Merge branch 'irq-final-for-linus-v2' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / arch / ia64 / sn / kernel / irq.c
1 /*
2  * Platform dependent support for SGI SN
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License.  See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * Copyright (c) 2000-2008 Silicon Graphics, Inc.  All Rights Reserved.
9  */
10
11 #include <linux/irq.h>
12 #include <linux/spinlock.h>
13 #include <linux/init.h>
14 #include <linux/rculist.h>
15 #include <linux/slab.h>
16 #include <asm/sn/addrs.h>
17 #include <asm/sn/arch.h>
18 #include <asm/sn/intr.h>
19 #include <asm/sn/pcibr_provider.h>
20 #include <asm/sn/pcibus_provider_defs.h>
21 #include <asm/sn/pcidev.h>
22 #include <asm/sn/shub_mmr.h>
23 #include <asm/sn/sn_sal.h>
24 #include <asm/sn/sn_feature_sets.h>
25
26 static void register_intr_pda(struct sn_irq_info *sn_irq_info);
27 static void unregister_intr_pda(struct sn_irq_info *sn_irq_info);
28
29 extern int sn_ioif_inited;
30 struct list_head **sn_irq_lh;
31 static DEFINE_SPINLOCK(sn_irq_info_lock); /* non-IRQ lock */
32
33 u64 sn_intr_alloc(nasid_t local_nasid, int local_widget,
34                                      struct sn_irq_info *sn_irq_info,
35                                      int req_irq, nasid_t req_nasid,
36                                      int req_slice)
37 {
38         struct ia64_sal_retval ret_stuff;
39         ret_stuff.status = 0;
40         ret_stuff.v0 = 0;
41
42         SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
43                         (u64) SAL_INTR_ALLOC, (u64) local_nasid,
44                         (u64) local_widget, __pa(sn_irq_info), (u64) req_irq,
45                         (u64) req_nasid, (u64) req_slice);
46
47         return ret_stuff.status;
48 }
49
50 void sn_intr_free(nasid_t local_nasid, int local_widget,
51                                 struct sn_irq_info *sn_irq_info)
52 {
53         struct ia64_sal_retval ret_stuff;
54         ret_stuff.status = 0;
55         ret_stuff.v0 = 0;
56
57         SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
58                         (u64) SAL_INTR_FREE, (u64) local_nasid,
59                         (u64) local_widget, (u64) sn_irq_info->irq_irq,
60                         (u64) sn_irq_info->irq_cookie, 0, 0);
61 }
62
63 u64 sn_intr_redirect(nasid_t local_nasid, int local_widget,
64                       struct sn_irq_info *sn_irq_info,
65                       nasid_t req_nasid, int req_slice)
66 {
67         struct ia64_sal_retval ret_stuff;
68         ret_stuff.status = 0;
69         ret_stuff.v0 = 0;
70
71         SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
72                         (u64) SAL_INTR_REDIRECT, (u64) local_nasid,
73                         (u64) local_widget, __pa(sn_irq_info),
74                         (u64) req_nasid, (u64) req_slice, 0);
75
76         return ret_stuff.status;
77 }
78
79 static unsigned int sn_startup_irq(struct irq_data *data)
80 {
81         return 0;
82 }
83
84 static void sn_shutdown_irq(struct irq_data *data)
85 {
86 }
87
88 extern void ia64_mca_register_cpev(int);
89
90 static void sn_disable_irq(struct irq_data *data)
91 {
92         if (data->irq == local_vector_to_irq(IA64_CPE_VECTOR))
93                 ia64_mca_register_cpev(0);
94 }
95
96 static void sn_enable_irq(struct irq_data *data)
97 {
98         if (data->irq == local_vector_to_irq(IA64_CPE_VECTOR))
99                 ia64_mca_register_cpev(data->irq);
100 }
101
102 static void sn_ack_irq(struct irq_data *data)
103 {
104         u64 event_occurred, mask;
105         unsigned int irq = data->irq & 0xff;
106
107         event_occurred = HUB_L((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED));
108         mask = event_occurred & SH_ALL_INT_MASK;
109         HUB_S((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS), mask);
110         __set_bit(irq, (volatile void *)pda->sn_in_service_ivecs);
111
112         irq_move_irq(data);
113 }
114
115 static void sn_irq_info_free(struct rcu_head *head);
116
117 struct sn_irq_info *sn_retarget_vector(struct sn_irq_info *sn_irq_info,
118                                        nasid_t nasid, int slice)
119 {
120         int vector;
121         int cpuid;
122 #ifdef CONFIG_SMP
123         int cpuphys;
124 #endif
125         int64_t bridge;
126         int local_widget, status;
127         nasid_t local_nasid;
128         struct sn_irq_info *new_irq_info;
129         struct sn_pcibus_provider *pci_provider;
130
131         bridge = (u64) sn_irq_info->irq_bridge;
132         if (!bridge) {
133                 return NULL; /* irq is not a device interrupt */
134         }
135
136         local_nasid = NASID_GET(bridge);
137
138         if (local_nasid & 1)
139                 local_widget = TIO_SWIN_WIDGETNUM(bridge);
140         else
141                 local_widget = SWIN_WIDGETNUM(bridge);
142         vector = sn_irq_info->irq_irq;
143
144         /* Make use of SAL_INTR_REDIRECT if PROM supports it */
145         status = sn_intr_redirect(local_nasid, local_widget, sn_irq_info, nasid, slice);
146         if (!status) {
147                 new_irq_info = sn_irq_info;
148                 goto finish_up;
149         }
150
151         /*
152          * PROM does not support SAL_INTR_REDIRECT, or it failed.
