Merge branches 'core-fixes-for-linus' and 'irq-fixes-for-linus' of git://git.kernel...
[pandora-kernel.git] / arch / parisc / mm / init.c
1 /*
2  *  linux/arch/parisc/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright 1999 SuSE GmbH
6  *    changed by Philipp Rumpf
7  *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8  *  Copyright 2004 Randolph Chung (tausq@debian.org)
9  *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
10  *
11  */
12
13
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/bootmem.h>
17 #include <linux/gfp.h>
18 #include <linux/delay.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>          /* for hppa_dma_ops and pcxl_dma_ops */
21 #include <linux/initrd.h>
22 #include <linux/swap.h>
23 #include <linux/unistd.h>
24 #include <linux/nodemask.h>     /* for node_online_map */
25 #include <linux/pagemap.h>      /* for release_pages and page_cache_release */
26
27 #include <asm/pgalloc.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30 #include <asm/pdc_chassis.h>
31 #include <asm/mmzone.h>
32 #include <asm/sections.h>
33
34 extern int  data_start;
35
36 #ifdef CONFIG_DISCONTIGMEM
37 struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
38 unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
39 #endif
40
41 static struct resource data_resource = {
42         .name   = "Kernel data",
43         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
44 };
45
46 static struct resource code_resource = {
47         .name   = "Kernel code",
48         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
49 };
50
51 static struct resource pdcdata_resource = {
52         .name   = "PDC data (Page Zero)",
53         .start  = 0,
54         .end    = 0x9ff,
55         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
56 };
57
58 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
59
60 /* The following array is initialized from the firmware specific
61  * information retrieved in kernel/inventory.c.
62  */
63
64 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
65 int npmem_ranges __read_mostly;
66
67 #ifdef CONFIG_64BIT
68 #define MAX_MEM         (~0UL)
69 #else /* !CONFIG_64BIT */
70 #define MAX_MEM         (3584U*1024U*1024U)
71 #endif /* !CONFIG_64BIT */
72
73 static unsigned long mem_limit __read_mostly = MAX_MEM;
74
75 static void __init mem_limit_func(void)
76 {
77         char *cp, *end;
78         unsigned long limit;
79
80         /* We need this before __setup() functions are called */
81
82         limit = MAX_MEM;
83         for (cp = boot_command_line; *cp; ) {
84                 if (memcmp(cp, "mem=", 4) == 0) {
85                         cp += 4;
86                         limit = memparse(cp, &end);
87                         if (end != cp)
88                                 break;
89                         cp = end;
90                 } else {
91                         while (*cp != ' ' && *cp)
92                                 ++cp;
93                         while (*cp == ' ')
94                                 ++cp;
95                 }
96         }
97
98         if (limit < mem_limit)
99                 mem_limit = limit;
100 }
101
102 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
103
104 static void __init setup_bootmem(void)
105 {
106         unsigned long bootmap_size;
107         unsigned long mem_max;
108         unsigned long bootmap_pages;
109         unsigned long bootmap_start_pfn;
110         unsigned long bootmap_pfn;
111 #ifndef CONFIG_DISCONTIGMEM
112         physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
113         int npmem_holes;
114 #endif
115         int i, sysram_resource_count;
116
117         disable_sr_hashing(); /* Turn off space register hashing */
118
119         /*
120          * Sort the ranges. Since the number of ranges is typically
121          * small, and performance is not an issue here, just do
122          * a simple insertion sort.
123          */
124
125         for (i = 1; i < npmem_ranges; i++) {
126                 int j;
127
128                 for (j = i; j > 0; j--) {
129                         unsigned long tmp;
130
131                         if (pmem_ranges[j-1].start_pfn <
132                             pmem_ranges[j].start_pfn) {
133
134                                 break;
135                         }
136                         tmp = pmem_ranges[j-1].start_pfn;
137                         pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
138                         pmem_ranges[j].start_pfn = tmp;
139                         tmp = pmem_ranges[j-1].pages;
140                         pmem_ranges[j-1].pages = pmem_ranges[j].pages;
141                         pmem_ranges[j].pages = tmp;
142                 }
143         }
144
145 #ifndef CONFIG_DISCONTIGMEM
146         /*
147          * Throw out ranges that are too far apart (controlled by
148          * MAX_GAP).
