flush kacpi_notify_wq before removing notify handler
[pandora-kernel.git] / arch / mips / au1000 / common / power.c
1 /*
2  * BRIEF MODULE DESCRIPTION
3  *      Au1000 Power Management routines.
4  *
5  * Copyright 2001 MontaVista Software Inc.
6  * Author: MontaVista Software, Inc.
7  *              ppopov@mvista.com or source@mvista.com
8  *
9  *  Some of the routines are right out of init/main.c, whose
10  *  copyrights apply here.
11  *
12  *  This program is free software; you can redistribute  it and/or modify it
13  *  under  the terms of  the GNU General  Public License as published by the
14  *  Free Software Foundation;  either version 2 of the  License, or (at your
15  *  option) any later version.
16  *
17  *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
18  *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
19  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
20  *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
21  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
23  *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
24  *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
25  *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  *  You should have received a copy of the  GNU General Public License along
29  *  with this program; if not, write  to the Free Software Foundation, Inc.,
30  *  675 Mass Ave, Cambridge, MA 02139, USA.
31  */
32
33 #include <linux/init.h>
34 #include <linux/pm.h>
35 #include <linux/pm_legacy.h>
36 #include <linux/sysctl.h>
37 #include <linux/jiffies.h>
38
39 #include <asm/uaccess.h>
40 #include <asm/cacheflush.h>
41 #include <asm/mach-au1x00/au1000.h>
42
43 #ifdef CONFIG_PM
44
45 #define DEBUG 1
46 #ifdef DEBUG
47 #  define DPRINTK(fmt, args...) printk("%s: " fmt, __func__, ## args)
48 #else
49 #  define DPRINTK(fmt, args...)
50 #endif
51
52 static void au1000_calibrate_delay(void);
53
54 extern unsigned long save_local_and_disable(int controller);
55 extern void restore_local_and_enable(int controller, unsigned long mask);
56 extern void local_enable_irq(unsigned int irq_nr);
57
58 static DEFINE_SPINLOCK(pm_lock);
59
60 /* We need to save/restore a bunch of core registers that are
61  * either volatile or reset to some state across a processor sleep.
62  * If reading a register doesn't provide a proper result for a
63  * later restore, we have to provide a function for loading that
64  * register and save a copy.
65  *
66  * We only have to save/restore registers that aren't otherwise
67  * done as part of a driver pm_* function.
68  */
69 static unsigned int     sleep_aux_pll_cntrl;
70 static unsigned int     sleep_cpu_pll_cntrl;
71 static unsigned int     sleep_pin_function;
72 static unsigned int     sleep_uart0_inten;
73 static unsigned int     sleep_uart0_fifoctl;
74 static unsigned int     sleep_uart0_linectl;
75 static unsigned int     sleep_uart0_clkdiv;
76 static unsigned int     sleep_uart0_enable;
77 static unsigned int     sleep_usbhost_enable;
78 static unsigned int     sleep_usbdev_enable;
79 static unsigned int     sleep_static_memctlr[4][3];
80
81 /* Define this to cause the value you write to /proc/sys/pm/sleep to
82  * set the TOY timer for the amount of time you want to sleep.
83  * This is done mainly for testing, but may be useful in other cases.
84  * The value is number of 32KHz ticks to sleep.
85  */
86 #define SLEEP_TEST_TIMEOUT 1
87 #ifdef SLEEP_TEST_TIMEOUT
88 static  int     sleep_ticks;
89 void wakeup_counter0_set(int ticks);
90 #endif
91
92 static void
93 save_core_regs(void)
94 {
95         extern void save_au1xxx_intctl(void);
96         extern void pm_eth0_shutdown(void);
97
98         /* Do the serial ports.....these really should be a pm_*
99          * registered function by the driver......but of course the
100          * standard serial driver doesn't understand our Au1xxx
101          * unique registers.