153          * Revert to old method.
154          */
155         new_irq_info = kmalloc(sizeof(struct sn_irq_info), GFP_ATOMIC);
156         if (new_irq_info == NULL)
157                 return NULL;
158
159         memcpy(new_irq_info, sn_irq_info, sizeof(struct sn_irq_info));
160
161         /* Free the old PROM new_irq_info structure */
162         sn_intr_free(local_nasid, local_widget, new_irq_info);
163         unregister_intr_pda(new_irq_info);
164
165         /* allocate a new PROM new_irq_info struct */
166         status = sn_intr_alloc(local_nasid, local_widget,
167                                new_irq_info, vector,
168                                nasid, slice);
169
170         /* SAL call failed */
171         if (status) {
172                 kfree(new_irq_info);
173                 return NULL;
174         }
175
176         register_intr_pda(new_irq_info);
177         spin_lock(&sn_irq_info_lock);
178         list_replace_rcu(&sn_irq_info->list, &new_irq_info->list);
179         spin_unlock(&sn_irq_info_lock);
180         call_rcu(&sn_irq_info->rcu, sn_irq_info_free);
181
182
183 finish_up:
184         /* Update kernels new_irq_info with new target info */
185         cpuid = nasid_slice_to_cpuid(new_irq_info->irq_nasid,
186                                      new_irq_info->irq_slice);
187         new_irq_info->irq_cpuid = cpuid;
188
189         pci_provider = sn_pci_provider[new_irq_info->irq_bridge_type];
190
191         /*
192          * If this represents a line interrupt, target it.  If it's
193          * an msi (irq_int_bit < 0), it's already targeted.
194          */
195         if (new_irq_info->irq_int_bit >= 0 &&
196             pci_provider && pci_provider->target_interrupt)
197                 (pci_provider->target_interrupt)(new_irq_info);
198
199 #ifdef CONFIG_SMP
200         cpuphys = cpu_physical_id(cpuid);
201         set_irq_affinity_info((vector & 0xff), cpuphys, 0);
202 #endif
203
204         return new_irq_info;
205 }
206
207 static int sn_set_affinity_irq(struct irq_data *data,
208                                const struct cpumask *mask, bool force)
209 {
210         struct sn_irq_info *sn_irq_info, *sn_irq_info_safe;
211         unsigned int irq = data->irq;
212         nasid_t nasid;
213         int slice;
214
215         nasid = cpuid_to_nasid(cpumask_first(mask));
216         slice = cpuid_to_slice(cpumask_first(mask));
217
218         list_for_each_entry_safe(sn_irq_info, sn_irq_info_safe,
219                                  sn_irq_lh[irq], list)
220                 (void)sn_retarget_vector(sn_irq_info, nasid, slice);
221
222         return 0;
223 }
224
225 #ifdef CONFIG_SMP
226 void sn_set_err_irq_affinity(unsigned int irq)
227 {
228         /*
229          * On systems which support CPU disabling (SHub2), all error interrupts
230          * are targetted at the boot CPU.