149          */
150
151         for (i = 1; i < npmem_ranges; i++) {
152                 if (pmem_ranges[i].start_pfn -
153                         (pmem_ranges[i-1].start_pfn +
154                          pmem_ranges[i-1].pages) > MAX_GAP) {
155                         npmem_ranges = i;
156                         printk("Large gap in memory detected (%ld pages). "
157                                "Consider turning on CONFIG_DISCONTIGMEM\n",
158                                pmem_ranges[i].start_pfn -
159                                (pmem_ranges[i-1].start_pfn +
160                                 pmem_ranges[i-1].pages));
161                         break;
162                 }
163         }
164 #endif
165
166         if (npmem_ranges > 1) {
167
168                 /* Print the memory ranges */
169
170                 printk(KERN_INFO "Memory Ranges:\n");
171
172                 for (i = 0; i < npmem_ranges; i++) {
173                         unsigned long start;
174                         unsigned long size;
175
176                         size = (pmem_ranges[i].pages << PAGE_SHIFT);
177                         start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
178                         printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
179                                 i,start, start + (size - 1), size >> 20);
180                 }
181         }
182
183         sysram_resource_count = npmem_ranges;
184         for (i = 0; i < sysram_resource_count; i++) {
185                 struct resource *res = &sysram_resources[i];
186                 res->name = "System RAM";
187                 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
188                 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
189                 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
190                 request_resource(&iomem_resource, res);
191         }
192
193         /*
194          * For 32 bit kernels we limit the amount of memory we can
195          * support, in order to preserve enough kernel address space
196          * for other purposes. For 64 bit kernels we don't normally
197          * limit the memory, but this mechanism can be used to
198          * artificially limit the amount of memory (and it is written
199          * to work with multiple memory ranges).
200          */
201
202         mem_limit_func();       /* check for "mem=" argument */
203
204         mem_max = 0;
205         num_physpages = 0;
206         for (i = 0; i < npmem_ranges; i++) {
207                 unsigned long rsize;
208
209                 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
210                 if ((mem_max + rsize) > mem_limit) {
211                         printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
212                         if (mem_max == mem_limit)
213                                 npmem_ranges = i;
214                         else {
215                                 pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
216                                                        - (mem_max >> PAGE_SHIFT);
217                                 npmem_ranges = i + 1;
218                                 mem_max = mem_limit;
219                         }
220                 num_physpages += pmem_ranges[i].pages;
221                         break;
222                 }
223             num_physpages += pmem_ranges[i].pages;
224                 mem_max += rsize;
225         }
226
227         printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
228
229 #ifndef CONFIG_DISCONTIGMEM
230         /* Merge the ranges, keeping track of the holes */
231
232         {
233                 unsigned long end_pfn;
234                 unsigned long hole_pages;
235
236                 npmem_holes = 0;
237                 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
238                 for (i = 1; i < npmem_ranges; i++) {
239
240                         hole_pages = pmem_ranges[i].start_pfn - end_pfn;
241                         if (hole_pages) {
242                                 pmem_holes[npmem_holes].start_pfn = end_pfn;
243                                 pmem_holes[npmem_holes++].pages = hole_pages;
244                                 end_pfn += hole_pages;
245                         }
246                         end_pfn += pmem_ranges[i].pages;
247                 }
248
249                 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
250                 npmem_ranges = 1;
251         }
252 #endif
253
254         bootmap_pages = 0;
255         for (i = 0; i < npmem_ranges; i++)
256                 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
257
258         bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
259
260 #ifdef CONFIG_DISCONTIGMEM
261         for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
262                 memset(NODE_DATA(i), 0, sizeof(pg_data_t));
263                 NODE_DATA(i)->bdata = &bootmem_node_data[i];
264         }
265         memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
266
267         for (i = 0; i < npmem_ranges; i++) {
268                 node_set_state(i, N_NORMAL_MEMORY);
269                 node_set_online(i);
270         }
271 #endif
272
273         /*
274          * Initialize and free the full range of memory in each range.
275          * Note that the only writing these routines do are to the bootmap,
276          * and we've made sure to locate the bootmap properly so that they
277          * won't be writing over anything important.
