Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs...
[pandora-kernel.git] / arch / ia64 / mm / contig.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1998-2003 Hewlett-Packard Co
7  *      David Mosberger-Tang <davidm@hpl.hp.com>
8  *      Stephane Eranian <eranian@hpl.hp.com>
9  * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
10  * Copyright (C) 1999 VA Linux Systems
11  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
12  * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
13  *
14  * Routines used by ia64 machines with contiguous (or virtually contiguous)
15  * memory.
16  */
17 #include <linux/bootmem.h>
18 #include <linux/efi.h>
19 #include <linux/mm.h>
20 #include <linux/nmi.h>
21 #include <linux/swap.h>
22
23 #include <asm/meminit.h>
24 #include <asm/pgalloc.h>
25 #include <asm/pgtable.h>
26 #include <asm/sections.h>
27 #include <asm/mca.h>
28
29 #ifdef CONFIG_VIRTUAL_MEM_MAP
30 static unsigned long max_gap;
31 #endif
32
33 /**
34  * show_mem - give short summary of memory stats
35  *
36  * Shows a simple page count of reserved and used pages in the system.
37  * For discontig machines, it does this on a per-pgdat basis.
38  */
39 void show_mem(unsigned int filter)
40 {
41         int i, total_reserved = 0;
42         int total_shared = 0, total_cached = 0;
43         unsigned long total_present = 0;
44         pg_data_t *pgdat;
45
46         printk(KERN_INFO "Mem-info:\n");
47         show_free_areas(filter);
48         printk(KERN_INFO "Node memory in pages:\n");
49         for_each_online_pgdat(pgdat) {
50                 unsigned long present;
51                 unsigned long flags;
52                 int shared = 0, cached = 0, reserved = 0;
53                 int nid = pgdat->node_id;
54
55                 if (skip_free_areas_node(filter, nid))
56                         continue;
57                 pgdat_resize_lock(pgdat, &flags);
58                 present = pgdat->node_present_pages;
59                 for(i = 0; i < pgdat->node_spanned_pages; i++) {
60                         struct page *page;
61                         if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
62                                 touch_nmi_watchdog();
63                         if (pfn_valid(pgdat->node_start_pfn + i))
64                                 page = pfn_to_page(pgdat->node_start_pfn + i);
65                         else {
66 #ifdef CONFIG_VIRTUAL_MEM_MAP
67                                 if (max_gap < LARGE_GAP)
68                                         continue;
69 #endif
70                                 i = vmemmap_find_next_valid_pfn(nid, i) - 1;
71                                 continue;
72                         }
73                         if (PageReserved(page))
74                                 reserved++;
75                         else if (PageSwapCache(page))
76                                 cached++;
77                         else if (page_count(page))
78                                 shared += page_count(page)-1;
79                 }
80                 pgdat_resize_unlock(pgdat, &flags);
81                 total_present += present;
82                 total_reserved += reserved;
83                 total_cached += cached;
84                 total_shared += shared;
85                 printk(KERN_INFO "Node %4d:  RAM: %11ld, rsvd: %8d, "
86                        "shrd: %10d, swpd: %10d\n", nid,
87                        present, reserved, shared, cached);
88         }
89         printk(KERN_INFO "%ld pages of RAM\n", total_present);
90         printk(KERN_INFO "%d reserved pages\n", total_reserved);
91         printk(KERN_INFO "%d pages shared\n", total_shared);
92         printk(KERN_INFO "%d pages swap cached\n", total_cached);
93         printk(KERN_INFO "Total of %ld pages in page table cache\n",
94                quicklist_total_size());
95         printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
96 }
97
98
99 /* physical address where the bootmem map is located */
100 unsigned long bootmap_start;
101
102 /**
103  * find_bootmap_location - callback to find a memory area for the bootmap
104  * @start: start of region
105  * @end: end of region
106  * @arg: unused callback data
107  *
108  * Find a place to put the bootmap and return its starting address in
109  * bootmap_start.  This address must be page-aligned.
