Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs
[pandora-kernel.git] / arch / parisc / mm / init.c
1 /*
2  *  linux/arch/parisc/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright 1999 SuSE GmbH
6  *    changed by Philipp Rumpf
7  *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8  *  Copyright 2004 Randolph Chung (tausq@debian.org)
9  *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
10  *
11  */
12
13
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/bootmem.h>
17 #include <linux/gfp.h>
18 #include <linux/delay.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>          /* for hppa_dma_ops and pcxl_dma_ops */
21 #include <linux/initrd.h>
22 #include <linux/swap.h>
23 #include <linux/unistd.h>
24 #include <linux/nodemask.h>     /* for node_online_map */
25 #include <linux/pagemap.h>      /* for release_pages and page_cache_release */
26
27 #include <asm/pgalloc.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30 #include <asm/pdc_chassis.h>
31 #include <asm/mmzone.h>
32 #include <asm/sections.h>
33
34 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
35
36 extern int  data_start;
37
38 #ifdef CONFIG_DISCONTIGMEM
39 struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
40 unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
41 #endif
42
43 static struct resource data_resource = {
44         .name   = "Kernel data",
45         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
46 };
47
48 static struct resource code_resource = {
49         .name   = "Kernel code",
50         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
51 };
52
53 static struct resource pdcdata_resource = {
54         .name   = "PDC data (Page Zero)",
55         .start  = 0,
56         .end    = 0x9ff,
57         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
58 };
59
60 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
61
62 /* The following array is initialized from the firmware specific
63  * information retrieved in kernel/inventory.c.
64  */
65
66 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
67 int npmem_ranges __read_mostly;
68
69 #ifdef CONFIG_64BIT
70 #define MAX_MEM         (~0UL)
71 #else /* !CONFIG_64BIT */
72 #define MAX_MEM         (3584U*1024U*1024U)
73 #endif /* !CONFIG_64BIT */
74
75 static unsigned long mem_limit __read_mostly = MAX_MEM;
76
77 static void __init mem_limit_func(void)
78 {
79         char *cp, *end;
80         unsigned long limit;
81
82         /* We need this before __setup() functions are called */
83
84         limit = MAX_MEM;
85         for (cp = boot_command_line; *cp; ) {
86                 if (memcmp(cp, "mem=", 4) == 0) {
87                         cp += 4;
88                         limit = memparse(cp, &end);
89                         if (end != cp)
90                                 break;
91                         cp = end;
92                 } else {
93                         while (*cp != ' ' && *cp)
94                                 ++cp;
95                         while (*cp == ' ')
96                                 ++cp;
97                 }
98         }
99
100         if (limit < mem_limit)
101                 mem_limit = limit;
102 }
103
104 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
105
106 static void __init setup_bootmem(void)
107 {
108         unsigned long bootmap_size;
109         unsigned long mem_max;
110         unsigned long bootmap_pages;
111         unsigned long bootmap_start_pfn;
112         unsigned long bootmap_pfn;
113 #ifndef CONFIG_DISCONTIGMEM
114         physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
115         int npmem_holes;
116 #endif
117         int i, sysram_resource_count;
118
119         disable_sr_hashing(); /* Turn off space register hashing */
120
121         /*
122          * Sort the ranges. Since the number of ranges is typically
123          * small, and performance is not an issue here, just do
124          * a simple insertion sort.
125          */
126
127         for (i = 1; i < npmem_ranges; i++) {
128                 int j;
129
130                 for (j = i; j > 0; j--) {
131                         unsigned long tmp;
132
133                         if (pmem_ranges[j-1].start_pfn <
134                             pmem_ranges[j].start_pfn) {
135
136                                 break;
137                         }
138                         tmp = pmem_ranges[j-1].start_pfn;
139                         pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
140                         pmem_ranges[j].start_pfn = tmp;
141                         tmp = pmem_ranges[j-1].pages;
142                         pmem_ranges[j-1].pages = pmem_ranges[j].pages;
143                         pmem_ranges[j].pages = tmp;
144                 }
145         }
146
147 #ifndef CONFIG_DISCONTIGMEM
148         /*
149          * Throw out ranges that are too far apart (controlled by
150          * MAX_GAP).