278          */
279
280         bootmap_pfn = bootmap_start_pfn;
281         max_pfn = 0;
282         for (i = 0; i < npmem_ranges; i++) {
283                 unsigned long start_pfn;
284                 unsigned long npages;
285
286                 start_pfn = pmem_ranges[i].start_pfn;
287                 npages = pmem_ranges[i].pages;
288
289                 bootmap_size = init_bootmem_node(NODE_DATA(i),
290                                                 bootmap_pfn,
291                                                 start_pfn,
292                                                 (start_pfn + npages) );
293                 free_bootmem_node(NODE_DATA(i),
294                                   (start_pfn << PAGE_SHIFT),
295                                   (npages << PAGE_SHIFT) );
296                 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
297                 if ((start_pfn + npages) > max_pfn)
298                         max_pfn = start_pfn + npages;
299         }
300
301         /* IOMMU is always used to access "high mem" on those boxes
302          * that can support enough mem that a PCI device couldn't
303          * directly DMA to any physical addresses.
304          * ISA DMA support will need to revisit this.
305          */
306         max_low_pfn = max_pfn;
307
308         /* bootmap sizing messed up? */
309         BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages);
310
311         /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
312
313 #define PDC_CONSOLE_IO_IODC_SIZE 32768
314
315         reserve_bootmem_node(NODE_DATA(0), 0UL,
316                         (unsigned long)(PAGE0->mem_free +
317                                 PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
318         reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text),
319                         (unsigned long)(_end - _text), BOOTMEM_DEFAULT);
320         reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
321                         ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
322                         BOOTMEM_DEFAULT);
323
324 #ifndef CONFIG_DISCONTIGMEM
325
326         /* reserve the holes */
327
328         for (i = 0; i < npmem_holes; i++) {
329                 reserve_bootmem_node(NODE_DATA(0),
330                                 (pmem_holes[i].start_pfn << PAGE_SHIFT),
331                                 (pmem_holes[i].pages << PAGE_SHIFT),
332                                 BOOTMEM_DEFAULT);
333         }
334 #endif
335
336 #ifdef CONFIG_BLK_DEV_INITRD
337         if (initrd_start) {
338                 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
339                 if (__pa(initrd_start) < mem_max) {
340                         unsigned long initrd_reserve;
341
342                         if (__pa(initrd_end) > mem_max) {
343                                 initrd_reserve = mem_max - __pa(initrd_start);
344                         } else {
345                                 initrd_reserve = initrd_end - initrd_start;
346                         }
347                         initrd_below_start_ok = 1;
348                         printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
349
350                         reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
351                                         initrd_reserve, BOOTMEM_DEFAULT);
352                 }
353         }
354 #endif
355
356         data_resource.start =  virt_to_phys(&data_start);
357         data_resource.end = virt_to_phys(_end) - 1;
358         code_resource.start = virt_to_phys(_text);
359         code_resource.end = virt_to_phys(&data_start)-1;
360
361         /* We don't know which region the kernel will be in, so try
362          * all of them.
363          */
364         for (i = 0; i < sysram_resource_count; i++) {
365                 struct resource *res = &sysram_resources[i];
366                 request_resource(res, &code_resource);
367                 request_resource(res, &data_resource);
368         }
369         request_resource(&sysram_resources[0], &pdcdata_resource);
370 }
371
372 static void __init map_pages(unsigned long start_vaddr,
373                              unsigned long start_paddr, unsigned long size,
374                              pgprot_t pgprot, int force)
375 {
376         pgd_t *pg_dir;
377         pmd_t *pmd;
378         pte_t *pg_table;
379         unsigned long end_paddr;
380         unsigned long start_pmd;
381         unsigned long start_pte;
382         unsigned long tmp1;
383         unsigned long tmp2;
384         unsigned long address;
385         unsigned long vaddr;
386         unsigned long ro_start;
387         unsigned long ro_end;
388         unsigned long fv_addr;
389         unsigned long gw_addr;
390         extern const unsigned long fault_vector_20;
391         extern void * const linux_gateway_page;
392
393         ro_start = __pa((unsigned long)_text);
394         ro_end   = __pa((unsigned long)&data_start);
395         fv_addr  = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
396         gw_addr  = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
397
398         end_paddr = start_paddr + size;
399
400         pg_dir = pgd_offset_k(start_vaddr);
401
402 #if PTRS_PER_PMD == 1
403         start_pmd = 0;
404 #else
405         start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
406 #endif
407         start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
408
409         address = start_paddr;
410         vaddr = start_vaddr;
411         while (address < end_paddr) {
412 #if PTRS_PER_PMD == 1
413                 pmd = (pmd_t *)__pa(pg_dir);
414 #else
415                 pmd = (pmd_t *)pgd_address(*pg_dir);
416
417                 /*
418                  * pmd is physical at this point
419                  */
420
421                 if (!pmd) {