231          */
232         if (is_shub2() && sn_prom_feature_available(PRF_CPU_DISABLE_SUPPORT))
233                 set_irq_affinity_info(irq, cpu_physical_id(0), 0);
234 }
235 #else
236 void sn_set_err_irq_affinity(unsigned int irq) { }
237 #endif
238
239 static void
240 sn_mask_irq(struct irq_data *data)
241 {
242 }
243
244 static void
245 sn_unmask_irq(struct irq_data *data)
246 {
247 }
248
249 struct irq_chip irq_type_sn = {
250         .name                   = "SN hub",
251         .irq_startup            = sn_startup_irq,
252         .irq_shutdown           = sn_shutdown_irq,
253         .irq_enable             = sn_enable_irq,
254         .irq_disable            = sn_disable_irq,
255         .irq_ack                = sn_ack_irq,
256         .irq_mask               = sn_mask_irq,
257         .irq_unmask             = sn_unmask_irq,
258         .irq_set_affinity       = sn_set_affinity_irq
259 };
260
261 ia64_vector sn_irq_to_vector(int irq)
262 {
263         if (irq >= IA64_NUM_VECTORS)
264                 return 0;
265         return (ia64_vector)irq;
266 }
267
268 unsigned int sn_local_vector_to_irq(u8 vector)
269 {
270         return (CPU_VECTOR_TO_IRQ(smp_processor_id(), vector));
271 }
272
273 void sn_irq_init(void)
274 {
275         int i;
276
277         ia64_first_device_vector = IA64_SN2_FIRST_DEVICE_VECTOR;
278         ia64_last_device_vector = IA64_SN2_LAST_DEVICE_VECTOR;
279
280         for (i = 0; i < NR_IRQS; i++) {
281                 if (irq_get_chip(i) == &no_irq_chip)
282                         irq_set_chip(i, &irq_type_sn);
283         }
284 }
285
286 static void register_intr_pda(struct sn_irq_info *sn_irq_info)
287 {
288         int irq = sn_irq_info->irq_irq;
289         int cpu = sn_irq_info->irq_cpuid;
290
291         if (pdacpu(cpu)->sn_last_irq < irq) {
292                 pdacpu(cpu)->sn_last_irq = irq;
293         }
294
295         if (pdacpu(cpu)->sn_first_irq == 0 || pdacpu(cpu)->sn_first_irq > irq)
296                 pdacpu(cpu)->sn_first_irq = irq;
297 }
298
299 static void unregister_intr_pda(struct sn_irq_info *sn_irq_info)
300 {
301         int irq = sn_irq_info->irq_irq;
302         int cpu = sn_irq_info->irq_cpuid;
303         struct sn_irq_info *tmp_irq_info;
304         int i, foundmatch;
305
306         rcu_read_lock();
307         if (pdacpu(cpu)->sn_last_irq == irq) {
308                 foundmatch = 0;
309                 for (i = pdacpu(cpu)->sn_last_irq - 1;
310                      i && !foundmatch; i--) {
311                         list_for_each_entry_rcu(tmp_irq_info,
312                                                 sn_irq_lh[i],
313                                                 list) {
314                                 if (tmp_irq_info->irq_cpuid == cpu) {
315                                         foundmatch = 1;
316                                         break;
317                                 }
318                         }
319                 }
320                 pdacpu(cpu)->sn_last_irq = i;
321         }
322
323         if (pdacpu(cpu)->sn_first_irq == irq) {
324                 foundmatch = 0;
325                 for (i = pdacpu(cpu)->sn_first_irq + 1;
326                      i < NR_IRQS && !foundmatch; i++) {
327                         list_for_each_entry_rcu(tmp_irq_info,
328                                                 sn_irq_lh[i],
329                                                 list) {
330                                 if (tmp_irq_info->irq_cpuid == cpu) {
331                                         foundmatch = 1;
332                                         break;
333                                 }
334                         }
335                 }
336                 pdacpu(cpu)->sn_first_irq = ((i == NR_IRQS) ? 0 : i);
337         }
338         rcu_read_unlock();
339 }
340
341 static void sn_irq_info_free(struct rcu_head *head)
342 {
343         struct sn_irq_info *sn_irq_info;
344
345         sn_irq_info = container_of(head, struct sn_irq_info, rcu);
346         kfree(sn_irq_info);
347 }
348
349 void sn_irq_fixup(struct pci_dev *pci_dev, struct sn_irq_info *sn_irq_info)
350 {
351         nasid_t nasid = sn_irq_info->irq_nasid;
352         int slice = sn_irq_info->irq_slice;
353         int cpu = nasid_slice_to_cpuid(nasid, slice);
354 #ifdef CONFIG_SMP
355         int cpuphys;
356 #endif
357
358         pci_dev_get(pci_dev);
359         sn_irq_info->irq_cpuid = cpu;
360         sn_irq_info->irq_pciioinfo = SN_PCIDEV_INFO(pci_dev);
361
362         /* link it into the sn_irq[irq] list */
363         spin_lock(&sn_irq_info_lock);
364         list_add_rcu(&sn_irq_info->list, sn_irq_lh[sn_irq_info->irq_irq]);
365         reserve_irq_vector(sn_irq_info->irq_irq);
366         spin_unlock(&sn_irq_info_lock);
367
368         register_intr_pda(sn_irq_info);
369 #ifdef CONFIG_SMP
370         cpuphys = cpu_physical_id(cpu);
371         set_irq_affinity_info(sn_irq_info->irq_irq, cpuphys, 0);
372         /*
373          * Affinity was set by the PROM, prevent it from
374          * being reset by the request_irq() path.