151          */
152
153         for (i = 1; i < npmem_ranges; i++) {
154                 if (pmem_ranges[i].start_pfn -
155                         (pmem_ranges[i-1].start_pfn +
156                          pmem_ranges[i-1].pages) > MAX_GAP) {
157                         npmem_ranges = i;
158                         printk("Large gap in memory detected (%ld pages). "
159                                "Consider turning on CONFIG_DISCONTIGMEM\n",
160                                pmem_ranges[i].start_pfn -
161                                (pmem_ranges[i-1].start_pfn +
162                                 pmem_ranges[i-1].pages));
163                         break;
164                 }
165         }
166 #endif
167
168         if (npmem_ranges > 1) {
169
170                 /* Print the memory ranges */
171
172                 printk(KERN_INFO "Memory Ranges:\n");
173
174                 for (i = 0; i < npmem_ranges; i++) {
175                         unsigned long start;
176                         unsigned long size;
177
178                         size = (pmem_ranges[i].pages << PAGE_SHIFT);
179                         start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
180                         printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
181                                 i,start, start + (size - 1), size >> 20);
182                 }
183         }
184
185         sysram_resource_count = npmem_ranges;
186         for (i = 0; i < sysram_resource_count; i++) {
187                 struct resource *res = &sysram_resources[i];
188                 res->name = "System RAM";
189                 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
190                 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
191                 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
192                 request_resource(&iomem_resource, res);
193         }
194
195         /*
196          * For 32 bit kernels we limit the amount of memory we can
197          * support, in order to preserve enough kernel address space
198          * for other purposes. For 64 bit kernels we don't normally
199          * limit the memory, but this mechanism can be used to
200          * artificially limit the amount of memory (and it is written
201          * to work with multiple memory ranges).
202          */
203
204         mem_limit_func();       /* check for "mem=" argument */
205
206         mem_max = 0;
207         num_physpages = 0;
208         for (i = 0; i < npmem_ranges; i++) {
209                 unsigned long rsize;
210
211                 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
212                 if ((mem_max + rsize) > mem_limit) {
213                         printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
214                         if (mem_max == mem_limit)
215                                 npmem_ranges = i;
216                         else {
217                                 pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
218                                                        - (mem_max >> PAGE_SHIFT);
219                                 npmem_ranges = i + 1;
220                                 mem_max = mem_limit;
221                         }
222                 num_physpages += pmem_ranges[i].pages;
223                         break;
224                 }
225             num_physpages += pmem_ranges[i].pages;
226                 mem_max += rsize;
227         }
228
229         printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
230
231 #ifndef CONFIG_DISCONTIGMEM
232         /* Merge the ranges, keeping track of the holes */
233
234         {
235                 unsigned long end_pfn;
236                 unsigned long hole_pages;
237
238                 npmem_holes = 0;
239                 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
240                 for (i = 1; i < npmem_ranges; i++) {
241
242                         hole_pages = pmem_ranges[i].start_pfn - end_pfn;
243                         if (hole_pages) {
244                                 pmem_holes[npmem_holes].start_pfn = end_pfn;
245                                 pmem_holes[npmem_holes++].pages = hole_pages;
246                                 end_pfn += hole_pages;
247                         }
248                         end_pfn += pmem_ranges[i].pages;
249                 }
250
251                 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
252                 npmem_ranges = 1;
253         }
254 #endif
255
256         bootmap_pages = 0;
257         for (i = 0; i < npmem_ranges; i++)
258                 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
259
260         bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
261
262 #ifdef CONFIG_DISCONTIGMEM
263         for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
264                 memset(NODE_DATA(i), 0, sizeof(pg_data_t));
265                 NODE_DATA(i)->bdata = &bootmem_node_data[i];
266         }
267         memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
268
269         for (i = 0; i < npmem_ranges; i++) {
270                 node_set_state(i, N_NORMAL_MEMORY);
271                 node_set_online(i);
272         }
273 #endif
274
275         /*
276          * Initialize and free the full range of memory in each range.
277          * Note that the only writing these routines do are to the bootmap,
278          * and we've made sure to locate the bootmap properly so that they
279          * won't be writing over anything important.
