Merge branch 'x86/amd-nb' into x86/apic-cleanups
[pandora-kernel.git] / arch / mips / pci / pci-octeon.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2005-2009 Cavium Networks
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/pci.h>
11 #include <linux/interrupt.h>
12 #include <linux/time.h>
13 #include <linux/delay.h>
14 #include <linux/swiotlb.h>
15
16 #include <asm/time.h>
17
18 #include <asm/octeon/octeon.h>
19 #include <asm/octeon/cvmx-npi-defs.h>
20 #include <asm/octeon/cvmx-pci-defs.h>
21 #include <asm/octeon/pci-octeon.h>
22
23 #include <dma-coherence.h>
24
25 #define USE_OCTEON_INTERNAL_ARBITER
26
27 /*
28  * Octeon's PCI controller uses did=3, subdid=2 for PCI IO
29  * addresses. Use PCI endian swapping 1 so no address swapping is
30  * necessary. The Linux io routines will endian swap the data.
31  */
32 #define OCTEON_PCI_IOSPACE_BASE     0x80011a0400000000ull
33 #define OCTEON_PCI_IOSPACE_SIZE     (1ull<<32)
34
35 /* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */
36 #define OCTEON_PCI_MEMSPACE_OFFSET  (0x00011b0000000000ull)
37
38 u64 octeon_bar1_pci_phys;
39
40 /**
41  * This is the bit decoding used for the Octeon PCI controller addresses
42  */
43 union octeon_pci_address {
44         uint64_t u64;
45         struct {
46                 uint64_t upper:2;
47                 uint64_t reserved:13;
48                 uint64_t io:1;
49                 uint64_t did:5;
50                 uint64_t subdid:3;
51                 uint64_t reserved2:4;
52                 uint64_t endian_swap:2;
53                 uint64_t reserved3:10;
54                 uint64_t bus:8;
55                 uint64_t dev:5;
56                 uint64_t func:3;
57                 uint64_t reg:8;
58         } s;
59 };
60
61 int __initdata (*octeon_pcibios_map_irq)(const struct pci_dev *dev,
62                                          u8 slot, u8 pin);
63 enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID;
64
65 /**
66  * Map a PCI device to the appropriate interrupt line
67  *
68  * @dev:    The Linux PCI device structure for the device to map
69  * @slot:   The slot number for this device on __BUS 0__. Linux
70  *               enumerates through all the bridges and figures out the
71  *               slot on Bus 0 where this device eventually hooks to.
72  * @pin:    The PCI interrupt pin read from the device, then swizzled
73  *               as it goes through each bridge.
74  * Returns Interrupt number for the device
75  */
76 int __init pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
77 {
78         if (octeon_pcibios_map_irq)
79                 return octeon_pcibios_map_irq(dev, slot, pin);
80         else
81                 panic("octeon_pcibios_map_irq not set.");
82 }
83
84
85 /*
86  * Called to perform platform specific PCI setup
87  */
88 int pcibios_plat_dev_init(struct pci_dev *dev)
89 {
90         uint16_t config;
91         uint32_t dconfig;
92         int pos;
93         /*
94          * Force the Cache line setting to 64 bytes. The standard
95          * Linux bus scan doesn't seem to set it. Octeon really has
96          * 128 byte lines, but Intel bridges get really upset if you
97          * try and set values above 64 bytes. Value is specified in
98          * 32bit words.
99          */
100         pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4);
101         /* Set latency timers for all devices */
102         pci_write_config_byte(dev, PCI_LATENCY_TIMER, 48);
103
104         /* Enable reporting System errors and parity errors on all devices */
105         /* Enable parity checking and error reporting */
106         pci_read_config_word(dev, PCI_COMMAND, &config);
107         config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
108         pci_write_config_word(dev, PCI_COMMAND, config);
109
110         if (dev->subordinate) {
111                 /* Set latency timers on sub bridges */
112                 pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 48);
113                 /* More bridge error detection */
114                 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config);
115                 config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR;
116                 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config);
117         }
118
119         /* Enable the PCIe normal error reporting */
120         pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
121         if (pos) {
122                 /* Update Device Control */
123                 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &config);
124                 /* Correctable Error Reporting */
125                 config |= PCI_EXP_DEVCTL_CERE;
126                 /* Non-Fatal Error Reporting */
127                 config |= PCI_EXP_DEVCTL_NFERE;
128                 /* Fatal Error Reporting */
129                 config |= PCI_EXP_DEVCTL_FERE;
130                 /* Unsupported Request */
131                 config |= PCI_EXP_DEVCTL_URRE;
132                 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, config);
133         }
134
135         /* Find the Advanced Error Reporting capability */
136         pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
137         if (pos) {
138                 /* Clear Uncorrectable Error Status */
139                 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
140                                       &dconfig);
141                 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
142                                        dconfig);
143                 /* Enable reporting of all uncorrectable errors */
144                 /* Uncorrectable Error Mask - turned on bits disable errors */
145                 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0);
146                 /*
147                  * Leave severity at HW default. This only controls if
148                  * errors are reported as uncorrectable or
149                  * correctable, not if the error is reported.