102          */
103         sleep_uart0_inten = au_readl(UART0_ADDR + UART_IER);
104         sleep_uart0_fifoctl = au_readl(UART0_ADDR + UART_FCR);
105         sleep_uart0_linectl = au_readl(UART0_ADDR + UART_LCR);
106         sleep_uart0_clkdiv = au_readl(UART0_ADDR + UART_CLK);
107         sleep_uart0_enable = au_readl(UART0_ADDR + UART_MOD_CNTRL);
108
109         /* Shutdown USB host/device.
110         */
111         sleep_usbhost_enable = au_readl(USB_HOST_CONFIG);
112
113         /* There appears to be some undocumented reset register....
114         */
115         au_writel(0, 0xb0100004); au_sync();
116         au_writel(0, USB_HOST_CONFIG); au_sync();
117
118         sleep_usbdev_enable = au_readl(USBD_ENABLE);
119         au_writel(0, USBD_ENABLE); au_sync();
120
121         /* Save interrupt controller state.
122         */
123         save_au1xxx_intctl();
124
125         /* Clocks and PLLs.
126         */
127         sleep_aux_pll_cntrl = au_readl(SYS_AUXPLL);
128
129         /* We don't really need to do this one, but unless we
130          * write it again it won't have a valid value if we
131          * happen to read it.
132          */
133         sleep_cpu_pll_cntrl = au_readl(SYS_CPUPLL);
134
135         sleep_pin_function = au_readl(SYS_PINFUNC);
136
137         /* Save the static memory controller configuration.
138         */
139         sleep_static_memctlr[0][0] = au_readl(MEM_STCFG0);
140         sleep_static_memctlr[0][1] = au_readl(MEM_STTIME0);
141         sleep_static_memctlr[0][2] = au_readl(MEM_STADDR0);
142         sleep_static_memctlr[1][0] = au_readl(MEM_STCFG1);
143         sleep_static_memctlr[1][1] = au_readl(MEM_STTIME1);
144         sleep_static_memctlr[1][2] = au_readl(MEM_STADDR1);
145         sleep_static_memctlr[2][0] = au_readl(MEM_STCFG2);
146         sleep_static_memctlr[2][1] = au_readl(MEM_STTIME2);
147         sleep_static_memctlr[2][2] = au_readl(MEM_STADDR2);
148         sleep_static_memctlr[3][0] = au_readl(MEM_STCFG3);
149         sleep_static_memctlr[3][1] = au_readl(MEM_STTIME3);
150         sleep_static_memctlr[3][2] = au_readl(MEM_STADDR3);
151 }
152
153 static void
154 restore_core_regs(void)
155 {
156         extern void restore_au1xxx_intctl(void);
157         extern void wakeup_counter0_adjust(void);
158
159         au_writel(sleep_aux_pll_cntrl, SYS_AUXPLL); au_sync();
160         au_writel(sleep_cpu_pll_cntrl, SYS_CPUPLL); au_sync();
161         au_writel(sleep_pin_function, SYS_PINFUNC); au_sync();
162
163         /* Restore the static memory controller configuration.
164         */
165         au_writel(sleep_static_memctlr[0][0], MEM_STCFG0);
166         au_writel(sleep_static_memctlr[0][1], MEM_STTIME0);
167         au_writel(sleep_static_memctlr[0][2], MEM_STADDR0);
168         au_writel(sleep_static_memctlr[1][0], MEM_STCFG1);
169         au_writel(sleep_static_memctlr[1][1], MEM_STTIME1);
170         au_writel(sleep_static_memctlr[1][2], MEM_STADDR1);
171         au_writel(sleep_static_memctlr[2][0], MEM_STCFG2);
172         au_writel(sleep_static_memctlr[2][1], MEM_STTIME2);
173         au_writel(sleep_static_memctlr[2][2], MEM_STADDR2);
174         au_writel(sleep_static_memctlr[3][0], MEM_STCFG3);
175         au_writel(sleep_static_memctlr[3][1], MEM_STTIME3);
176         au_writel(sleep_static_memctlr[3][2], MEM_STADDR3);
177
178         /* Enable the UART if it was enabled before sleep.