422                         pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER);
423                         pmd = (pmd_t *) __pa(pmd);
424                 }
425
426                 pgd_populate(NULL, pg_dir, __va(pmd));
427 #endif
428                 pg_dir++;
429
430                 /* now change pmd to kernel virtual addresses */
431
432                 pmd = (pmd_t *)__va(pmd) + start_pmd;
433                 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
434
435                         /*
436                          * pg_table is physical at this point
437                          */
438
439                         pg_table = (pte_t *)pmd_address(*pmd);
440                         if (!pg_table) {
441                                 pg_table = (pte_t *)
442                                         alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE);
443                                 pg_table = (pte_t *) __pa(pg_table);
444                         }
445
446                         pmd_populate_kernel(NULL, pmd, __va(pg_table));
447
448                         /* now change pg_table to kernel virtual addresses */
449
450                         pg_table = (pte_t *) __va(pg_table) + start_pte;
451                         for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
452                                 pte_t pte;
453
454                                 /*
455                                  * Map the fault vector writable so we can
456                                  * write the HPMC checksum.
457                                  */
458                                 if (force)
459                                         pte =  __mk_pte(address, pgprot);
460                                 else if (core_kernel_text(vaddr) &&
461                                          address != fv_addr)
462                                         pte = __mk_pte(address, PAGE_KERNEL_EXEC);
463                                 else
464 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
465                                 if (address >= ro_start && address < ro_end
466                                                         && address != fv_addr
467                                                         && address != gw_addr)
468                                         pte = __mk_pte(address, PAGE_KERNEL_RO);
469                                 else
470 #endif
471                                         pte = __mk_pte(address, pgprot);
472
473                                 if (address >= end_paddr) {
474                                         if (force)
475                                                 break;
476                                         else
477                                                 pte_val(pte) = 0;
478                                 }
479
480                                 set_pte(pg_table, pte);
481
482                                 address += PAGE_SIZE;
483                                 vaddr += PAGE_SIZE;
484                         }
485                         start_pte = 0;
486
487                         if (address >= end_paddr)
488                             break;
489                 }
490                 start_pmd = 0;
491         }
492 }
493
494 void free_initmem(void)
495 {
496         unsigned long addr;
497         unsigned long init_begin = (unsigned long)__init_begin;
498         unsigned long init_end = (unsigned long)__init_end;
499
500         /* The init text pages are marked R-X.  We have to
501          * flush the icache and mark them RW-
502          *
503          * This is tricky, because map_pages is in the init section.
504          * Do a dummy remap of the data section first (the data
505          * section is already PAGE_KERNEL) to pull in the TLB entries
506          * for map_kernel */
507         map_pages(init_begin, __pa(init_begin), init_end - init_begin,
508                   PAGE_KERNEL_RWX, 1);
509         /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
510          * map_pages */
511         map_pages(init_begin, __pa(init_begin), init_end - init_begin,
512                   PAGE_KERNEL, 1);
513
514         /* force the kernel to see the new TLB entries */
515         __flush_tlb_range(0, init_begin, init_end);
516         /* Attempt to catch anyone trying to execute code here
517          * by filling the page with BRK insns.
518          */
519         memset((void *)init_begin, 0x00, init_end - init_begin);
520         /* finally dump all the instructions which were cached, since the
521          * pages are no-longer executable */
522         flush_icache_range(init_begin, init_end);
523         
524         for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) {
525                 ClearPageReserved(virt_to_page(addr));
526                 init_page_count(virt_to_page(addr));
527                 free_page(addr);
528                 num_physpages++;
529                 totalram_pages++;
530         }
531
532         /* set up a new led state on systems shipped LED State panel */
533         pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
534         
535         printk(KERN_INFO "Freeing unused kernel memory: %luk freed\n",
536                 (init_end - init_begin) >> 10);
537 }
538
539
540 #ifdef CONFIG_DEBUG_RODATA
541 void mark_rodata_ro(void)
542 {
543         /* rodata memory was already mapped with KERNEL_RO access rights by
544            pagetable_init() and map_pages(). No need to do additional stuff here */
545         printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
546                 (unsigned long)(__end_rodata - __start_rodata) >> 10);
547 }
548 #endif
549
550
551 /*
552  * Just an arbitrary offset to serve as a "hole" between mapping areas
553  * (between top of physical memory and a potential pcxl dma mapping
554  * area, and below the vmalloc mapping area).