150                  */
151                 /* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */
152                 /* Clear Correctable Error Status */
153                 pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig);
154                 pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig);
155                 /* Enable reporting of all correctable errors */
156                 /* Correctable Error Mask - turned on bits disable errors */
157                 pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0);
158                 /* Advanced Error Capabilities */
159                 pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig);
160                 /* ECRC Generation Enable */
161                 if (config & PCI_ERR_CAP_ECRC_GENC)
162                         config |= PCI_ERR_CAP_ECRC_GENE;
163                 /* ECRC Check Enable */
164                 if (config & PCI_ERR_CAP_ECRC_CHKC)
165                         config |= PCI_ERR_CAP_ECRC_CHKE;
166                 pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig);
167                 /* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */
168                 /* Report all errors to the root complex */
169                 pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND,
170                                        PCI_ERR_ROOT_CMD_COR_EN |
171                                        PCI_ERR_ROOT_CMD_NONFATAL_EN |
172                                        PCI_ERR_ROOT_CMD_FATAL_EN);
173                 /* Clear the Root status register */
174                 pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig);
175                 pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig);
176         }
177
178         dev->dev.archdata.dma_ops = octeon_pci_dma_map_ops;
179
180         return 0;
181 }
182
183 /**
184  * Return the mapping of PCI device number to IRQ line. Each
185  * character in the return string represents the interrupt
186  * line for the device at that position. Device 1 maps to the
187  * first character, etc. The characters A-D are used for PCI
188  * interrupts.
189  *
190  * Returns PCI interrupt mapping
191  */
192 const char *octeon_get_pci_interrupts(void)
193 {
194         /*
195          * Returning an empty string causes the interrupts to be
196          * routed based on the PCI specification. From the PCI spec:
197          *
198          * INTA# of Device Number 0 is connected to IRQW on the system
199          * board.  (Device Number has no significance regarding being
200          * located on the system board or in a connector.) INTA# of
201          * Device Number 1 is connected to IRQX on the system
202          * board. INTA# of Device Number 2 is connected to IRQY on the
203          * system board. INTA# of Device Number 3 is connected to IRQZ
204          * on the system board. The table below describes how each
205          * agent's INTx# lines are connected to the system board
206          * interrupt lines. The following equation can be used to
207          * determine to which INTx# signal on the system board a given
208          * device's INTx# line(s) is connected.
209          *
210          * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0,
211          * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I =
212          * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and
213          * INTD# = 3)
214          */
215         switch (octeon_bootinfo->board_type) {
216         case CVMX_BOARD_TYPE_NAO38:
217                 /* This is really the NAC38 */
218                 return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA";
219         case CVMX_BOARD_TYPE_EBH3100:
220         case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
221         case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
222                 return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
223         case CVMX_BOARD_TYPE_BBGW_REF:
224                 return "AABCD";
225         case CVMX_BOARD_TYPE_THUNDER:
226         case CVMX_BOARD_TYPE_EBH3000:
227         default:
228                 return "";
229         }
230 }
231
232 /**
233  * Map a PCI device to the appropriate interrupt line
234  *
235  * @dev:    The Linux PCI device structure for the device to map
236  * @slot:   The slot number for this device on __BUS 0__. Linux
237  *               enumerates through all the bridges and figures out the
238  *               slot on Bus 0 where this device eventually hooks to.
239  * @pin:    The PCI interrupt pin read from the device, then swizzled
240  *               as it goes through each bridge.