179          * I guess I should define module control bits........
180          */
181         if (sleep_uart0_enable & 0x02) {
182                 au_writel(0, UART0_ADDR + UART_MOD_CNTRL); au_sync();
183                 au_writel(1, UART0_ADDR + UART_MOD_CNTRL); au_sync();
184                 au_writel(3, UART0_ADDR + UART_MOD_CNTRL); au_sync();
185                 au_writel(sleep_uart0_inten, UART0_ADDR + UART_IER); au_sync();
186                 au_writel(sleep_uart0_fifoctl, UART0_ADDR + UART_FCR); au_sync();
187                 au_writel(sleep_uart0_linectl, UART0_ADDR + UART_LCR); au_sync();
188                 au_writel(sleep_uart0_clkdiv, UART0_ADDR + UART_CLK); au_sync();
189         }
190
191         restore_au1xxx_intctl();
192         wakeup_counter0_adjust();
193 }
194
195 unsigned long suspend_mode;
196
197 void wakeup_from_suspend(void)
198 {
199         suspend_mode = 0;
200 }
201
202 int au_sleep(void)
203 {
204         unsigned long wakeup, flags;
205         extern  void    save_and_sleep(void);
206
207         spin_lock_irqsave(&pm_lock, flags);
208
209         save_core_regs();
210
211         flush_cache_all();
212
213         /** The code below is all system dependent and we should probably
214          ** have a function call out of here to set this up.  You need
215          ** to configure the GPIO or timer interrupts that will bring
216          ** you out of sleep.
217          ** For testing, the TOY counter wakeup is useful.
218          **/
219
220 #if 0
221         au_writel(au_readl(SYS_PINSTATERD) & ~(1 << 11), SYS_PINSTATERD);
222
223         /* gpio 6 can cause a wake up event */
224         wakeup = au_readl(SYS_WAKEMSK);
225         wakeup &= ~(1 << 8);    /* turn off match20 wakeup */
226         wakeup |= 1 << 6;       /* turn on gpio 6 wakeup   */
227 #else
228         /* For testing, allow match20 to wake us up.
229         */
230 #ifdef SLEEP_TEST_TIMEOUT
231         wakeup_counter0_set(sleep_ticks);
232 #endif
233         wakeup = 1 << 8;        /* turn on match20 wakeup   */
234         wakeup = 0;
235 #endif
236         au_writel(1, SYS_WAKESRC);      /* clear cause */
237         au_sync();
238         au_writel(wakeup, SYS_WAKEMSK);
239         au_sync();
240
241         save_and_sleep();
242
243         /* after a wakeup, the cpu vectors back to 0x1fc00000 so
244          * it's up to the boot code to get us back here.
245          */
246         restore_core_regs();
247         spin_unlock_irqrestore(&pm_lock, flags);
248         return 0;
249 }
250
251 static int pm_do_sleep(ctl_table * ctl, int write, struct file *file,
252                        void __user *buffer, size_t * len, loff_t *ppos)
253 {
254         int retval = 0;
255 #ifdef SLEEP_TEST_TIMEOUT
256 #define TMPBUFLEN2 16
257         char buf[TMPBUFLEN2], *p;
258 #endif
259
260         if (!write) {
261                 *len = 0;
262         } else {
263 #ifdef SLEEP_TEST_TIMEOUT
264                 if (*len > TMPBUFLEN2 - 1) {
265                         return -EFAULT;
266                 }
267                 if (copy_from_user(buf, buffer, *len)) {
268                         return -EFAULT;
269                 }
270                 buf[*len] = 0;
271                 p = buf;
272                 sleep_ticks = simple_strtoul(p, &p, 0);
273 #endif
274                 retval = pm_send_all(PM_SUSPEND, (void *) 2);
275
276                 if (retval)
277                         return retval;
278
279                 au_sleep();
280                 retval = pm_send_all(PM_RESUME, (void *) 0);
281         }
282         return retval;
283 }
284
285 static int pm_do_suspend(ctl_table * ctl, int write, struct file *file,
286                          void __user *buffer, size_t * len, loff_t *ppos)
287 {
288         int retval = 0;
289
290         if (!write) {