555  *
556  * The current 32K value just means that there will be a 32K "hole"
557  * between mapping areas. That means that  any out-of-bounds memory
558  * accesses will hopefully be caught. The vmalloc() routines leaves
559  * a hole of 4kB between each vmalloced area for the same reason.
560  */
561
562  /* Leave room for gateway page expansion */
563 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
564 #error KERNEL_MAP_START is in gateway reserved region
565 #endif
566 #define MAP_START (KERNEL_MAP_START)
567
568 #define VM_MAP_OFFSET  (32*1024)
569 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
570                                      & ~(VM_MAP_OFFSET-1)))
571
572 void *parisc_vmalloc_start __read_mostly;
573 EXPORT_SYMBOL(parisc_vmalloc_start);
574
575 #ifdef CONFIG_PA11
576 unsigned long pcxl_dma_start __read_mostly;
577 #endif
578
579 void __init mem_init(void)
580 {
581         int codesize, reservedpages, datasize, initsize;
582
583         /* Do sanity checks on page table constants */
584         BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
585         BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
586         BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
587         BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
588                         > BITS_PER_LONG);
589
590         high_memory = __va((max_pfn << PAGE_SHIFT));
591
592 #ifndef CONFIG_DISCONTIGMEM
593         max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
594         totalram_pages += free_all_bootmem();
595 #else
596         {
597                 int i;
598
599                 for (i = 0; i < npmem_ranges; i++)
600                         totalram_pages += free_all_bootmem_node(NODE_DATA(i));
601         }
602 #endif
603
604         codesize = (unsigned long)_etext - (unsigned long)_text;
605         datasize = (unsigned long)_edata - (unsigned long)_etext;
606         initsize = (unsigned long)__init_end - (unsigned long)__init_begin;
607
608         reservedpages = 0;
609 {
610         unsigned long pfn;
611 #ifdef CONFIG_DISCONTIGMEM
612         int i;
613
614         for (i = 0; i < npmem_ranges; i++) {
615                 for (pfn = node_start_pfn(i); pfn < node_end_pfn(i); pfn++) {
616                         if (PageReserved(pfn_to_page(pfn)))
617                                 reservedpages++;
618                 }
619         }
620 #else /* !CONFIG_DISCONTIGMEM */
621         for (pfn = 0; pfn < max_pfn; pfn++) {
622                 /*
623                  * Only count reserved RAM pages
624                  */
625                 if (PageReserved(pfn_to_page(pfn)))
626                         reservedpages++;
627         }
628 #endif
629 }
630
631 #ifdef CONFIG_PA11
632         if (hppa_dma_ops == &pcxl_dma_ops) {
633                 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
634                 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
635                                                 + PCXL_DMA_MAP_SIZE);
636         } else {
637                 pcxl_dma_start = 0;
638                 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
639         }
640 #else
641         parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
642 #endif
643
644         printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n",
645                 nr_free_pages() << (PAGE_SHIFT-10),
646                 num_physpages << (PAGE_SHIFT-10),
647                 codesize >> 10,
648                 reservedpages << (PAGE_SHIFT-10),
649                 datasize >> 10,
650                 initsize >> 10
651         );
652
653 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
654         printk("virtual kernel memory layout:\n"
655                "    vmalloc : 0x%p - 0x%p   (%4ld MB)\n"
656                "    memory  : 0x%p - 0x%p   (%4ld MB)\n"
657                "      .init : 0x%p - 0x%p   (%4ld kB)\n"
658                "      .data : 0x%p - 0x%p   (%4ld kB)\n"
659                "      .text : 0x%p - 0x%p   (%4ld kB)\n",
660
661                (void*)VMALLOC_START, (void*)VMALLOC_END,
662                (VMALLOC_END - VMALLOC_START) >> 20,
663
664                __va(0), high_memory,
665                ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
666
667                __init_begin, __init_end,
668                ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
669
670                _etext, _edata,
671                ((unsigned long)_edata - (unsigned long)_etext) >> 10,
672
673                _text, _etext,
674                ((unsigned long)_etext - (unsigned long)_text) >> 10);
675 #endif
676 }
677
678 unsigned long *empty_zero_page __read_mostly;