241  * Returns Interrupt number for the device
242  */
243 int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev,
244                                       u8 slot, u8 pin)
245 {
246         int irq_num;
247         const char *interrupts;
248         int dev_num;
249
250         /* Get the board specific interrupt mapping */
251         interrupts = octeon_get_pci_interrupts();
252
253         dev_num = dev->devfn >> 3;
254         if (dev_num < strlen(interrupts))
255                 irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) +
256                         OCTEON_IRQ_PCI_INT0;
257         else
258                 irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0;
259         return irq_num;
260 }
261
262
263 /*
264  * Read a value from configuration space
265  */
266 static int octeon_read_config(struct pci_bus *bus, unsigned int devfn,
267                               int reg, int size, u32 *val)
268 {
269         union octeon_pci_address pci_addr;
270
271         pci_addr.u64 = 0;
272         pci_addr.s.upper = 2;
273         pci_addr.s.io = 1;
274         pci_addr.s.did = 3;
275         pci_addr.s.subdid = 1;
276         pci_addr.s.endian_swap = 1;
277         pci_addr.s.bus = bus->number;
278         pci_addr.s.dev = devfn >> 3;
279         pci_addr.s.func = devfn & 0x7;
280         pci_addr.s.reg = reg;
281
282 #if PCI_CONFIG_SPACE_DELAY
283         udelay(PCI_CONFIG_SPACE_DELAY);
284 #endif
285         switch (size) {
286         case 4:
287                 *val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64));
288                 return PCIBIOS_SUCCESSFUL;
289         case 2:
290                 *val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64));
291                 return PCIBIOS_SUCCESSFUL;
292         case 1:
293                 *val = cvmx_read64_uint8(pci_addr.u64);
294                 return PCIBIOS_SUCCESSFUL;
295         }
296         return PCIBIOS_FUNC_NOT_SUPPORTED;
297 }
298
299
300 /*
301  * Write a value to PCI configuration space
302  */
303 static int octeon_write_config(struct pci_bus *bus, unsigned int devfn,
304                                int reg, int size, u32 val)
305 {
306         union octeon_pci_address pci_addr;
307
308         pci_addr.u64 = 0;
309         pci_addr.s.upper = 2;
310         pci_addr.s.io = 1;
311         pci_addr.s.did = 3;
312         pci_addr.s.subdid = 1;
313         pci_addr.s.endian_swap = 1;
314         pci_addr.s.bus = bus->number;
315         pci_addr.s.dev = devfn >> 3;
316         pci_addr.s.func = devfn & 0x7;
317         pci_addr.s.reg = reg;
318
319 #if PCI_CONFIG_SPACE_DELAY
320         udelay(PCI_CONFIG_SPACE_DELAY);
321 #endif
322         switch (size) {
323         case 4:
324                 cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val));
325                 return PCIBIOS_SUCCESSFUL;
326         case 2:
327                 cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val));
328                 return PCIBIOS_SUCCESSFUL;
329         case 1:
330                 cvmx_write64_uint8(pci_addr.u64, val);
331                 return PCIBIOS_SUCCESSFUL;
332         }
333         return PCIBIOS_FUNC_NOT_SUPPORTED;
334 }
335
336
337 static struct pci_ops octeon_pci_ops = {
338         octeon_read_config,
339         octeon_write_config,
340 };
341
342 static struct resource octeon_pci_mem_resource = {
343         .start = 0,
344         .end = 0,
345         .name = "Octeon PCI MEM",
346         .flags = IORESOURCE_MEM,
347 };
348
349 /*
350  * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI
351  * bridge
352  */
353 static struct resource octeon_pci_io_resource = {
354         .start = 0x4000,
355         .end = OCTEON_PCI_IOSPACE_SIZE - 1,
356         .name = "Octeon PCI IO",
357         .flags = IORESOURCE_IO,
358 };
359
360 static struct pci_controller octeon_pci_controller = {
361         .pci_ops = &octeon_pci_ops,
362         .mem_resource = &octeon_pci_mem_resource,
363         .mem_offset = OCTEON_PCI_MEMSPACE_OFFSET,
364         .io_resource = &octeon_pci_io_resource,
365         .io_offset = 0,
366         .io_map_base = OCTEON_PCI_IOSPACE_BASE,
367 };
368
369
370 /*
371  * Low level initialize the Octeon PCI controller
372  */
373 static void octeon_pci_initialize(void)
374 {
375         union cvmx_pci_cfg01 cfg01;
376         union cvmx_npi_ctl_status ctl_status;
377         union cvmx_pci_ctl_status_2 ctl_status_2;
378         union cvmx_pci_cfg19 cfg19;
379         union cvmx_pci_cfg16 cfg16;
380         union cvmx_pci_cfg22 cfg22;
381         union cvmx_pci_cfg56 cfg56;
382
383         /* Reset the PCI Bus */
384         cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1);
385         cvmx_read_csr(CVMX_CIU_SOFT_PRST);
386
387         udelay(2000);           /* Hold PCI reset for 2 ms */
388
389         ctl_status.u64 = 0;     /* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */
390         ctl_status.s.max_word = 1;
391         ctl_status.s.timer = 1;
392         cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64);
393