280          */
281
282         bootmap_pfn = bootmap_start_pfn;
283         max_pfn = 0;
284         for (i = 0; i < npmem_ranges; i++) {
285                 unsigned long start_pfn;
286                 unsigned long npages;
287
288                 start_pfn = pmem_ranges[i].start_pfn;
289                 npages = pmem_ranges[i].pages;
290
291                 bootmap_size = init_bootmem_node(NODE_DATA(i),
292                                                 bootmap_pfn,
293                                                 start_pfn,
294                                                 (start_pfn + npages) );
295                 free_bootmem_node(NODE_DATA(i),
296                                   (start_pfn << PAGE_SHIFT),
297                                   (npages << PAGE_SHIFT) );
298                 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
299                 if ((start_pfn + npages) > max_pfn)
300                         max_pfn = start_pfn + npages;
301         }
302
303         /* IOMMU is always used to access "high mem" on those boxes
304          * that can support enough mem that a PCI device couldn't
305          * directly DMA to any physical addresses.
306          * ISA DMA support will need to revisit this.
307          */
308         max_low_pfn = max_pfn;
309
310         /* bootmap sizing messed up? */
311         BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages);
312
313         /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
314
315 #define PDC_CONSOLE_IO_IODC_SIZE 32768
316
317         reserve_bootmem_node(NODE_DATA(0), 0UL,
318                         (unsigned long)(PAGE0->mem_free +
319                                 PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
320         reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text),
321                         (unsigned long)(_end - _text), BOOTMEM_DEFAULT);
322         reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
323                         ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
324                         BOOTMEM_DEFAULT);
325
326 #ifndef CONFIG_DISCONTIGMEM
327
328         /* reserve the holes */
329
330         for (i = 0; i < npmem_holes; i++) {
331                 reserve_bootmem_node(NODE_DATA(0),
332                                 (pmem_holes[i].start_pfn << PAGE_SHIFT),
333                                 (pmem_holes[i].pages << PAGE_SHIFT),
334                                 BOOTMEM_DEFAULT);
335         }
336 #endif
337
338 #ifdef CONFIG_BLK_DEV_INITRD
339         if (initrd_start) {
340                 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
341                 if (__pa(initrd_start) < mem_max) {
342                         unsigned long initrd_reserve;
343
344                         if (__pa(initrd_end) > mem_max) {
345                                 initrd_reserve = mem_max - __pa(initrd_start);
346                         } else {
347                                 initrd_reserve = initrd_end - initrd_start;
348                         }
349                         initrd_below_start_ok = 1;
350                         printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
351
352                         reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
353                                         initrd_reserve, BOOTMEM_DEFAULT);
354                 }
355         }
356 #endif
357
358         data_resource.start =  virt_to_phys(&data_start);
359         data_resource.end = virt_to_phys(_end) - 1;
360         code_resource.start = virt_to_phys(_text);
361         code_resource.end = virt_to_phys(&data_start)-1;
362
363         /* We don't know which region the kernel will be in, so try
364          * all of them.
365          */
366         for (i = 0; i < sysram_resource_count; i++) {
367                 struct resource *res = &sysram_resources[i];
368                 request_resource(res, &code_resource);
369                 request_resource(res, &data_resource);
370         }
371         request_resource(&sysram_resources[0], &pdcdata_resource);
372 }
373
374 static void __init map_pages(unsigned long start_vaddr,
375                              unsigned long start_paddr, unsigned long size,
376                              pgprot_t pgprot, int force)
377 {
378         pgd_t *pg_dir;
379         pmd_t *pmd;
380         pte_t *pg_table;
381         unsigned long end_paddr;
382         unsigned long start_pmd;
383         unsigned long start_pte;
384         unsigned long tmp1;
385         unsigned long tmp2;
386         unsigned long address;
387         unsigned long vaddr;
388         unsigned long ro_start;
389         unsigned long ro_end;
390         unsigned long fv_addr;
391         unsigned long gw_addr;
392         extern const unsigned long fault_vector_20;
393         extern void * const linux_gateway_page;
394
395         ro_start = __pa((unsigned long)_text);
396         ro_end   = __pa((unsigned long)&data_start);
397         fv_addr  = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
398         gw_addr  = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
399
400         end_paddr = start_paddr + size;
401
402         pg_dir = pgd_offset_k(start_vaddr);
403
404 #if PTRS_PER_PMD == 1
405         start_pmd = 0;
406 #else
407         start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
408 #endif
409         start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
410
411         address = start_paddr;
412         vaddr = start_vaddr;
413         while (address < end_paddr) {
414 #if PTRS_PER_PMD == 1
415                 pmd = (pmd_t *)__pa(pg_dir);
416 #else
417                 pmd = (pmd_t *)pgd_address(*pg_dir);
418
419                 /*
420                  * pmd is physical at this point
421                  */
422
423                 if (!pmd) {