110  */
111 static int __init
112 find_bootmap_location (u64 start, u64 end, void *arg)
113 {
114         u64 needed = *(unsigned long *)arg;
115         u64 range_start, range_end, free_start;
116         int i;
117
118 #if IGNORE_PFN0
119         if (start == PAGE_OFFSET) {
120                 start += PAGE_SIZE;
121                 if (start >= end)
122                         return 0;
123         }
124 #endif
125
126         free_start = PAGE_OFFSET;
127
128         for (i = 0; i < num_rsvd_regions; i++) {
129                 range_start = max(start, free_start);
130                 range_end   = min(end, rsvd_region[i].start & PAGE_MASK);
131
132                 free_start = PAGE_ALIGN(rsvd_region[i].end);
133
134                 if (range_end <= range_start)
135                         continue; /* skip over empty range */
136
137                 if (range_end - range_start >= needed) {
138                         bootmap_start = __pa(range_start);
139                         return -1;      /* done */
140                 }
141
142                 /* nothing more available in this segment */
143                 if (range_end == end)
144                         return 0;
145         }
146         return 0;
147 }
148
149 #ifdef CONFIG_SMP
150 static void *cpu_data;
151 /**
152  * per_cpu_init - setup per-cpu variables
153  *
154  * Allocate and setup per-cpu data areas.
155  */
156 void * __cpuinit
157 per_cpu_init (void)
158 {
159         static bool first_time = true;
160         void *cpu0_data = __cpu0_per_cpu;
161         unsigned int cpu;
162
163         if (!first_time)
164                 goto skip;
165         first_time = false;
166
167         /*
168          * get_free_pages() cannot be used before cpu_init() done.
169          * BSP allocates PERCPU_PAGE_SIZE bytes for all possible CPUs
170          * to avoid that AP calls get_zeroed_page().
171          */
172         for_each_possible_cpu(cpu) {
173                 void *src = cpu == 0 ? cpu0_data : __phys_per_cpu_start;
174
175                 memcpy(cpu_data, src, __per_cpu_end - __per_cpu_start);
176                 __per_cpu_offset[cpu] = (char *)cpu_data - __per_cpu_start;
177                 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
178
179                 /*
180                  * percpu area for cpu0 is moved from the __init area
181                  * which is setup by head.S and used till this point.
182                  * Update ar.k3.  This move is ensures that percpu
183                  * area for cpu0 is on the correct node and its
184                  * virtual address isn't insanely far from other
185                  * percpu areas which is important for congruent
186                  * percpu allocator.
187                  */
188                 if (cpu == 0)
189                         ia64_set_kr(IA64_KR_PER_CPU_DATA, __pa(cpu_data) -
190                                     (unsigned long)__per_cpu_start);
191
192                 cpu_data += PERCPU_PAGE_SIZE;
193         }
194 skip:
195         return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
196 }
197
198 static inline void
199 alloc_per_cpu_data(void)
200 {
201         cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * num_possible_cpus(),
202                                    PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
203 }
204
205 /**
206  * setup_per_cpu_areas - setup percpu areas
207  *
208  * Arch code has already allocated and initialized percpu areas.  All
209  * this function has to do is to teach the determined layout to the
210  * dynamic percpu allocator, which happens to be more complex than
211  * creating whole new ones using helpers.
212  */
213 void __init
214 setup_per_cpu_areas(void)
215 {
216         struct pcpu_alloc_info *ai;
217         struct pcpu_group_info *gi;
218         unsigned int cpu;
219         ssize_t static_size, reserved_size, dyn_size;
220         int rc;
221
222         ai = pcpu_alloc_alloc_info(1, num_possible_cpus());
223         if (!ai)
224                 panic("failed to allocate pcpu_alloc_info");
225         gi = &ai->groups[0];
226
227         /* units are assigned consecutively to possible cpus */
228         for_each_possible_cpu(cpu)
229                 gi->cpu_map[gi->nr_units++] = cpu;
230
231         /* set parameters */
232         static_size = __per_cpu_end - __per_cpu_start;
233         reserved_size = PERCPU_MODULE_RESERVE;
234         dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
235         if (dyn_size < 0)
236                 panic("percpu area overflow static=%zd reserved=%zd\n",
237                       static_size, reserved_size);
238
239         ai->static_size         = static_size;
240         ai->reserved_size       = reserved_size;
241         ai->dyn_size            = dyn_size;
242         ai->unit_size           = PERCPU_PAGE_SIZE;
243         ai->atom_size           = PAGE_SIZE;
244         ai->alloc_size          = PERCPU_PAGE_SIZE;
245
246         rc = pcpu_setup_first_chunk(ai, __per_cpu_start + __per_cpu_offset[0]);
247         if (rc)
248                 panic("failed to setup percpu area (err=%d)", rc);
249
250         pcpu_free_alloc_info(ai);
251 }
252 #else
253 #define alloc_per_cpu_data() do { } while (0)
254 #endif /* CONFIG_SMP */
255
256 /**
257  * find_memory - setup memory map
258  *
259  * Walk the EFI memory map and find usable memory for the system, taking
260  * into account reserved areas.