291                 *len = 0;
292         } else {
293                 retval = pm_send_all(PM_SUSPEND, (void *) 2);
294                 if (retval)
295                         return retval;
296                 suspend_mode = 1;
297
298                 retval = pm_send_all(PM_RESUME, (void *) 0);
299         }
300         return retval;
301 }
302
303
304 static int pm_do_freq(ctl_table * ctl, int write, struct file *file,
305                       void __user *buffer, size_t * len, loff_t *ppos)
306 {
307         int retval = 0, i;
308         unsigned long val, pll;
309 #define TMPBUFLEN 64
310 #define MAX_CPU_FREQ 396
311         char buf[TMPBUFLEN], *p;
312         unsigned long flags, intc0_mask, intc1_mask;
313         unsigned long old_baud_base, old_cpu_freq, baud_rate, old_clk,
314             old_refresh;
315         unsigned long new_baud_base, new_cpu_freq, new_clk, new_refresh;
316
317         spin_lock_irqsave(&pm_lock, flags);
318         if (!write) {
319                 *len = 0;
320         } else {
321                 /* Parse the new frequency */
322                 if (*len > TMPBUFLEN - 1) {
323                         spin_unlock_irqrestore(&pm_lock, flags);
324                         return -EFAULT;
325                 }
326                 if (copy_from_user(buf, buffer, *len)) {
327                         spin_unlock_irqrestore(&pm_lock, flags);
328                         return -EFAULT;
329                 }
330                 buf[*len] = 0;
331                 p = buf;
332                 val = simple_strtoul(p, &p, 0);
333                 if (val > MAX_CPU_FREQ) {
334                         spin_unlock_irqrestore(&pm_lock, flags);
335                         return -EFAULT;
336                 }
337
338                 pll = val / 12;
339                 if ((pll > 33) || (pll < 7)) {  /* 396 MHz max, 84 MHz min */
340                         /* revisit this for higher speed cpus */
341                         spin_unlock_irqrestore(&pm_lock, flags);
342                         return -EFAULT;
343                 }
344
345                 old_baud_base = get_au1x00_uart_baud_base();
346                 old_cpu_freq = get_au1x00_speed();
347
348                 new_cpu_freq = pll * 12 * 1000000;
349                 new_baud_base =  (new_cpu_freq / (2 * ((int)(au_readl(SYS_POWERCTRL)&0x03) + 2) * 16));
350                 set_au1x00_speed(new_cpu_freq);
351                 set_au1x00_uart_baud_base(new_baud_base);
352
353                 old_refresh = au_readl(MEM_SDREFCFG) & 0x1ffffff;
354                 new_refresh =
355                     ((old_refresh * new_cpu_freq) /
356                      old_cpu_freq) | (au_readl(MEM_SDREFCFG) & ~0x1ffffff);
357
358                 au_writel(pll, SYS_CPUPLL);
359                 au_sync_delay(1);
360                 au_writel(new_refresh, MEM_SDREFCFG);
361                 au_sync_delay(1);
362
363                 for (i = 0; i < 4; i++) {
364                         if (au_readl
365                             (UART_BASE + UART_MOD_CNTRL +
366                              i * 0x00100000) == 3) {
367                                 old_clk =
368                                     au_readl(UART_BASE + UART_CLK +
369                                           i * 0x00100000);
370                                 // baud_rate = baud_base/clk
371                                 baud_rate = old_baud_base / old_clk;
372                                 /* we won't get an exact baud rate and the error
373                                  * could be significant enough that our new
374                                  * calculation will result in a clock that will
375                                  * give us a baud rate that's too far off from
376                                  * what we really want.