424                         pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER);
425                         pmd = (pmd_t *) __pa(pmd);
426                 }
427
428                 pgd_populate(NULL, pg_dir, __va(pmd));
429 #endif
430                 pg_dir++;
431
432                 /* now change pmd to kernel virtual addresses */
433
434                 pmd = (pmd_t *)__va(pmd) + start_pmd;
435                 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
436
437                         /*
438                          * pg_table is physical at this point
439                          */
440
441                         pg_table = (pte_t *)pmd_address(*pmd);
442                         if (!pg_table) {
443                                 pg_table = (pte_t *)
444                                         alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE);
445                                 pg_table = (pte_t *) __pa(pg_table);
446                         }
447
448                         pmd_populate_kernel(NULL, pmd, __va(pg_table));
449
450                         /* now change pg_table to kernel virtual addresses */
451
452                         pg_table = (pte_t *) __va(pg_table) + start_pte;
453                         for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
454                                 pte_t pte;
455
456                                 /*
457                                  * Map the fault vector writable so we can
458                                  * write the HPMC checksum.
459                                  */
460                                 if (force)
461                                         pte =  __mk_pte(address, pgprot);
462                                 else if (core_kernel_text(vaddr) &&
463                                          address != fv_addr)
464                                         pte = __mk_pte(address, PAGE_KERNEL_EXEC);
465                                 else
466 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
467                                 if (address >= ro_start && address < ro_end
468                                                         && address != fv_addr
469                                                         && address != gw_addr)
470                                         pte = __mk_pte(address, PAGE_KERNEL_RO);
471                                 else
472 #endif
473                                         pte = __mk_pte(address, pgprot);
474
475                                 if (address >= end_paddr) {
476                                         if (force)
477                                                 break;
478                                         else
479                                                 pte_val(pte) = 0;
480                                 }
481
482                                 set_pte(pg_table, pte);
483
484                                 address += PAGE_SIZE;
485                                 vaddr += PAGE_SIZE;
486                         }
487                         start_pte = 0;
488
489                         if (address >= end_paddr)
490                             break;
491                 }
492                 start_pmd = 0;
493         }
494 }
495
496 void free_initmem(void)
497 {
498         unsigned long addr;
499         unsigned long init_begin = (unsigned long)__init_begin;
500         unsigned long init_end = (unsigned long)__init_end;
501
502         /* The init text pages are marked R-X.  We have to
503          * flush the icache and mark them RW-
504          *
505          * This is tricky, because map_pages is in the init section.
506          * Do a dummy remap of the data section first (the data
507          * section is already PAGE_KERNEL) to pull in the TLB entries
508          * for map_kernel */
509         map_pages(init_begin, __pa(init_begin), init_end - init_begin,
510                   PAGE_KERNEL_RWX, 1);
511         /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
512          * map_pages */
513         map_pages(init_begin, __pa(init_begin), init_end - init_begin,
514                   PAGE_KERNEL, 1);
515
516         /* force the kernel to see the new TLB entries */
517         __flush_tlb_range(0, init_begin, init_end);
518         /* Attempt to catch anyone trying to execute code here
519          * by filling the page with BRK insns.
520          */
521         memset((void *)init_begin, 0x00, init_end - init_begin);
522         /* finally dump all the instructions which were cached, since the
523          * pages are no-longer executable */
524         flush_icache_range(init_begin, init_end);
525         
526         for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) {
527                 ClearPageReserved(virt_to_page(addr));
528                 init_page_count(virt_to_page(addr));
529                 free_page(addr);
530                 num_physpages++;
531                 totalram_pages++;
532         }
533
534         /* set up a new led state on systems shipped LED State panel */
535         pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
536         
537         printk(KERN_INFO "Freeing unused kernel memory: %luk freed\n",
538                 (init_end - init_begin) >> 10);
539 }
540
541
542 #ifdef CONFIG_DEBUG_RODATA
543 void mark_rodata_ro(void)
544 {
545         /* rodata memory was already mapped with KERNEL_RO access rights by
546            pagetable_init() and map_pages(). No need to do additional stuff here */
547         printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
548                 (unsigned long)(__end_rodata - __start_rodata) >> 10);
549 }
550 #endif
551
552
553 /*
554  * Just an arbitrary offset to serve as a "hole" between mapping areas
555  * (between top of physical memory and a potential pcxl dma mapping
556  * area, and below the vmalloc mapping area).
