Merge branch 'dev' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
[pandora-kernel.git] / arch / mips / cavium-octeon / csrc-octeon.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2007 by Ralf Baechle
7  * Copyright (C) 2009, 2010 Cavium Networks, Inc.
8  */
9 #include <linux/clocksource.h>
10 #include <linux/export.h>
11 #include <linux/init.h>
12 #include <linux/smp.h>
13
14 #include <asm/cpu-info.h>
15 #include <asm/time.h>
16
17 #include <asm/octeon/octeon.h>
18 #include <asm/octeon/cvmx-ipd-defs.h>
19 #include <asm/octeon/cvmx-mio-defs.h>
20
21 /*
22  * Set the current core's cvmcount counter to the value of the
23  * IPD_CLK_COUNT.  We do this on all cores as they are brought
24  * on-line.  This allows for a read from a local cpu register to
25  * access a synchronized counter.
26  *
27  * On CPU_CAVIUM_OCTEON2 the IPD_CLK_COUNT is scaled by rdiv/sdiv.
28  */
29 void octeon_init_cvmcount(void)
30 {
31         unsigned long flags;
32         unsigned loops = 2;
33         u64 f = 0;
34         u64 rdiv = 0;
35         u64 sdiv = 0;
36         if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
37                 union cvmx_mio_rst_boot rst_boot;
38                 rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
39                 rdiv = rst_boot.s.c_mul;        /* CPU clock */
40                 sdiv = rst_boot.s.pnr_mul;      /* I/O clock */
41                 f = (0x8000000000000000ull / sdiv) * 2;
42         }
43
44
45         /* Clobber loops so GCC will not unroll the following while loop. */
46         asm("" : "+r" (loops));
47
48         local_irq_save(flags);
49         /*
50          * Loop several times so we are executing from the cache,
51          * which should give more deterministic timing.
52          */
53         while (loops--) {
54                 u64 ipd_clk_count = cvmx_read_csr(CVMX_IPD_CLK_COUNT);
55                 if (rdiv != 0) {
56                         ipd_clk_count *= rdiv;
57                         if (f != 0) {
58                                 asm("dmultu\t%[cnt],%[f]\n\t"
59                                     "mfhi\t%[cnt]"
60                                     : [cnt] "+r" (ipd_clk_count),
61                                       [f] "=r" (f)
62                                     : : "hi", "lo");
63                         }
64                 }
65                 write_c0_cvmcount(ipd_clk_count);
66         }
67         local_irq_restore(flags);
68 }
69
70 static cycle_t octeon_cvmcount_read(struct clocksource *cs)
71 {
72         return read_c0_cvmcount();
73 }
74
75 static struct clocksource clocksource_mips = {
76         .name           = "OCTEON_CVMCOUNT",
77         .read           = octeon_cvmcount_read,
78         .mask           = CLOCKSOURCE_MASK(64),
79         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
80 };
81
82 unsigned long long notrace sched_clock(void)
83 {
84         /* 64-bit arithmatic can overflow, so use 128-bit.  */
85         u64 t1, t2, t3;
86         unsigned long long rv;
87         u64 mult = clocksource_mips.mult;
88         u64 shift = clocksource_mips.shift;
89         u64 cnt = read_c0_cvmcount();
90
91         asm (
92                 "dmultu\t%[cnt],%[mult]\n\t"
93                 "nor\t%[t1],$0,%[shift]\n\t"
94                 "mfhi\t%[t2]\n\t"
95                 "mflo\t%[t3]\n\t"
96                 "dsll\t%[t2],%[t2],1\n\t"
97                 "dsrlv\t%[rv],%[t3],%[shift]\n\t"
98                 "dsllv\t%[t1],%[t2],%[t1]\n\t"
99                 "or\t%[rv],%[t1],%[rv]\n\t"
100                 : [rv] "=&r" (rv), [t1] "=&r" (t1), [t2] "=&r" (t2), [t3] "=&r" (t3)
101                 : [cnt] "r" (cnt), [mult] "r" (mult), [shift] "r" (shift)
102                 : "hi", "lo");
103         return rv;
104 }
105
106 void __init plat_time_init(void)
107 {
108         clocksource_mips.rating = 300;
109         clocksource_register_hz(&clocksource_mips, octeon_get_clock_rate());
110 }
111
112 static u64 octeon_udelay_factor;
113 static u64 octeon_ndelay_factor;
114
115 void __init octeon_setup_delays(void)
116 {
117         octeon_udelay_factor = octeon_get_clock_rate() / 1000000;
118         /*
119          * For __ndelay we divide by 2^16, so the factor is multiplied
120          * by the same amount.
121          */
122         octeon_ndelay_factor = (octeon_udelay_factor * 0x10000ull) / 1000ull;
123
124         preset_lpj = octeon_get_clock_rate() / HZ;
125 }
126
127 void __udelay(unsigned long us)
128 {
129         u64 cur, end, inc;
130
131         cur = read_c0_cvmcount();
132
133         inc = us * octeon_udelay_factor;
134         end = cur + inc;
135
136         while (end > cur)
137                 cur = read_c0_cvmcount();
138 }
139 EXPORT_SYMBOL(__udelay);
140
141 void __ndelay(unsigned long ns)
142 {
143         u64 cur, end, inc;
144
145         cur = read_c0_cvmcount();
146
147         inc = ((ns * octeon_ndelay_factor) >> 16);
148         end = cur + inc;
149
150         while (end > cur)
151                 cur = read_c0_cvmcount();
152 }
153 EXPORT_SYMBOL(__ndelay);
154
155 void __delay(unsigned long loops)
156 {
157         u64 cur, end;
158
159         cur = read_c0_cvmcount();
160         end = cur + loops;
161
162         while (end > cur)
163                 cur = read_c0_cvmcount();
164 }
165 EXPORT_SYMBOL(__delay);