394         /* Deassert PCI reset and advertize PCX Host Mode Device Capability
395            (64b) */
396         cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4);
397         cvmx_read_csr(CVMX_CIU_SOFT_PRST);
398
399         udelay(2000);           /* Wait 2 ms after deasserting PCI reset */
400
401         ctl_status_2.u32 = 0;
402         ctl_status_2.s.tsr_hwm = 1;     /* Initializes to 0.  Must be set
403                                            before any PCI reads. */
404         ctl_status_2.s.bar2pres = 1;    /* Enable BAR2 */
405         ctl_status_2.s.bar2_enb = 1;
406         ctl_status_2.s.bar2_cax = 1;    /* Don't use L2 */
407         ctl_status_2.s.bar2_esx = 1;
408         ctl_status_2.s.pmo_amod = 1;    /* Round robin priority */
409         if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
410                 /* BAR1 hole */
411                 ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS;
412                 ctl_status_2.s.bb1_siz = 1;  /* BAR1 is 2GB */
413                 ctl_status_2.s.bb_ca = 1;    /* Don't use L2 with big bars */
414                 ctl_status_2.s.bb_es = 1;    /* Big bar in byte swap mode */
415                 ctl_status_2.s.bb1 = 1;      /* BAR1 is big */
416                 ctl_status_2.s.bb0 = 1;      /* BAR0 is big */
417         }
418
419         octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32);
420         udelay(2000);           /* Wait 2 ms before doing PCI reads */
421
422         ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2);
423         pr_notice("PCI Status: %s %s-bit\n",
424                   ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI",
425                   ctl_status_2.s.ap_64ad ? "64" : "32");
426
427         if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) {
428                 union cvmx_pci_cnt_reg cnt_reg_start;
429                 union cvmx_pci_cnt_reg cnt_reg_end;
430                 unsigned long cycles, pci_clock;
431
432                 cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
433                 cycles = read_c0_cvmcount();
434                 udelay(1000);
435                 cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
436                 cycles = read_c0_cvmcount() - cycles;
437                 pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) /
438                             (cycles / (mips_hpt_frequency / 1000000));
439                 pr_notice("PCI Clock: %lu MHz\n", pci_clock);
440         }
441
442         /*
443          * TDOMC must be set to one in PCI mode. TDOMC should be set to 4
444          * in PCI-X mode to allow four oustanding splits. Otherwise,
445          * should not change from its reset value. Don't write PCI_CFG19
446          * in PCI mode (0x82000001 reset value), write it to 0x82000004
447          * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero.
448          * MRBCM -> must be one.
449          */
450         if (ctl_status_2.s.ap_pcix) {
451                 cfg19.u32 = 0;
452                 /*
453                  * Target Delayed/Split request outstanding maximum
454                  * count. [1..31] and 0=32.  NOTE: If the user
455                  * programs these bits beyond the Designed Maximum
456                  * outstanding count, then the designed maximum table
457                  * depth will be used instead.  No additional
458                  * Deferred/Split transactions will be accepted if
459                  * this outstanding maximum count is
460                  * reached. Furthermore, no additional deferred/split
461                  * transactions will be accepted if the I/O delay/ I/O
462                  * Split Request outstanding maximum is reached.
463                  */
464                 cfg19.s.tdomc = 4;
465                 /*
466                  * Master Deferred Read Request Outstanding Max Count
467                  * (PCI only).  CR4C[26:24] Max SAC cycles MAX DAC
468                  * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101
469                  * 5 2 110 6 3 111 7 3 For example, if these bits are
470                  * programmed to 100, the core can support 2 DAC
471                  * cycles, 4 SAC cycles or a combination of 1 DAC and
472                  * 2 SAC cycles. NOTE: For the PCI-X maximum
473                  * outstanding split transactions, refer to
474                  * CRE0[22:20].
475                  */
476                 cfg19.s.mdrrmc = 2;
477                 /*
478                  * Master Request (Memory Read) Byte Count/Byte Enable
479                  * select. 0 = Byte Enables valid. In PCI mode, a
480                  * burst transaction cannot be performed using Memory
481                  * Read command=4?h6. 1 = DWORD Byte Count valid
482                  * (default). In PCI Mode, the memory read byte
483                  * enables are automatically generated by the
484                  * core. Note: N3 Master Request transaction sizes are
485                  * always determined through the
486                  * am_attr[<35:32>|<7:0>] field.