557  *
558  * The current 32K value just means that there will be a 32K "hole"
559  * between mapping areas. That means that  any out-of-bounds memory
560  * accesses will hopefully be caught. The vmalloc() routines leaves
561  * a hole of 4kB between each vmalloced area for the same reason.
562  */
563
564  /* Leave room for gateway page expansion */
565 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
566 #error KERNEL_MAP_START is in gateway reserved region
567 #endif
568 #define MAP_START (KERNEL_MAP_START)
569
570 #define VM_MAP_OFFSET  (32*1024)
571 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
572                                      & ~(VM_MAP_OFFSET-1)))
573
574 void *parisc_vmalloc_start __read_mostly;
575 EXPORT_SYMBOL(parisc_vmalloc_start);
576
577 #ifdef CONFIG_PA11
578 unsigned long pcxl_dma_start __read_mostly;
579 #endif
580
581 void __init mem_init(void)
582 {
583         int codesize, reservedpages, datasize, initsize;
584
585         /* Do sanity checks on page table constants */
586         BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
587         BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
588         BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
589         BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
590                         > BITS_PER_LONG);
591
592         high_memory = __va((max_pfn << PAGE_SHIFT));
593
594 #ifndef CONFIG_DISCONTIGMEM
595         max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
596         totalram_pages += free_all_bootmem();
597 #else
598         {
599                 int i;
600
601                 for (i = 0; i < npmem_ranges; i++)
602                         totalram_pages += free_all_bootmem_node(NODE_DATA(i));
603         }
604 #endif
605
606         codesize = (unsigned long)_etext - (unsigned long)_text;
607         datasize = (unsigned long)_edata - (unsigned long)_etext;
608         initsize = (unsigned long)__init_end - (unsigned long)__init_begin;
609
610         reservedpages = 0;
611 {
612         unsigned long pfn;
613 #ifdef CONFIG_DISCONTIGMEM
614         int i;
615
616         for (i = 0; i < npmem_ranges; i++) {
617                 for (pfn = node_start_pfn(i); pfn < node_end_pfn(i); pfn++) {
618                         if (PageReserved(pfn_to_page(pfn)))
619                                 reservedpages++;
620                 }
621         }
622 #else /* !CONFIG_DISCONTIGMEM */
623         for (pfn = 0; pfn < max_pfn; pfn++) {
624                 /*
625                  * Only count reserved RAM pages
626                  */
627                 if (PageReserved(pfn_to_page(pfn)))
628                         reservedpages++;
629         }
630 #endif
631 }
632
633 #ifdef CONFIG_PA11
634         if (hppa_dma_ops == &pcxl_dma_ops) {
635                 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
636                 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
637                                                 + PCXL_DMA_MAP_SIZE);
638         } else {
639                 pcxl_dma_start = 0;
640                 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
641         }
642 #else
643         parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
644 #endif
645
646         printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n",
647                 nr_free_pages() << (PAGE_SHIFT-10),
648                 num_physpages << (PAGE_SHIFT-10),
649                 codesize >> 10,
650                 reservedpages << (PAGE_SHIFT-10),
651                 datasize >> 10,
652                 initsize >> 10
653         );
654
655 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
656         printk("virtual kernel memory layout:\n"
657                "    vmalloc : 0x%p - 0x%p   (%4ld MB)\n"
658                "    memory  : 0x%p - 0x%p   (%4ld MB)\n"
659                "      .init : 0x%p - 0x%p   (%4ld kB)\n"
660                "      .data : 0x%p - 0x%p   (%4ld kB)\n"
661                "      .text : 0x%p - 0x%p   (%4ld kB)\n",
662
663                (void*)VMALLOC_START, (void*)VMALLOC_END,
664                (VMALLOC_END - VMALLOC_START) >> 20,
665
666                __va(0), high_memory,
667                ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
668
669                __init_begin, __init_end,
670                ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
671
672                _etext, _edata,
673                ((unsigned long)_edata - (unsigned long)_etext) >> 10,
674
675                _text, _etext,
676                ((unsigned long)_etext - (unsigned long)_text) >> 10);
677 #endif
678 }
679
680 unsigned long *empty_zero_page __read_mostly;
