[IA64] relax per-cpu TLB requirement to DTC
[pandora-kernel.git] / arch / ia64 / mm / init.c
1 /*
2  * Initialize MMU support.
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *      David Mosberger-Tang <davidm@hpl.hp.com>
6  */
7 #include <linux/kernel.h>
8 #include <linux/init.h>
9
10 #include <linux/bootmem.h>
11 #include <linux/efi.h>
12 #include <linux/elf.h>
13 #include <linux/mm.h>
14 #include <linux/mmzone.h>
15 #include <linux/module.h>
16 #include <linux/personality.h>
17 #include <linux/reboot.h>
18 #include <linux/slab.h>
19 #include <linux/swap.h>
20 #include <linux/proc_fs.h>
21 #include <linux/bitops.h>
22
23 #include <asm/a.out.h>
24 #include <asm/dma.h>
25 #include <asm/ia32.h>
26 #include <asm/io.h>
27 #include <asm/machvec.h>
28 #include <asm/numa.h>
29 #include <asm/patch.h>
30 #include <asm/pgalloc.h>
31 #include <asm/sal.h>
32 #include <asm/sections.h>
33 #include <asm/system.h>
34 #include <asm/tlb.h>
35 #include <asm/uaccess.h>
36 #include <asm/unistd.h>
37 #include <asm/mca.h>
38
39 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
40
41 DEFINE_PER_CPU(unsigned long *, __pgtable_quicklist);
42 DEFINE_PER_CPU(long, __pgtable_quicklist_size);
43
44 extern void ia64_tlb_init (void);
45
46 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
47
48 #ifdef CONFIG_VIRTUAL_MEM_MAP
49 unsigned long vmalloc_end = VMALLOC_END_INIT;
50 EXPORT_SYMBOL(vmalloc_end);
51 struct page *vmem_map;
52 EXPORT_SYMBOL(vmem_map);
53 #endif
54
55 struct page *zero_page_memmap_ptr;      /* map entry for zero page */
56 EXPORT_SYMBOL(zero_page_memmap_ptr);
57
58 #define MIN_PGT_PAGES                   25UL
59 #define MAX_PGT_FREES_PER_PASS          16L
60 #define PGT_FRACTION_OF_NODE_MEM        16
61
62 static inline long
63 max_pgt_pages(void)
64 {
65         u64 node_free_pages, max_pgt_pages;
66
67 #ifndef CONFIG_NUMA
68         node_free_pages = nr_free_pages();
69 #else
70         node_free_pages = nr_free_pages_pgdat(NODE_DATA(numa_node_id()));
71 #endif
72         max_pgt_pages = node_free_pages / PGT_FRACTION_OF_NODE_MEM;
73         max_pgt_pages = max(max_pgt_pages, MIN_PGT_PAGES);
74         return max_pgt_pages;
75 }
76
77 static inline long
78 min_pages_to_free(void)
79 {
80         long pages_to_free;
81
82         pages_to_free = pgtable_quicklist_size - max_pgt_pages();
83         pages_to_free = min(pages_to_free, MAX_PGT_FREES_PER_PASS);
84         return pages_to_free;
85 }
86
87 void
88 check_pgt_cache(void)
89 {
90         long pages_to_free;
91
92         if (unlikely(pgtable_quicklist_size <= MIN_PGT_PAGES))
93                 return;
94
95         preempt_disable();
96         while (unlikely((pages_to_free = min_pages_to_free()) > 0)) {
97                 while (pages_to_free--) {
98                         free_page((unsigned long)pgtable_quicklist_alloc());
99                 }
100                 preempt_enable();
101                 preempt_disable();
102         }
103         preempt_enable();
104 }
105
106 void
107 lazy_mmu_prot_update (pte_t pte)
108 {
109         unsigned long addr;
110         struct page *page;
111         unsigned long order;
112
113         if (!pte_exec(pte))
114                 return;                         /* not an executable page... */
115
116         page = pte_page(pte);
117         addr = (unsigned long) page_address(page);
118
119         if (test_bit(PG_arch_1, &page->flags))
120                 return;                         /* i-cache is already coherent with d-cache */
121
122         if (PageCompound(page)) {
123                 order = (unsigned long) (page[1].lru.prev);
124                 flush_icache_range(addr, addr + (1UL << order << PAGE_SHIFT));
125         }
126         else
127                 flush_icache_range(addr, addr + PAGE_SIZE);
128         set_bit(PG_arch_1, &page->flags);       /* mark page as clean */
129 }
130
131 inline void
132 ia64_set_rbs_bot (void)
133 {
134         unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16;
135
136         if (stack_size > MAX_USER_STACK_SIZE)
137                 stack_size = MAX_USER_STACK_SIZE;
138         current->thread.rbs_bot = STACK_TOP - stack_size;
139 }
140
141 /*
142  * This performs some platform-dependent address space initialization.