487                  */
488                 cfg19.s.mrbcm = 1;
489                 octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32);
490         }
491
492
493         cfg01.u32 = 0;
494         cfg01.s.msae = 1;       /* Memory Space Access Enable */
495         cfg01.s.me = 1;         /* Master Enable */
496         cfg01.s.pee = 1;        /* PERR# Enable */
497         cfg01.s.see = 1;        /* System Error Enable */
498         cfg01.s.fbbe = 1;       /* Fast Back to Back Transaction Enable */
499
500         octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32);
501
502 #ifdef USE_OCTEON_INTERNAL_ARBITER
503         /*
504          * When OCTEON is a PCI host, most systems will use OCTEON's
505          * internal arbiter, so must enable it before any PCI/PCI-X
506          * traffic can occur.
507          */
508         {
509                 union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg;
510
511                 pci_int_arb_cfg.u64 = 0;
512                 pci_int_arb_cfg.s.en = 1;       /* Internal arbiter enable */
513                 cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64);
514         }
515 #endif  /* USE_OCTEON_INTERNAL_ARBITER */
516
517         /*
518          * Preferrably written to 1 to set MLTD. [RDSATI,TRTAE,
519          * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to
520          * 1..7.
521          */
522         cfg16.u32 = 0;
523         cfg16.s.mltd = 1;       /* Master Latency Timer Disable */
524         octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32);
525
526         /*
527          * Should be written to 0x4ff00. MTTV -> must be zero.
528          * FLUSH -> must be 1. MRV -> should be 0xFF.
529          */
530         cfg22.u32 = 0;
531         /* Master Retry Value [1..255] and 0=infinite */
532         cfg22.s.mrv = 0xff;
533         /*
534          * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper
535          * N3K operation.
536          */
537         cfg22.s.flush = 1;
538         octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32);
539
540         /*
541          * MOST Indicates the maximum number of outstanding splits (in -1
542          * notation) when OCTEON is in PCI-X mode.  PCI-X performance is
543          * affected by the MOST selection.  Should generally be written
544          * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807,
545          * depending on the desired MOST of 3, 2, 1, or 0, respectively.
546          */
547         cfg56.u32 = 0;
548         cfg56.s.pxcid = 7;      /* RO - PCI-X Capability ID */
549         cfg56.s.ncp = 0xe8;     /* RO - Next Capability Pointer */
550         cfg56.s.dpere = 1;      /* Data Parity Error Recovery Enable */
551         cfg56.s.roe = 1;        /* Relaxed Ordering Enable */
552         cfg56.s.mmbc = 1;       /* Maximum Memory Byte Count
553                                    [0=512B,1=1024B,2=2048B,3=4096B] */
554         cfg56.s.most = 3;       /* Maximum outstanding Split transactions [0=1
555                                    .. 7=32] */
556
557         octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32);
558
559         /*
560          * Affects PCI performance when OCTEON services reads to its
561          * BAR1/BAR2. Refer to Section 10.6.1.  The recommended values are
562          * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and
563          * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700,
564          * these values need to be changed so they won't possibly prefetch off
565          * of the end of memory if PCI is DMAing a buffer at the end of
566          * memory. Note that these values differ from their reset values.