681 EXPORT_SYMBOL(empty_zero_page);
682
683 void show_mem(unsigned int filter)
684 {
685         int i,free = 0,total = 0,reserved = 0;
686         int shared = 0, cached = 0;
687
688         printk(KERN_INFO "Mem-info:\n");
689         show_free_areas();
690 #ifndef CONFIG_DISCONTIGMEM
691         i = max_mapnr;
692         while (i-- > 0) {
693                 total++;
694                 if (PageReserved(mem_map+i))
695                         reserved++;
696                 else if (PageSwapCache(mem_map+i))
697                         cached++;
698                 else if (!page_count(&mem_map[i]))
699                         free++;
700                 else
701                         shared += page_count(&mem_map[i]) - 1;
702         }
703 #else
704         for (i = 0; i < npmem_ranges; i++) {
705                 int j;
706
707                 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
708                         struct page *p;
709                         unsigned long flags;
710
711                         pgdat_resize_lock(NODE_DATA(i), &flags);
712                         p = nid_page_nr(i, j) - node_start_pfn(i);
713
714                         total++;
715                         if (PageReserved(p))
716                                 reserved++;
717                         else if (PageSwapCache(p))
718                                 cached++;
719                         else if (!page_count(p))
720                                 free++;
721                         else
722                                 shared += page_count(p) - 1;
723                         pgdat_resize_unlock(NODE_DATA(i), &flags);
724                 }
725         }
726 #endif
727         printk(KERN_INFO "%d pages of RAM\n", total);
728         printk(KERN_INFO "%d reserved pages\n", reserved);
729         printk(KERN_INFO "%d pages shared\n", shared);
730         printk(KERN_INFO "%d pages swap cached\n", cached);
731
732
733 #ifdef CONFIG_DISCONTIGMEM
734         {
735                 struct zonelist *zl;
736                 int i, j;
737
738                 for (i = 0; i < npmem_ranges; i++) {
739                         zl = node_zonelist(i, 0);
740                         for (j = 0; j < MAX_NR_ZONES; j++) {
741                                 struct zoneref *z;
742                                 struct zone *zone;
743
744                                 printk("Zone list for zone %d on node %d: ", j, i);
745                                 for_each_zone_zonelist(zone, z, zl, j)
746                                         printk("[%d/%s] ", zone_to_nid(zone),
747                                                                 zone->name);
748                                 printk("\n");
749                         }
750                 }
751         }
752 #endif
753 }
754
755 /*
756  * pagetable_init() sets up the page tables
757  *
758  * Note that gateway_init() places the Linux gateway page at page 0.
759  * Since gateway pages cannot be dereferenced this has the desirable
760  * side effect of trapping those pesky NULL-reference errors in the
761  * kernel.
762  */
763 static void __init pagetable_init(void)
764 {
765         int range;
766
767         /* Map each physical memory range to its kernel vaddr */
768
769         for (range = 0; range < npmem_ranges; range++) {
770                 unsigned long start_paddr;
771                 unsigned long end_paddr;
772                 unsigned long size;
773
774                 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
775                 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
776                 size = pmem_ranges[range].pages << PAGE_SHIFT;
777
778                 map_pages((unsigned long)__va(start_paddr), start_paddr,
779                           size, PAGE_KERNEL, 0);
780         }
781
782 #ifdef CONFIG_BLK_DEV_INITRD
783         if (initrd_end && initrd_end > mem_limit) {
784                 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
785                 map_pages(initrd_start, __pa(initrd_start),
786                           initrd_end - initrd_start, PAGE_KERNEL, 0);
787         }
788 #endif
789
790         empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
791         memset(empty_zero_page, 0, PAGE_SIZE);
792 }
793
794 static void __init gateway_init(void)
795 {
796         unsigned long linux_gateway_page_addr;
797         /* FIXME: This is 'const' in order to trick the compiler
798            into not treating it as DP-relative data. */
799         extern void * const linux_gateway_page;
800
801         linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
802
803         /*
804          * Setup Linux Gateway page.