143  * On IA-64, we want to setup the VM area for the register backing
144  * store (which grows upwards) and install the gateway page which is
145  * used for signal trampolines, etc.
146  */
147 void
148 ia64_init_addr_space (void)
149 {
150         struct vm_area_struct *vma;
151
152         ia64_set_rbs_bot();
153
154         /*
155          * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
156          * the problem.  When the process attempts to write to the register backing store
157          * for the first time, it will get a SEGFAULT in this case.
158          */
159         vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
160         if (vma) {
161                 memset(vma, 0, sizeof(*vma));
162                 vma->vm_mm = current->mm;
163                 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
164                 vma->vm_end = vma->vm_start + PAGE_SIZE;
165                 vma->vm_page_prot = protection_map[VM_DATA_DEFAULT_FLAGS & 0x7];
166                 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
167                 down_write(&current->mm->mmap_sem);
168                 if (insert_vm_struct(current->mm, vma)) {
169                         up_write(&current->mm->mmap_sem);
170                         kmem_cache_free(vm_area_cachep, vma);
171                         return;
172                 }
173                 up_write(&current->mm->mmap_sem);
174         }
175
176         /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
177         if (!(current->personality & MMAP_PAGE_ZERO)) {
178                 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
179                 if (vma) {
180                         memset(vma, 0, sizeof(*vma));
181                         vma->vm_mm = current->mm;
182                         vma->vm_end = PAGE_SIZE;
183                         vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
184                         vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
185                         down_write(&current->mm->mmap_sem);
186                         if (insert_vm_struct(current->mm, vma)) {
187                                 up_write(&current->mm->mmap_sem);
188                                 kmem_cache_free(vm_area_cachep, vma);
189                                 return;
190                         }
191                         up_write(&current->mm->mmap_sem);
192                 }
193         }
194 }
195
196 void
197 free_initmem (void)
198 {
199         unsigned long addr, eaddr;
200
201         addr = (unsigned long) ia64_imva(__init_begin);
202         eaddr = (unsigned long) ia64_imva(__init_end);
203         while (addr < eaddr) {
204                 ClearPageReserved(virt_to_page(addr));
205                 init_page_count(virt_to_page(addr));
206                 free_page(addr);
207                 ++totalram_pages;
208                 addr += PAGE_SIZE;
209         }
210         printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
211                (__init_end - __init_begin) >> 10);
212 }
213
214 void __init
215 free_initrd_mem (unsigned long start, unsigned long end)
216 {
217         struct page *page;
218         /*
219          * EFI uses 4KB pages while the kernel can use 4KB or bigger.
220          * Thus EFI and the kernel may have different page sizes. It is
221          * therefore possible to have the initrd share the same page as
222          * the end of the kernel (given current setup).
223          *
224          * To avoid freeing/using the wrong page (kernel sized) we:
225          *      - align up the beginning of initrd
226          *      - align down the end of initrd
227          *
228          *  |             |
229          *  |=============| a000
230          *  |             |
231          *  |             |
232          *  |             | 9000
233          *  |/////////////|
234          *  |/////////////|
235          *  |=============| 8000
236          *  |///INITRD////|
237          *  |/////////////|
238          *  |/////////////| 7000
239          *  |             |
240          *  |KKKKKKKKKKKKK|
241          *  |=============| 6000
242          *  |KKKKKKKKKKKKK|
243          *  |KKKKKKKKKKKKK|
244          *  K=kernel using 8KB pages
245          *
246          * In this example, we must free page 8000 ONLY. So we must align up
247          * initrd_start and keep initrd_end as is.
248          */
249         start = PAGE_ALIGN(start);
250         end = end & PAGE_MASK;
251
252         if (start < end)
253                 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
254
255         for (; start < end; start += PAGE_SIZE) {
256                 if (!virt_addr_valid(start))
257                         continue;
258                 page = virt_to_page(start);
259                 ClearPageReserved(page);
260                 init_page_count(page);
261                 free_page(start);
262                 ++totalram_pages;
263         }
264 }
265
266 /*
267  * This installs a clean page in the kernel's page table.