679 EXPORT_SYMBOL(empty_zero_page);
680
681 void show_mem(unsigned int filter)
682 {
683         int i,free = 0,total = 0,reserved = 0;
684         int shared = 0, cached = 0;
685
686         printk(KERN_INFO "Mem-info:\n");
687         show_free_areas(filter);
688 #ifndef CONFIG_DISCONTIGMEM
689         i = max_mapnr;
690         while (i-- > 0) {
691                 total++;
692                 if (PageReserved(mem_map+i))
693                         reserved++;
694                 else if (PageSwapCache(mem_map+i))
695                         cached++;
696                 else if (!page_count(&mem_map[i]))
697                         free++;
698                 else
699                         shared += page_count(&mem_map[i]) - 1;
700         }
701 #else
702         for (i = 0; i < npmem_ranges; i++) {
703                 int j;
704
705                 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
706                         struct page *p;
707                         unsigned long flags;
708
709                         pgdat_resize_lock(NODE_DATA(i), &flags);
710                         p = nid_page_nr(i, j) - node_start_pfn(i);
711
712                         total++;
713                         if (PageReserved(p))
714                                 reserved++;
715                         else if (PageSwapCache(p))
716                                 cached++;
717                         else if (!page_count(p))
718                                 free++;
719                         else
720                                 shared += page_count(p) - 1;
721                         pgdat_resize_unlock(NODE_DATA(i), &flags);
722                 }
723         }
724 #endif
725         printk(KERN_INFO "%d pages of RAM\n", total);
726         printk(KERN_INFO "%d reserved pages\n", reserved);
727         printk(KERN_INFO "%d pages shared\n", shared);
728         printk(KERN_INFO "%d pages swap cached\n", cached);
729
730
731 #ifdef CONFIG_DISCONTIGMEM
732         {
733                 struct zonelist *zl;
734                 int i, j;
735
736                 for (i = 0; i < npmem_ranges; i++) {
737                         zl = node_zonelist(i, 0);
738                         for (j = 0; j < MAX_NR_ZONES; j++) {
739                                 struct zoneref *z;
740                                 struct zone *zone;
741
742                                 printk("Zone list for zone %d on node %d: ", j, i);
743                                 for_each_zone_zonelist(zone, z, zl, j)
744                                         printk("[%d/%s] ", zone_to_nid(zone),
745                                                                 zone->name);
746                                 printk("\n");
747                         }
748                 }
749         }
750 #endif
751 }
752
753 /*
754  * pagetable_init() sets up the page tables
755  *
756  * Note that gateway_init() places the Linux gateway page at page 0.
757  * Since gateway pages cannot be dereferenced this has the desirable
758  * side effect of trapping those pesky NULL-reference errors in the
759  * kernel.
760  */
761 static void __init pagetable_init(void)
762 {
763         int range;
764
765         /* Map each physical memory range to its kernel vaddr */
766
767         for (range = 0; range < npmem_ranges; range++) {
768                 unsigned long start_paddr;
769                 unsigned long end_paddr;
770                 unsigned long size;
771
772                 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
773                 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
774                 size = pmem_ranges[range].pages << PAGE_SHIFT;
775
776                 map_pages((unsigned long)__va(start_paddr), start_paddr,
777                           size, PAGE_KERNEL, 0);
778         }
779
780 #ifdef CONFIG_BLK_DEV_INITRD
781         if (initrd_end && initrd_end > mem_limit) {
782                 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
783                 map_pages(initrd_start, __pa(initrd_start),
784                           initrd_end - initrd_start, PAGE_KERNEL, 0);
785         }
786 #endif
787
788         empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
789         memset(empty_zero_page, 0, PAGE_SIZE);
790 }
791
792 static void __init gateway_init(void)
793 {
794         unsigned long linux_gateway_page_addr;
795         /* FIXME: This is 'const' in order to trick the compiler
796            into not treating it as DP-relative data. */
797         extern void * const linux_gateway_page;
798
799         linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
800
801         /*
802          * Setup Linux Gateway page.