805          *
806          * The Linux gateway page will reside in kernel space (on virtual
807          * page 0), so it doesn't need to be aliased into user space.
808          */
809
810         map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
811                   PAGE_SIZE, PAGE_GATEWAY, 1);
812 }
813
814 #ifdef CONFIG_HPUX
815 void
816 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
817 {
818         pgd_t *pg_dir;
819         pmd_t *pmd;
820         pte_t *pg_table;
821         unsigned long start_pmd;
822         unsigned long start_pte;
823         unsigned long address;
824         unsigned long hpux_gw_page_addr;
825         /* FIXME: This is 'const' in order to trick the compiler
826            into not treating it as DP-relative data. */
827         extern void * const hpux_gateway_page;
828
829         hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
830
831         /*
832          * Setup HP-UX Gateway page.
833          *
834          * The HP-UX gateway page resides in the user address space,
835          * so it needs to be aliased into each process.
836          */
837
838         pg_dir = pgd_offset(mm,hpux_gw_page_addr);
839
840 #if PTRS_PER_PMD == 1
841         start_pmd = 0;
842 #else
843         start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
844 #endif
845         start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
846
847         address = __pa(&hpux_gateway_page);
848 #if PTRS_PER_PMD == 1
849         pmd = (pmd_t *)__pa(pg_dir);
850 #else
851         pmd = (pmd_t *) pgd_address(*pg_dir);
852
853         /*
854          * pmd is physical at this point
855          */
856
857         if (!pmd) {
858                 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
859                 pmd = (pmd_t *) __pa(pmd);
860         }
861
862         __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
863 #endif
864         /* now change pmd to kernel virtual addresses */
865
866         pmd = (pmd_t *)__va(pmd) + start_pmd;
867
868         /*
869          * pg_table is physical at this point
870          */
871
872         pg_table = (pte_t *) pmd_address(*pmd);
873         if (!pg_table)
874                 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
875
876         __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
877
878         /* now change pg_table to kernel virtual addresses */
879
880         pg_table = (pte_t *) __va(pg_table) + start_pte;
881         set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
882 }
883 EXPORT_SYMBOL(map_hpux_gateway_page);
884 #endif
885
886 void __init paging_init(void)
887 {
888         int i;
889
890         setup_bootmem();
891         pagetable_init();
892         gateway_init();
893         flush_cache_all_local(); /* start with known state */
894         flush_tlb_all_local(NULL);
895
896         for (i = 0; i < npmem_ranges; i++) {
897                 unsigned long zones_size[MAX_NR_ZONES] = { 0, };
898
899                 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
900
901 #ifdef CONFIG_DISCONTIGMEM
902                 /* Need to initialize the pfnnid_map before we can initialize
903                    the zone */
904                 {
905                     int j;
906                     for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
907                          j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
908                          j++) {
909                         pfnnid_map[j] = i;
910                     }
911                 }
912 #endif
913
914                 free_area_init_node(i, zones_size,
915                                 pmem_ranges[i].start_pfn, NULL);
916         }
917 }
918
919 #ifdef CONFIG_PA20
920
921 /*
922  * Currently, all PA20 chips have 18 bit protection IDs, which is the
923  * limiting factor (space ids are 32 bits).
924  */
925
926 #define NR_SPACE_IDS 262144
927
928 #else
929
930 /*
931  * Currently we have a one-to-one relationship between space IDs and
932  * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
933  * support 15 bit protection IDs, so that is the limiting factor.
934  * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
935  * probably not worth the effort for a special case here.
