Merge branch 'timers-cleanup-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / arch / powerpc / kernel / e500-pmu.c
1 /*
2  * Performance counter support for e500 family processors.
3  *
4  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5  * Copyright 2010 Freescale Semiconductor, Inc.
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12 #include <linux/string.h>
13 #include <linux/perf_event.h>
14 #include <asm/reg.h>
15 #include <asm/cputable.h>
16
17 /*
18  * Map of generic hardware event types to hardware events
19  * Zero if unsupported
20  */
21 static int e500_generic_events[] = {
22         [PERF_COUNT_HW_CPU_CYCLES] = 1,
23         [PERF_COUNT_HW_INSTRUCTIONS] = 2,
24         [PERF_COUNT_HW_CACHE_MISSES] = 41, /* Data L1 cache reloads */
25         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 12,
26         [PERF_COUNT_HW_BRANCH_MISSES] = 15,
27 };
28
29 #define C(x)    PERF_COUNT_HW_CACHE_##x
30
31 /*
32  * Table of generalized cache-related events.
33  * 0 means not supported, -1 means nonsensical, other values
34  * are event codes.
35  */
36 static int e500_cache_events[C(MAX)][C(OP_MAX)][C(RESULT_MAX)] = {
37         /*
38          * D-cache misses are not split into read/write/prefetch;
39          * use raw event 41.
40          */
41         [C(L1D)] = {            /*      RESULT_ACCESS   RESULT_MISS */
42                 [C(OP_READ)] = {        27,             0       },
43                 [C(OP_WRITE)] = {       28,             0       },
44                 [C(OP_PREFETCH)] = {    29,             0       },
45         },
46         [C(L1I)] = {            /*      RESULT_ACCESS   RESULT_MISS */
47                 [C(OP_READ)] = {        2,              60      },
48                 [C(OP_WRITE)] = {       -1,             -1      },
49                 [C(OP_PREFETCH)] = {    0,              0       },
50         },
51         /*
52          * Assuming LL means L2, it's not a good match for this model.
53          * It allocates only on L1 castout or explicit prefetch, and
54          * does not have separate read/write events (but it does have
55          * separate instruction/data events).
56          */
57         [C(LL)] = {             /*      RESULT_ACCESS   RESULT_MISS */
58                 [C(OP_READ)] = {        0,              0       },
59                 [C(OP_WRITE)] = {       0,              0       },
60                 [C(OP_PREFETCH)] = {    0,              0       },
61         },
62         /*
63          * There are data/instruction MMU misses, but that's a miss on
64          * the chip's internal level-one TLB which is probably not
65          * what the user wants.  Instead, unified level-two TLB misses
66          * are reported here.
67          */
68         [C(DTLB)] = {           /*      RESULT_ACCESS   RESULT_MISS */
69                 [C(OP_READ)] = {        26,             66      },
70                 [C(OP_WRITE)] = {       -1,             -1      },
71                 [C(OP_PREFETCH)] = {    -1,             -1      },
72         },
73         [C(BPU)] = {            /*      RESULT_ACCESS   RESULT_MISS */
74                 [C(OP_READ)] = {        12,             15      },
75                 [C(OP_WRITE)] = {       -1,             -1      },
76                 [C(OP_PREFETCH)] = {    -1,             -1      },
77         },
78         [C(NODE)] = {           /*      RESULT_ACCESS   RESULT_MISS */
79                 [C(OP_READ)] = {        -1,             -1      },
80                 [C(OP_WRITE)] = {       -1,             -1      },
81                 [C(OP_PREFETCH)] = {    -1,             -1      },
82         },
83 };
84
85 static int num_events = 128;
86
87 /* Upper half of event id is PMLCb, for threshold events */
88 static u64 e500_xlate_event(u64 event_id)
89 {
90         u32 event_low = (u32)event_id;
91         u64 ret;
92
93         if (event_low >= num_events)
94                 return 0;
95
96         ret = FSL_EMB_EVENT_VALID;
97
98         if (event_low >= 76 && event_low <= 81) {
99                 ret |= FSL_EMB_EVENT_RESTRICTED;
100                 ret |= event_id &
101                        (FSL_EMB_EVENT_THRESHMUL | FSL_EMB_EVENT_THRESH);
102         } else if (event_id &
103                    (FSL_EMB_EVENT_THRESHMUL | FSL_EMB_EVENT_THRESH)) {
104                 /* Threshold requested on non-threshold event */
105                 return 0;
106         }
107
108         return ret;
109 }
110
111 static struct fsl_emb_pmu e500_pmu = {
112         .name                   = "e500 family",
113         .n_counter              = 4,
114         .n_restricted           = 2,
115         .xlate_event            = e500_xlate_event,
116         .n_generic              = ARRAY_SIZE(e500_generic_events),
117         .generic_events         = e500_generic_events,
118         .cache_events           = &e500_cache_events,
119 };
120
121 static int init_e500_pmu(void)
122 {
123         if (!cur_cpu_spec->oprofile_cpu_type)
124                 return -ENODEV;
125
126         if (!strcmp(cur_cpu_spec->oprofile_cpu_type, "ppc/e500mc"))
127                 num_events = 256;
128         else if (strcmp(cur_cpu_spec->oprofile_cpu_type, "ppc/e500"))
129                 return -ENODEV;
130
131         return register_fsl_emb_pmu(&e500_pmu);
132 }
133
134 early_initcall(init_e500_pmu);