803          *
804          * The Linux gateway page will reside in kernel space (on virtual
805          * page 0), so it doesn't need to be aliased into user space.
806          */
807
808         map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
809                   PAGE_SIZE, PAGE_GATEWAY, 1);
810 }
811
812 #ifdef CONFIG_HPUX
813 void
814 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
815 {
816         pgd_t *pg_dir;
817         pmd_t *pmd;
818         pte_t *pg_table;
819         unsigned long start_pmd;
820         unsigned long start_pte;
821         unsigned long address;
822         unsigned long hpux_gw_page_addr;
823         /* FIXME: This is 'const' in order to trick the compiler
824            into not treating it as DP-relative data. */
825         extern void * const hpux_gateway_page;
826
827         hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
828
829         /*
830          * Setup HP-UX Gateway page.
831          *
832          * The HP-UX gateway page resides in the user address space,
833          * so it needs to be aliased into each process.
834          */
835
836         pg_dir = pgd_offset(mm,hpux_gw_page_addr);
837
838 #if PTRS_PER_PMD == 1
839         start_pmd = 0;
840 #else
841         start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
842 #endif
843         start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
844
845         address = __pa(&hpux_gateway_page);
846 #if PTRS_PER_PMD == 1
847         pmd = (pmd_t *)__pa(pg_dir);
848 #else
849         pmd = (pmd_t *) pgd_address(*pg_dir);
850
851         /*
852          * pmd is physical at this point
853          */
854
855         if (!pmd) {
856                 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
857                 pmd = (pmd_t *) __pa(pmd);
858         }
859
860         __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
861 #endif
862         /* now change pmd to kernel virtual addresses */
863
864         pmd = (pmd_t *)__va(pmd) + start_pmd;
865
866         /*
867          * pg_table is physical at this point
868          */
869
870         pg_table = (pte_t *) pmd_address(*pmd);
871         if (!pg_table)
872                 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
873
874         __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
875
876         /* now change pg_table to kernel virtual addresses */
877
878         pg_table = (pte_t *) __va(pg_table) + start_pte;
879         set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
880 }
881 EXPORT_SYMBOL(map_hpux_gateway_page);
882 #endif
883
884 void __init paging_init(void)
885 {
886         int i;
887
888         setup_bootmem();
889         pagetable_init();
890         gateway_init();
891         flush_cache_all_local(); /* start with known state */
892         flush_tlb_all_local(NULL);
893
894         for (i = 0; i < npmem_ranges; i++) {
895                 unsigned long zones_size[MAX_NR_ZONES] = { 0, };
896
897                 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
898
899 #ifdef CONFIG_DISCONTIGMEM
900                 /* Need to initialize the pfnnid_map before we can initialize
901                    the zone */
902                 {
903                     int j;
904                     for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
905                          j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
906                          j++) {
907                         pfnnid_map[j] = i;
908                     }
909                 }
910 #endif
911
912                 free_area_init_node(i, zones_size,
913                                 pmem_ranges[i].start_pfn, NULL);
914         }
915 }
916
917 #ifdef CONFIG_PA20
918
919 /*
920  * Currently, all PA20 chips have 18 bit protection IDs, which is the
921  * limiting factor (space ids are 32 bits).
922  */
923
924 #define NR_SPACE_IDS 262144
925
926 #else
927
928 /*
929  * Currently we have a one-to-one relationship between space IDs and
930  * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
931  * support 15 bit protection IDs, so that is the limiting factor.
932  * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
933  * probably not worth the effort for a special case here.