936  */
937
938 #define NR_SPACE_IDS 32768
939
940 #endif  /* !CONFIG_PA20 */
941
942 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
943 #define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
944
945 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
946 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
947 static unsigned long space_id_index;
948 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
949 static unsigned long dirty_space_ids = 0;
950
951 static DEFINE_SPINLOCK(sid_lock);
952
953 unsigned long alloc_sid(void)
954 {
955         unsigned long index;
956
957         spin_lock(&sid_lock);
958
959         if (free_space_ids == 0) {
960                 if (dirty_space_ids != 0) {
961                         spin_unlock(&sid_lock);
962                         flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
963                         spin_lock(&sid_lock);
964                 }
965                 BUG_ON(free_space_ids == 0);
966         }
967
968         free_space_ids--;
969
970         index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
971         space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
972         space_id_index = index;
973
974         spin_unlock(&sid_lock);
975
976         return index << SPACEID_SHIFT;
977 }
978
979 void free_sid(unsigned long spaceid)
980 {
981         unsigned long index = spaceid >> SPACEID_SHIFT;
982         unsigned long *dirty_space_offset;
983
984         dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
985         index &= (BITS_PER_LONG - 1);
986
987         spin_lock(&sid_lock);
988
989         BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
990
991         *dirty_space_offset |= (1L << index);
992         dirty_space_ids++;
993
994         spin_unlock(&sid_lock);
995 }
996
997
998 #ifdef CONFIG_SMP
999 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
1000 {
1001         int i;
1002
1003         /* NOTE: sid_lock must be held upon entry */
1004
1005         *ndirtyptr = dirty_space_ids;
1006         if (dirty_space_ids != 0) {
1007             for (i = 0; i < SID_ARRAY_SIZE; i++) {
1008                 dirty_array[i] = dirty_space_id[i];
1009                 dirty_space_id[i] = 0;
1010             }
1011             dirty_space_ids = 0;
1012         }
1013
1014         return;
1015 }
1016
1017 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
1018 {
1019         int i;
1020
1021         /* NOTE: sid_lock must be held upon entry */
1022
1023         if (ndirty != 0) {
1024                 for (i = 0; i < SID_ARRAY_SIZE; i++) {
1025                         space_id[i] ^= dirty_array[i];
1026                 }
1027
1028                 free_space_ids += ndirty;
1029                 space_id_index = 0;
1030         }
1031 }
1032
1033 #else /* CONFIG_SMP */
1034
1035 static void recycle_sids(void)
1036 {
1037         int i;
1038
1039         /* NOTE: sid_lock must be held upon entry */
1040
1041         if (dirty_space_ids != 0) {
1042                 for (i = 0; i < SID_ARRAY_SIZE; i++) {
1043                         space_id[i] ^= dirty_space_id[i];
1044                         dirty_space_id[i] = 0;
1045                 }
1046
1047                 free_space_ids += dirty_space_ids;
1048                 dirty_space_ids = 0;
1049                 space_id_index = 0;
1050         }
1051 }
1052 #endif
1053
1054 /*
1055  * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
1056  * purged, we can safely reuse the space ids that were released but
1057  * not flushed from the tlb.
1058  */
1059
1060 #ifdef CONFIG_SMP
1061
1062 static unsigned long recycle_ndirty;
1063 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
1064 static unsigned int recycle_inuse;
1065
1066 void flush_tlb_all(void)
1067 {
1068         int do_recycle;
1069
1070         do_recycle = 0;
1071         spin_lock(&sid_lock);
1072         if (dirty_space_ids > RECYCLE_THRESHOLD) {
1073             BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
1074             get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
1075             recycle_inuse++;
1076             do_recycle++;
1077         }
1078         spin_unlock(&sid_lock);
1079         on_each_cpu(flush_tlb_all_local, NULL, 1);
1080         if (do_recycle) {
1081             spin_lock(&sid_lock);
1082             recycle_sids(recycle_ndirty,recycle_dirty_array);
1083             recycle_inuse = 0;
1084             spin_unlock(&sid_lock);
1085         }
1086 }
1087 #else
1088 void flush_tlb_all(void)
1089 {
1090         spin_lock(&sid_lock);
1091         flush_tlb_all_local(NULL);
1092         recycle_sids();
1093         spin_unlock(&sid_lock);
1094 }
1095 #endif
1096
1097 #ifdef CONFIG_BLK_DEV_INITRD
1098 void free_initrd_mem(unsigned long start, unsigned long end)
1099 {
1100         if (start >= end)
1101                 return;
1102         printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1103         for (; start < end; start += PAGE_SIZE) {
1104                 ClearPageReserved(virt_to_page(start));
1105                 init_page_count(virt_to_page(start));
1106                 free_page(start);
1107                 num_physpages++;
1108                 totalram_pages++;
1109         }
1110 }
1111 #endif