268  */
269 static struct page * __init
270 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
271 {
272         pgd_t *pgd;
273         pud_t *pud;
274         pmd_t *pmd;
275         pte_t *pte;
276
277         if (!PageReserved(page))
278                 printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
279                        page_address(page));
280
281         pgd = pgd_offset_k(address);            /* note: this is NOT pgd_offset()! */
282
283         {
284                 pud = pud_alloc(&init_mm, pgd, address);
285                 if (!pud)
286                         goto out;
287                 pmd = pmd_alloc(&init_mm, pud, address);
288                 if (!pmd)
289                         goto out;
290                 pte = pte_alloc_kernel(pmd, address);
291                 if (!pte)
292                         goto out;
293                 if (!pte_none(*pte))
294                         goto out;
295                 set_pte(pte, mk_pte(page, pgprot));
296         }
297   out:
298         /* no need for flush_tlb */
299         return page;
300 }
301
302 static void __init
303 setup_gate (void)
304 {
305         struct page *page;
306
307         /*
308          * Map the gate page twice: once read-only to export the ELF
309          * headers etc. and once execute-only page to enable
310          * privilege-promotion via "epc":
311          */
312         page = virt_to_page(ia64_imva(__start_gate_section));
313         put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
314 #ifdef HAVE_BUGGY_SEGREL
315         page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
316         put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
317 #else
318         put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
319         /* Fill in the holes (if any) with read-only zero pages: */
320         {
321                 unsigned long addr;
322
323                 for (addr = GATE_ADDR + PAGE_SIZE;
324                      addr < GATE_ADDR + PERCPU_PAGE_SIZE;
325                      addr += PAGE_SIZE)
326                 {
327                         put_kernel_page(ZERO_PAGE(0), addr,
328                                         PAGE_READONLY);
329                         put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
330                                         PAGE_READONLY);
331                 }
332         }
333 #endif
334         ia64_patch_gate();
335 }
336
337 void __devinit
338 ia64_mmu_init (void *my_cpu_data)
339 {
340         unsigned long pta, impl_va_bits;
341         extern void __devinit tlb_init (void);
342
343 #ifdef CONFIG_DISABLE_VHPT
344 #       define VHPT_ENABLE_BIT  0
345 #else
346 #       define VHPT_ENABLE_BIT  1
347 #endif
348
349         /*
350          * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
351          * address space.  The IA-64 architecture guarantees that at least 50 bits of
352          * virtual address space are implemented but if we pick a large enough page size
353          * (e.g., 64KB), the mapped address space is big enough that it will overlap with
354          * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
355          * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
356          * problem in practice.  Alternatively, we could truncate the top of the mapped
357          * address space to not permit mappings that would overlap with the VMLPT.
358          * --davidm 00/12/06
359          */
360 #       define pte_bits                 3
361 #       define mapped_space_bits        (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
362         /*
363          * The virtual page table has to cover the entire implemented address space within
364          * a region even though not all of this space may be mappable.  The reason for
365          * this is that the Access bit and Dirty bit fault handlers perform
366          * non-speculative accesses to the virtual page table, so the address range of the
367          * virtual page table itself needs to be covered by virtual page table.
368          */
369 #       define vmlpt_bits               (impl_va_bits - PAGE_SHIFT + pte_bits)
370 #       define POW2(n)                  (1ULL << (n))
371
372         impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
373
374         if (impl_va_bits < 51 || impl_va_bits > 61)
375                 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
376         /*
377          * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
378          * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
379          * the test makes sure that our mapped space doesn't overlap the
380          * unimplemented hole in the middle of the region.
381          */
382         if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
383             (mapped_space_bits > impl_va_bits - 1))
384                 panic("Cannot build a big enough virtual-linear page table"
385                       " to cover mapped address space.\n"
386                       " Try using a smaller page size.\n");
387
388
389         /* place the VMLPT at the end of each page-table mapped region: */
390         pta = POW2(61) - POW2(vmlpt_bits);
391
392         /*
393          * Set the (virtually mapped linear) page table address.  Bit
394          * 8 selects between the short and long format, bits 2-7 the
395          * size of the table, and bit 0 whether the VHPT walker is
396          * enabled.