567          */
568         octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21);
569         octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31);
570         octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31);
571 }
572
573
574 /*
575  * Initialize the Octeon PCI controller
576  */
577 static int __init octeon_pci_setup(void)
578 {
579         union cvmx_npi_mem_access_subidx mem_access;
580         int index;
581
582         /* Only these chips have PCI */
583         if (octeon_has_feature(OCTEON_FEATURE_PCIE))
584                 return 0;
585
586         /* Point pcibios_map_irq() to the PCI version of it */
587         octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq;
588
589         /* Only use the big bars on chips that support it */
590         if (OCTEON_IS_MODEL(OCTEON_CN31XX) ||
591             OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
592             OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1))
593                 octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL;
594         else
595                 octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG;
596
597         /* PCI I/O and PCI MEM values */
598         set_io_port_base(OCTEON_PCI_IOSPACE_BASE);
599         ioport_resource.start = 0;
600         ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1;
601         if (!octeon_is_pci_host()) {
602                 pr_notice("Not in host mode, PCI Controller not initialized\n");
603                 return 0;
604         }
605
606         pr_notice("%s Octeon big bar support\n",
607                   (octeon_dma_bar_type ==
608                   OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling");
609
610         octeon_pci_initialize();
611
612         mem_access.u64 = 0;
613         mem_access.s.esr = 1;   /* Endian-Swap on read. */
614         mem_access.s.esw = 1;   /* Endian-Swap on write. */
615         mem_access.s.nsr = 0;   /* No-Snoop on read. */
616         mem_access.s.nsw = 0;   /* No-Snoop on write. */
617         mem_access.s.ror = 0;   /* Relax Read on read. */
618         mem_access.s.row = 0;   /* Relax Order on write. */
619         mem_access.s.ba = 0;    /* PCI Address bits [63:36]. */
620         cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64);
621
622         /*
623          * Remap the Octeon BAR 2 above all 32 bit devices
624          * (0x8000000000ul).  This is done here so it is remapped
625          * before the readl()'s below. We don't want BAR2 overlapping
626          * with BAR0/BAR1 during these reads.
627          */
628         octeon_npi_write32(CVMX_NPI_PCI_CFG08,
629                            (u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull));
630         octeon_npi_write32(CVMX_NPI_PCI_CFG09,
631                            (u32)(OCTEON_BAR2_PCI_ADDRESS >> 32));
632
633         if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
634                 /* Remap the Octeon BAR 0 to 0-2GB */
635                 octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0);
636                 octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
637
638                 /*
639                  * Remap the Octeon BAR 1 to map 2GB-4GB (minus the
640                  * BAR 1 hole).
641                  */
642                 octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30);
643                 octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
644
645                 /* BAR1 movable mappings set for identity mapping */
646                 octeon_bar1_pci_phys = 0x80000000ull;
647                 for (index = 0; index < 32; index++) {
648                         union cvmx_pci_bar1_indexx bar1_index;
649
650                         bar1_index.u32 = 0;
651                         /* Address bits[35:22] sent to L2C */
652                         bar1_index.s.addr_idx =
653                                 (octeon_bar1_pci_phys >> 22) + index;
654                         /* Don't put PCI accesses in L2. */
655                         bar1_index.s.ca = 1;
656                         /* Endian Swap Mode */
657                         bar1_index.s.end_swp = 1;
658                         /* Set '1' when the selected address range is valid. */
659                         bar1_index.s.addr_v = 1;
660                         octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
661                                            bar1_index.u32);
662                 }
663
664                 /* Devices go after BAR1 */
665                 octeon_pci_mem_resource.start =
666                         OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) -
667                         (OCTEON_PCI_BAR1_HOLE_SIZE << 20);
668                 octeon_pci_mem_resource.end =
669                         octeon_pci_mem_resource.start + (1ul << 30);
670         } else {
671                 /* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */
672                 octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20);
673                 octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
674
675                 /* Remap the Octeon BAR 1 to map 0-128MB */
676                 octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0);
677                 octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
678
679                 /* BAR1 movable regions contiguous to cover the swiotlb */
680                 octeon_bar1_pci_phys =
681                         virt_to_phys(octeon_swiotlb) & ~((1ull << 22) - 1);
682
683                 for (index = 0; index < 32; index++) {
684                         union cvmx_pci_bar1_indexx bar1_index;
685
686                         bar1_index.u32 = 0;
687                         /* Address bits[35:22] sent to L2C */
688                         bar1_index.s.addr_idx =
689                                 (octeon_bar1_pci_phys >> 22) + index;
690                         /* Don't put PCI accesses in L2. */
691                         bar1_index.s.ca = 1;
692                         /* Endian Swap Mode */
693                         bar1_index.s.end_swp = 1;
694                         /* Set '1' when the selected address range is valid. */
695                         bar1_index.s.addr_v = 1;
696                         octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
697                                            bar1_index.u32);
698                 }
699
700                 /* Devices go after BAR0 */
701                 octeon_pci_mem_resource.start =
702                         OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) +
703                         (4ul << 10);
704                 octeon_pci_mem_resource.end =
705                         octeon_pci_mem_resource.start + (1ul << 30);
706         }
707
708         register_pci_controller(&octeon_pci_controller);
709
710         /*
711          * Clear any errors that might be pending from before the bus
712          * was setup properly.
713          */
714         cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1);
715
716         octeon_pci_dma_init();
717
718         return 0;
719 }
720
721 arch_initcall(octeon_pci_setup);