261  */
262 void __init
263 find_memory (void)
264 {
265         unsigned long bootmap_size;
266
267         reserve_memory();
268
269         /* first find highest page frame number */
270         min_low_pfn = ~0UL;
271         max_low_pfn = 0;
272         efi_memmap_walk(find_max_min_low_pfn, NULL);
273         max_pfn = max_low_pfn;
274         /* how many bytes to cover all the pages */
275         bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
276
277         /* look for a location to hold the bootmap */
278         bootmap_start = ~0UL;
279         efi_memmap_walk(find_bootmap_location, &bootmap_size);
280         if (bootmap_start == ~0UL)
281                 panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
282
283         bootmap_size = init_bootmem_node(NODE_DATA(0),
284                         (bootmap_start >> PAGE_SHIFT), 0, max_pfn);
285
286         /* Free all available memory, then mark bootmem-map as being in use. */
287         efi_memmap_walk(filter_rsvd_memory, free_bootmem);
288         reserve_bootmem(bootmap_start, bootmap_size, BOOTMEM_DEFAULT);
289
290         find_initrd();
291
292         alloc_per_cpu_data();
293 }
294
295 static int count_pages(u64 start, u64 end, void *arg)
296 {
297         unsigned long *count = arg;
298
299         *count += (end - start) >> PAGE_SHIFT;
300         return 0;
301 }
302
303 /*
304  * Set up the page tables.
305  */
306
307 void __init
308 paging_init (void)
309 {
310         unsigned long max_dma;
311         unsigned long max_zone_pfns[MAX_NR_ZONES];
312
313         num_physpages = 0;
314         efi_memmap_walk(count_pages, &num_physpages);
315
316         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
317 #ifdef CONFIG_ZONE_DMA
318         max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
319         max_zone_pfns[ZONE_DMA] = max_dma;
320 #endif
321         max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
322
323 #ifdef CONFIG_VIRTUAL_MEM_MAP
324         efi_memmap_walk(filter_memory, register_active_ranges);
325         efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
326         if (max_gap < LARGE_GAP) {
327                 vmem_map = (struct page *) 0;
328                 free_area_init_nodes(max_zone_pfns);
329         } else {
330                 unsigned long map_size;
331
332                 /* allocate virtual_mem_map */
333
334                 map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
335                         sizeof(struct page));
336                 VMALLOC_END -= map_size;
337                 vmem_map = (struct page *) VMALLOC_END;
338                 efi_memmap_walk(create_mem_map_page_table, NULL);
339
340                 /*
341                  * alloc_node_mem_map makes an adjustment for mem_map
342                  * which isn't compatible with vmem_map.
343                  */
344                 NODE_DATA(0)->node_mem_map = vmem_map +
345                         find_min_pfn_with_active_regions();
346                 free_area_init_nodes(max_zone_pfns);
347
348                 printk("Virtual mem_map starts at 0x%p\n", mem_map);
349         }
350 #else /* !CONFIG_VIRTUAL_MEM_MAP */
351         add_active_range(0, 0, max_low_pfn);
352         free_area_init_nodes(max_zone_pfns);
353 #endif /* !CONFIG_VIRTUAL_MEM_MAP */
354         zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
355 }