397          */
398         ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
399
400         ia64_tlb_init();
401
402 #ifdef  CONFIG_HUGETLB_PAGE
403         ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
404         ia64_srlz_d();
405 #endif
406 }
407
408 #ifdef CONFIG_VIRTUAL_MEM_MAP
409 int vmemmap_find_next_valid_pfn(int node, int i)
410 {
411         unsigned long end_address, hole_next_pfn;
412         unsigned long stop_address;
413         pg_data_t *pgdat = NODE_DATA(node);
414
415         end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
416         end_address = PAGE_ALIGN(end_address);
417
418         stop_address = (unsigned long) &vmem_map[
419                 pgdat->node_start_pfn + pgdat->node_spanned_pages];
420
421         do {
422                 pgd_t *pgd;
423                 pud_t *pud;
424                 pmd_t *pmd;
425                 pte_t *pte;
426
427                 pgd = pgd_offset_k(end_address);
428                 if (pgd_none(*pgd)) {
429                         end_address += PGDIR_SIZE;
430                         continue;
431                 }
432
433                 pud = pud_offset(pgd, end_address);
434                 if (pud_none(*pud)) {
435                         end_address += PUD_SIZE;
436                         continue;
437                 }
438
439                 pmd = pmd_offset(pud, end_address);
440                 if (pmd_none(*pmd)) {
441                         end_address += PMD_SIZE;
442                         continue;
443                 }
444
445                 pte = pte_offset_kernel(pmd, end_address);
446 retry_pte:
447                 if (pte_none(*pte)) {
448                         end_address += PAGE_SIZE;
449                         pte++;
450                         if ((end_address < stop_address) &&
451                             (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
452                                 goto retry_pte;
453                         continue;
454                 }
455                 /* Found next valid vmem_map page */
456                 break;
457         } while (end_address < stop_address);
458
459         end_address = min(end_address, stop_address);
460         end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
461         hole_next_pfn = end_address / sizeof(struct page);
462         return hole_next_pfn - pgdat->node_start_pfn;
463 }
464
465 int __init
466 create_mem_map_page_table (u64 start, u64 end, void *arg)
467 {
468         unsigned long address, start_page, end_page;
469         struct page *map_start, *map_end;
470         int node;
471         pgd_t *pgd;
472         pud_t *pud;
473         pmd_t *pmd;
474         pte_t *pte;
475
476         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
477         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
478
479         start_page = (unsigned long) map_start & PAGE_MASK;
480         end_page = PAGE_ALIGN((unsigned long) map_end);
481         node = paddr_to_nid(__pa(start));
482
483         for (address = start_page; address < end_page; address += PAGE_SIZE) {
484                 pgd = pgd_offset_k(address);
485                 if (pgd_none(*pgd))
486                         pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
487                 pud = pud_offset(pgd, address);
488
489                 if (pud_none(*pud))
490                         pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
491                 pmd = pmd_offset(pud, address);
492
493                 if (pmd_none(*pmd))
494                         pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
495                 pte = pte_offset_kernel(pmd, address);
496
497                 if (pte_none(*pte))
498                         set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
499                                              PAGE_KERNEL));
500         }
501         return 0;
502 }
503
504 struct memmap_init_callback_data {
505         struct page *start;
506         struct page *end;
507         int nid;
508         unsigned long zone;
509 };
510
511 static int
512 virtual_memmap_init (u64 start, u64 end, void *arg)
513 {
514         struct memmap_init_callback_data *args;
515         struct page *map_start, *map_end;
516
517         args = (struct memmap_init_callback_data *) arg;
518         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
519         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
520
521         if (map_start < args->start)
522                 map_start = args->start;
523         if (map_end > args->end)
524                 map_end = args->end;
525
526         /*
527          * We have to initialize "out of bounds" struct page elements that fit completely
528          * on the same pages that were allocated for the "in bounds" elements because they
529          * may be referenced later (and found to be "reserved").
530          */
531         map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
532         map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
533                     / sizeof(struct page));
534
535         if (map_start < map_end)
536                 memmap_init_zone((unsigned long)(map_end - map_start),
537                                  args->nid, args->zone, page_to_pfn(map_start),
538                                  MEMMAP_EARLY);
539         return 0;
540 }
541
542 void
543 memmap_init (unsigned long size, int nid, unsigned long zone,
544              unsigned long start_pfn)
545 {
546         if (!vmem_map)
547                 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
548         else {
549                 struct page *start;
550                 struct memmap_init_callback_data args;
551
552                 start = pfn_to_page(start_pfn);
553                 args.start = start;
554                 args.end = start + size;
555                 args.nid = nid;
556                 args.zone = zone;
557
558                 efi_memmap_walk(virtual_memmap_init, &args);
559         }
560 }
561
562 int
563 ia64_pfn_valid (unsigned long pfn)
564 {
565         char byte;
566         struct page *pg = pfn_to_page(pfn);
567
568         return     (__get_user(byte, (char __user *) pg) == 0)
569                 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
570                         || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
571 }
572 EXPORT_SYMBOL(ia64_pfn_valid);
573
574 int __init
575 find_largest_hole (u64 start, u64 end, void *arg)
576 {
577         u64 *max_gap = arg;
578
579         static u64 last_end = PAGE_OFFSET;
580
581         /* NOTE: this algorithm assumes efi memmap table is ordered */
582
583         if (*max_gap < (start - last_end))
584                 *max_gap = start - last_end;
585         last_end = end;
586         return 0;
587 }
588
589 int __init
590 register_active_ranges(u64 start, u64 end, void *arg)
591 {
592         add_active_range(0, __pa(start) >> PAGE_SHIFT, __pa(end) >> PAGE_SHIFT);
593         return 0;
594 }
595 #endif /* CONFIG_VIRTUAL_MEM_MAP */
596
597 static int __init
598 count_reserved_pages (u64 start, u64 end, void *arg)
599 {
600         unsigned long num_reserved = 0;
601         unsigned long *count = arg;
602
603         for (; start < end; start += PAGE_SIZE)
604                 if (PageReserved(virt_to_page(start)))
605                         ++num_reserved;
606         *count += num_reserved;
607         return 0;
608 }
609
610 /*
611  * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
612  * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
613  * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
614  * useful for performance testing, but conceivably could also come in handy for debugging
615  * purposes.