934  */
935
936 #define NR_SPACE_IDS 32768
937
938 #endif  /* !CONFIG_PA20 */
939
940 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
941 #define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
942
943 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
944 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
945 static unsigned long space_id_index;
946 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
947 static unsigned long dirty_space_ids = 0;
948
949 static DEFINE_SPINLOCK(sid_lock);
950
951 unsigned long alloc_sid(void)
952 {
953         unsigned long index;
954
955         spin_lock(&sid_lock);
956
957         if (free_space_ids == 0) {
958                 if (dirty_space_ids != 0) {
959                         spin_unlock(&sid_lock);
960                         flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
961                         spin_lock(&sid_lock);
962                 }
963                 BUG_ON(free_space_ids == 0);
964         }
965
966         free_space_ids--;
967
968         index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
969         space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
970         space_id_index = index;
971
972         spin_unlock(&sid_lock);
973
974         return index << SPACEID_SHIFT;
975 }
976
977 void free_sid(unsigned long spaceid)
978 {
979         unsigned long index = spaceid >> SPACEID_SHIFT;
980         unsigned long *dirty_space_offset;
981
982         dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
983         index &= (BITS_PER_LONG - 1);
984
985         spin_lock(&sid_lock);
986
987         BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
988
989         *dirty_space_offset |= (1L << index);
990         dirty_space_ids++;
991
992         spin_unlock(&sid_lock);
993 }
994
995
996 #ifdef CONFIG_SMP
997 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
998 {
999         int i;
1000
1001         /* NOTE: sid_lock must be held upon entry */
1002
1003         *ndirtyptr = dirty_space_ids;
1004         if (dirty_space_ids != 0) {
1005             for (i = 0; i < SID_ARRAY_SIZE; i++) {
1006                 dirty_array[i] = dirty_space_id[i];
1007                 dirty_space_id[i] = 0;
1008             }
1009             dirty_space_ids = 0;
1010         }
1011
1012         return;
1013 }
1014
1015 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
1016 {
1017         int i;
1018
1019         /* NOTE: sid_lock must be held upon entry */
1020
1021         if (ndirty != 0) {
1022                 for (i = 0; i < SID_ARRAY_SIZE; i++) {
1023                         space_id[i] ^= dirty_array[i];
1024                 }
1025
1026                 free_space_ids += ndirty;
1027                 space_id_index = 0;
1028         }
1029 }
1030
1031 #else /* CONFIG_SMP */
1032
1033 static void recycle_sids(void)
1034 {
1035         int i;
1036
1037         /* NOTE: sid_lock must be held upon entry */
1038
1039         if (dirty_space_ids != 0) {
1040                 for (i = 0; i < SID_ARRAY_SIZE; i++) {
1041                         space_id[i] ^= dirty_space_id[i];
1042                         dirty_space_id[i] = 0;
1043                 }
1044
1045                 free_space_ids += dirty_space_ids;
1046                 dirty_space_ids = 0;
1047                 space_id_index = 0;
1048         }
1049 }
1050 #endif
1051
1052 /*
1053  * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
1054  * purged, we can safely reuse the space ids that were released but
1055  * not flushed from the tlb.
1056  */
1057
1058 #ifdef CONFIG_SMP
1059
1060 static unsigned long recycle_ndirty;
1061 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
1062 static unsigned int recycle_inuse;
1063
1064 void flush_tlb_all(void)
1065 {
1066         int do_recycle;
1067
1068         do_recycle = 0;
1069         spin_lock(&sid_lock);
1070         if (dirty_space_ids > RECYCLE_THRESHOLD) {
1071             BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
1072             get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
1073             recycle_inuse++;
1074             do_recycle++;
1075         }
1076         spin_unlock(&sid_lock);
1077         on_each_cpu(flush_tlb_all_local, NULL, 1);
1078         if (do_recycle) {
1079             spin_lock(&sid_lock);
1080             recycle_sids(recycle_ndirty,recycle_dirty_array);
1081             recycle_inuse = 0;
1082             spin_unlock(&sid_lock);
1083         }
1084 }
1085 #else
1086 void flush_tlb_all(void)
1087 {
1088         spin_lock(&sid_lock);
1089         flush_tlb_all_local(NULL);
1090         recycle_sids();
1091         spin_unlock(&sid_lock);
1092 }
1093 #endif
1094
1095 #ifdef CONFIG_BLK_DEV_INITRD
1096 void free_initrd_mem(unsigned long start, unsigned long end)
1097 {
1098         if (start >= end)
1099                 return;
1100         printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1101         for (; start < end; start += PAGE_SIZE) {
1102                 ClearPageReserved(virt_to_page(start));
1103                 init_page_count(virt_to_page(start));
1104                 free_page(start);
1105                 num_physpages++;
1106                 totalram_pages++;
1107         }
1108 }
1109 #endif