092                 return ERR_PTR(-EINVAL);
1093         if (power_check_constraints(events, cflags, n + 1))
1094                 return ERR_PTR(-EINVAL);
1095
1096         counter->hw.config = events[n];
1097         counter->hw.counter_base = cflags[n];
1098         counter->hw.last_period = counter->hw.sample_period;
1099         atomic64_set(&counter->hw.period_left, counter->hw.last_period);
1100
1101         /*
1102          * See if we need to reserve the PMU.
1103          * If no counters are currently in use, then we have to take a
1104          * mutex to ensure that we don't race with another task doing
1105          * reserve_pmc_hardware or release_pmc_hardware.
1106          */
1107         err = 0;
1108         if (!atomic_inc_not_zero(&num_counters)) {
1109                 mutex_lock(&pmc_reserve_mutex);
1110                 if (atomic_read(&num_counters) == 0 &&
1111                     reserve_pmc_hardware(perf_counter_interrupt))
1112                         err = -EBUSY;
1113                 else
1114                         atomic_inc(&num_counters);
1115                 mutex_unlock(&pmc_reserve_mutex);
1116         }
1117         counter->destroy = hw_perf_counter_destroy;
1118
1119         if (err)
1120                 return ERR_PTR(err);
1121         return &power_pmu;
1122 }
1123
1124 /*
1125  * A counter has overflowed; update its count and record
1126  * things if requested.  Note that interrupts are hard-disabled
1127  * here so there is no possibility of being interrupted.
1128  */
1129 static void record_and_restart(struct perf_counter *counter, unsigned long val,
1130                                struct pt_regs *regs, int nmi)
1131 {
1132         u64 period = counter->hw.sample_period;
1133         s64 prev, delta, left;
1134         int record = 0;
1135
1136         /* we don't have to worry about interrupts here */
1137         prev = atomic64_read(&counter->hw.prev_count);
1138         delta = (val - prev) & 0xfffffffful;
1139         atomic64_add(delta, &counter->count);
1140
1141         /*
1142          * See if the total period for this counter has expired,
1143          * and update for the next period.
1144          */
1145         val = 0;
1146         left = atomic64_read(&counter->hw.period_left) - delta;
1147         if (period) {
1148                 if (left <= 0) {
1149                         left += period;
1150                         if (left <= 0)
1151                                 left = period;
1152                         record = 1;
1153                 }
1154                 if (left < 0x80000000LL)
1155                         val = 0x80000000LL - left;
1156         }
1157
1158         /*
1159          * Finally record data if requested.
1160          */
1161         if (record) {
1162                 struct perf_sample_data data = {
1163                         .regs   = regs,
1164                         .addr   = 0,
1165                         .period = counter->hw.last_period,
1166                 };
1167
1168                 if (counter->attr.sample_type & PERF_SAMPLE_ADDR)
1169                         perf_get_data_addr(regs, &data.addr);
1170
1171                 if (perf_counter_overflow(counter, nmi, &data)) {
1172                         /*
1173                          * Interrupts are coming too fast - throttle them
1174                          * by setting the counter to 0, so it will be
1175                          * at least 2^30 cycles until the next interrupt
1176                          * (assuming each counter counts at most 2 counts
1177                          * per cycle).
1178                          */
1179                         val = 0;
1180                         left = ~0ULL >> 1;
1181                 }
1182         }
1183
1184         write_pmc(counter->hw.idx, val);
1185         atomic64_set(&counter->hw.prev_count, val);
1186         atomic64_set(&counter->hw.period_left, left);
1187         perf_counter_update_userpage(counter);
1188 }
1189
1190 /*
1191  * Called from generic code to get the misc flags (i.e. processor mode)
1192  * for an event.
1193  */
1194 unsigned long perf_misc_flags(struct pt_regs *regs)
1195 {
1196         u32 flags = perf_get_misc_flags(regs);
1197
1198         if (flags)
1199                 return flags;
1200         return user_mode(regs) ? PERF_EVENT_MISC_USER :
1201                 PERF_EVENT_MISC_KERNEL;
1202 }
1203
1204 /*
1205  * Called from generic code to get the instruction pointer
1206  * for an event.
1207  */
1208 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1209 {
1210         unsigned long ip;
1211
1212         if (TRAP(regs) != 0xf00)
1213                 return regs->nip;       /* not a PMU interrupt */
1214
1215         ip = mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
1216         return ip;
1217 }
1218
1219 /*
1220  * Performance monitor interrupt stuff
1221  */
1222 static void perf_counter_interrupt(struct pt_regs *regs)
1223 {
1224         int i;
1225         struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters);
1226         struct perf_counter *counter;
1227         unsigned long val;
1228         int found = 0;
1229         int nmi;
1230
1231         if (cpuhw->n_limited)
1232                 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
1233                                         mfspr(SPRN_PMC6));
1234
1235         perf_read_regs(regs);
1236
1237         nmi = perf_intr_is_nmi(regs);
1238         if (nmi)
1239                 nmi_enter();
1240         else
1241                 irq_enter();
1242
1243         for (i = 0; i < cpuhw->n_counters; ++i) {
1244                 counter = cpuhw->counter[i];
1245                 if (!counter->hw.idx || is_limited_pmc(counter->hw.idx))
1246                         continue;
1247                 val = read_pmc(counter->hw.idx);
1248                 if ((int)val < 0) {
1249                         /* counter has overflowed */
1250                         found = 1;
1251                         record_and_restart(counter, val, regs, nmi);
1252                 }
1253         }
1254
1255         /*
1256          * In case we didn't find and reset the counter that caused
1257          * the interrupt, scan all counters and reset any that are
1258          * negative, to avoid getting continual interrupts.
1259          * Any that we processed in the previous loop will not be negative.
1260          */
1261         if (!found) {
1262                 for (i = 0; i < ppmu->n_counter; ++i) {
1263                         if (is_limited_pmc(i + 1))
1264                                 continue;
1265                         val = read_pmc(i + 1);
1266                         if ((int)val < 0)
1267                                 write_pmc(i + 1, 0);
1268                 }
1269         }
1270
1271         /*
1272          * Reset MMCR0 to its normal value.  This will set PMXE and
1273          * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1274          * and thus allow interrupts to occur again.
1275          * XXX might want to use MSR.PM to keep the counters frozen until
1276          * we get back out of this interrupt.
1277          */
1278         write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1279
1280         if (nmi)
1281                 nmi_exit();
1282         else
1283                 irq_exit();
1284 }
1285
1286 void hw_perf_counter_setup(int cpu)
1287 {
1288         struct cpu_hw_counters *cpuhw = &per_cpu(cpu_hw_counters, cpu);
1289
1290         if (!ppmu)
1291                 return;
1292         memset(cpuhw, 0, sizeof(*cpuhw));
1293         cpuhw->mmcr[0] = MMCR0_FC;
1294 }
1295
1296 int register_power_pmu(struct power_pmu *pmu)
1297 {
1298         if (ppmu)
1299                 return -EBUSY;          /* something's already registered */
1300
1301         ppmu = pmu;
1302         pr_info("%s performance monitor hardware support registered\n",
1303                 pmu->name);
1304
1305 #ifdef MSR_HV
1306         /*
1307          * Use FCHV to ignore kernel events if MSR.HV is set.
1308          */
1309         if (mfmsr() & MSR_HV)
1310                 freeze_counters_kernel = MMCR0_FCHV;
1311 #endif /* CONFIG_PPC64 */
1312
1313         return 0;
1314 }