616  */
617
618 static int nolwsys __initdata;
619
620 static int __init
621 nolwsys_setup (char *s)
622 {
623         nolwsys = 1;
624         return 1;
625 }
626
627 __setup("nolwsys", nolwsys_setup);
628
629 void __init
630 mem_init (void)
631 {
632         long reserved_pages, codesize, datasize, initsize;
633         pg_data_t *pgdat;
634         int i;
635         static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel;
636
637         BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
638         BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
639         BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
640
641 #ifdef CONFIG_PCI
642         /*
643          * This needs to be called _after_ the command line has been parsed but _before_
644          * any drivers that may need the PCI DMA interface are initialized or bootmem has
645          * been freed.
646          */
647         platform_dma_init();
648 #endif
649
650 #ifdef CONFIG_FLATMEM
651         if (!mem_map)
652                 BUG();
653         max_mapnr = max_low_pfn;
654 #endif
655
656         high_memory = __va(max_low_pfn * PAGE_SIZE);
657
658         kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE);
659         kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
660         kclist_add(&kcore_kernel, _stext, _end - _stext);
661
662         for_each_online_pgdat(pgdat)
663                 if (pgdat->bdata->node_bootmem_map)
664                         totalram_pages += free_all_bootmem_node(pgdat);
665
666         reserved_pages = 0;
667         efi_memmap_walk(count_reserved_pages, &reserved_pages);
668
669         codesize =  (unsigned long) _etext - (unsigned long) _stext;
670         datasize =  (unsigned long) _edata - (unsigned long) _etext;
671         initsize =  (unsigned long) __init_end - (unsigned long) __init_begin;
672
673         printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
674                "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10),
675                num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
676                reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
677
678
679         /*
680          * For fsyscall entrpoints with no light-weight handler, use the ordinary
681          * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
682          * code can tell them apart.
683          */
684         for (i = 0; i < NR_syscalls; ++i) {
685                 extern unsigned long fsyscall_table[NR_syscalls];
686                 extern unsigned long sys_call_table[NR_syscalls];
687
688                 if (!fsyscall_table[i] || nolwsys)
689                         fsyscall_table[i] = sys_call_table[i] | 1;
690         }
691         setup_gate();
692
693 #ifdef CONFIG_IA32_SUPPORT
694         ia32_mem_init();
695 #endif
696 }
697
698 #ifdef CONFIG_MEMORY_HOTPLUG
699 void online_page(struct page *page)
700 {
701         ClearPageReserved(page);
702         init_page_count(page);
703         __free_page(page);
704         totalram_pages++;
705         num_physpages++;
706 }
707
708 int arch_add_memory(int nid, u64 start, u64 size)
709 {
710         pg_data_t *pgdat;
711         struct zone *zone;
712         unsigned long start_pfn = start >> PAGE_SHIFT;
713         unsigned long nr_pages = size >> PAGE_SHIFT;
714         int ret;
715
716         pgdat = NODE_DATA(nid);
717
718         zone = pgdat->node_zones + ZONE_NORMAL;
719         ret = __add_pages(zone, start_pfn, nr_pages);
720
721         if (ret)
722                 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
723                        __FUNCTION__,  ret);
724
725         return ret;
726 }
727
728 int remove_memory(u64 start, u64 size)
729 {
730         return -EINVAL;
731 }
732 EXPORT_SYMBOL_GPL(remove_memory);
733 #endif