377                                  */
378                                 if (baud_rate > 100000)
379                                         baud_rate = 115200;
380                                 else if (baud_rate > 50000)
381                                         baud_rate = 57600;
382                                 else if (baud_rate > 30000)
383                                         baud_rate = 38400;
384                                 else if (baud_rate > 17000)
385                                         baud_rate = 19200;
386                                 else
387                                         (baud_rate = 9600);
388                                 // new_clk = new_baud_base/baud_rate
389                                 new_clk = new_baud_base / baud_rate;
390                                 au_writel(new_clk,
391                                        UART_BASE + UART_CLK +
392                                        i * 0x00100000);
393                                 au_sync_delay(10);
394                         }
395                 }
396         }
397
398
399         /*
400          * We don't want _any_ interrupts other than match20. Otherwise our
401          * au1000_calibrate_delay() calculation will be off, potentially a lot.
402          */
403         intc0_mask = save_local_and_disable(0);
404         intc1_mask = save_local_and_disable(1);
405         local_enable_irq(AU1000_TOY_MATCH2_INT);
406         spin_unlock_irqrestore(&pm_lock, flags);
407         au1000_calibrate_delay();
408         restore_local_and_enable(0, intc0_mask);
409         restore_local_and_enable(1, intc1_mask);
410
411         return retval;
412 }
413
414
415 static struct ctl_table pm_table[] = {
416         {
417                 .ctl_name       = CTL_UNNUMBERED,
418                 .procname       = "suspend",
419                 .data           = NULL,
420                 .maxlen         = 0,
421                 .mode           = 0600,
422                 .proc_handler   = &pm_do_suspend
423         },
424         {
425                 .ctl_name       = CTL_UNNUMBERED,
426                 .procname       = "sleep",
427                 .data           = NULL,
428                 .maxlen         = 0,
429                 .mode           = 0600,
430                 .proc_handler   = &pm_do_sleep
431         },
432         {
433                 .ctl_name       = CTL_UNNUMBERED,
434                 .procname       = "freq",
435                 .data           = NULL,
436                 .maxlen         = 0,
437                 .mode           = 0600,
438                 .proc_handler   = &pm_do_freq
439         },
440         {}
441 };
442
443 static struct ctl_table pm_dir_table[] = {
444         {
445                 .ctl_name       = CTL_UNNUMBERED,
446                 .procname       = "pm",
447                 .mode           = 0555,
448                 .child          = pm_table
449         },
450         {}
451 };
452
453 /*
454  * Initialize power interface
455  */
456 static int __init pm_init(void)
457 {
458         register_sysctl_table(pm_dir_table);
459         return 0;
460 }
461
462 __initcall(pm_init);
463
464
465 /*
466  * This is right out of init/main.c
467  */
468
469 /* This is the number of bits of precision for the loops_per_jiffy.  Each
470    bit takes on average 1.5/HZ seconds.  This (like the original) is a little
471    better than 1% */
472 #define LPS_PREC 8
473
474 static void au1000_calibrate_delay(void)
475 {
476         unsigned long ticks, loopbit;
477         int lps_precision = LPS_PREC;
478
479         loops_per_jiffy = (1 << 12);
480
481         while (loops_per_jiffy <<= 1) {
482                 /* wait for "start of" clock tick */
483                 ticks = jiffies;
484                 while (ticks == jiffies)
485                         /* nothing */ ;
486                 /* Go .. */
487                 ticks = jiffies;
488                 __delay(loops_per_jiffy);
489                 ticks = jiffies - ticks;
490                 if (ticks)
491                         break;
492         }
493
494 /* Do a binary approximation to get loops_per_jiffy set to equal one clock
495    (up to lps_precision bits) */
496         loops_per_jiffy >>= 1;
497         loopbit = loops_per_jiffy;
498         while (lps_precision-- && (loopbit >>= 1)) {
499                 loops_per_jiffy |= loopbit;
500                 ticks = jiffies;
501                 while (ticks == jiffies);
502                 ticks = jiffies;
503                 __delay(loops_per_jiffy);
504                 if (jiffies != ticks)   /* longer than 1 tick */
505                         loops_per_jiffy &= ~loopbit;
506         }
507 }
508 #endif                          /* CONFIG_PM */