375          */
376         irqd_mark_affinity_was_set(irq_get_irq_data(sn_irq_info->irq_irq));
377 #endif
378 }
379
380 void sn_irq_unfixup(struct pci_dev *pci_dev)
381 {
382         struct sn_irq_info *sn_irq_info;
383
384         /* Only cleanup IRQ stuff if this device has a host bus context */
385         if (!SN_PCIDEV_BUSSOFT(pci_dev))
386                 return;
387
388         sn_irq_info = SN_PCIDEV_INFO(pci_dev)->pdi_sn_irq_info;
389         if (!sn_irq_info)
390                 return;
391         if (!sn_irq_info->irq_irq) {
392                 kfree(sn_irq_info);
393                 return;
394         }
395
396         unregister_intr_pda(sn_irq_info);
397         spin_lock(&sn_irq_info_lock);
398         list_del_rcu(&sn_irq_info->list);
399         spin_unlock(&sn_irq_info_lock);
400         if (list_empty(sn_irq_lh[sn_irq_info->irq_irq]))
401                 free_irq_vector(sn_irq_info->irq_irq);
402         call_rcu(&sn_irq_info->rcu, sn_irq_info_free);
403         pci_dev_put(pci_dev);
404
405 }
406
407 static inline void
408 sn_call_force_intr_provider(struct sn_irq_info *sn_irq_info)
409 {
410         struct sn_pcibus_provider *pci_provider;
411
412         pci_provider = sn_pci_provider[sn_irq_info->irq_bridge_type];
413
414         /* Don't force an interrupt if the irq has been disabled */
415         if (!irqd_irq_disabled(sn_irq_info->irq_irq) &&
416             pci_provider && pci_provider->force_interrupt)
417                 (*pci_provider->force_interrupt)(sn_irq_info);
418 }
419
420 /*
421  * Check for lost interrupts.  If the PIC int_status reg. says that
422  * an interrupt has been sent, but not handled, and the interrupt
423  * is not pending in either the cpu irr regs or in the soft irr regs,
424  * and the interrupt is not in service, then the interrupt may have
425  * been lost.  Force an interrupt on that pin.  It is possible that
426  * the interrupt is in flight, so we may generate a spurious interrupt,
427  * but we should never miss a real lost interrupt.
428  */
429 static void sn_check_intr(int irq, struct sn_irq_info *sn_irq_info)
430 {
431         u64 regval;
432         struct pcidev_info *pcidev_info;
433         struct pcibus_info *pcibus_info;
434
435         /*
436          * Bridge types attached to TIO (anything but PIC) do not need this WAR
437          * since they do not target Shub II interrupt registers.  If that
438          * ever changes, this check needs to accomodate.
439          */
440         if (sn_irq_info->irq_bridge_type != PCIIO_ASIC_TYPE_PIC)
441                 return;
442
443         pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
444         if (!pcidev_info)
445                 return;
446
447         pcibus_info =
448             (struct pcibus_info *)pcidev_info->pdi_host_pcidev_info->
449             pdi_pcibus_info;
450         regval = pcireg_intr_status_get(pcibus_info);
451
452         if (!ia64_get_irr(irq_to_vector(irq))) {
453                 if (!test_bit(irq, pda->sn_in_service_ivecs)) {
454                         regval &= 0xff;
455                         if (sn_irq_info->irq_int_bit & regval &
456                             sn_irq_info->irq_last_intr) {
457                                 regval &= ~(sn_irq_info->irq_int_bit & regval);
458                                 sn_call_force_intr_provider(sn_irq_info);
459                         }
460                 }
461         }
462         sn_irq_info->irq_last_intr = regval;
463 }
464
465 void sn_lb_int_war_check(void)
466 {
467         struct sn_irq_info *sn_irq_info;
468         int i;
469
470         if (!sn_ioif_inited || pda->sn_first_irq == 0)
471                 return;
472
473         rcu_read_lock();
474         for (i = pda->sn_first_irq; i <= pda->sn_last_irq; i++) {
475                 list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[i], list) {
476                         sn_check_intr(i, sn_irq_info);
477                 }
478         }
479         rcu_read_unlock();
480 }
481
482 void __init sn_irq_lh_init(void)
483 {
484         int i;
485
486         sn_irq_lh = kmalloc(sizeof(struct list_head *) * NR_IRQS, GFP_KERNEL);
487         if (!sn_irq_lh)
488                 panic("SN PCI INIT: Failed to allocate memory for PCI init\n");
489
490         for (i = 0; i < NR_IRQS; i++) {
491                 sn_irq_lh[i] = kmalloc(sizeof(struct list_head), GFP_KERNEL);
492                 if (!sn_irq_lh[i])
493                         panic("SN PCI INIT: Failed IRQ memory allocation\n");
494
495                 INIT_LIST_HEAD(sn_irq_lh[i]);
496         }
497 }