Merge branch 'kvm-updates/2.6.39' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[pandora-kernel.git] / arch / ia64 / kvm / kvm-ia64.c
1 /*
2  * kvm_ia64.c: Basic KVM suppport On Itanium series processors
3  *
4  *
5  *      Copyright (C) 2007, Intel Corporation.
6  *      Xiantao Zhang  (xiantao.zhang@intel.com)
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
19  * Place - Suite 330, Boston, MA 02111-1307 USA.
20  *
21  */
22
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/smp.h>
29 #include <linux/kvm_host.h>
30 #include <linux/kvm.h>
31 #include <linux/bitops.h>
32 #include <linux/hrtimer.h>
33 #include <linux/uaccess.h>
34 #include <linux/iommu.h>
35 #include <linux/intel-iommu.h>
36
37 #include <asm/pgtable.h>
38 #include <asm/gcc_intrin.h>
39 #include <asm/pal.h>
40 #include <asm/cacheflush.h>
41 #include <asm/div64.h>
42 #include <asm/tlb.h>
43 #include <asm/elf.h>
44 #include <asm/sn/addrs.h>
45 #include <asm/sn/clksupport.h>
46 #include <asm/sn/shub_mmr.h>
47
48 #include "misc.h"
49 #include "vti.h"
50 #include "iodev.h"
51 #include "ioapic.h"
52 #include "lapic.h"
53 #include "irq.h"
54
55 static unsigned long kvm_vmm_base;
56 static unsigned long kvm_vsa_base;
57 static unsigned long kvm_vm_buffer;
58 static unsigned long kvm_vm_buffer_size;
59 unsigned long kvm_vmm_gp;
60
61 static long vp_env_info;
62
63 static struct kvm_vmm_info *kvm_vmm_info;
64
65 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
66
67 struct kvm_stats_debugfs_item debugfs_entries[] = {
68         { NULL }
69 };
70
71 static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu)
72 {
73 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
74         if (vcpu->kvm->arch.is_sn2)
75                 return rtc_time();
76         else
77 #endif
78                 return ia64_getreg(_IA64_REG_AR_ITC);
79 }
80
81 static void kvm_flush_icache(unsigned long start, unsigned long len)
82 {
83         int l;
84
85         for (l = 0; l < (len + 32); l += 32)
86                 ia64_fc((void *)(start + l));
87
88         ia64_sync_i();
89         ia64_srlz_i();
90 }
91
92 static void kvm_flush_tlb_all(void)
93 {
94         unsigned long i, j, count0, count1, stride0, stride1, addr;
95         long flags;
96
97         addr    = local_cpu_data->ptce_base;
98         count0  = local_cpu_data->ptce_count[0];
99         count1  = local_cpu_data->ptce_count[1];
100         stride0 = local_cpu_data->ptce_stride[0];
101         stride1 = local_cpu_data->ptce_stride[1];
102
103         local_irq_save(flags);
104         for (i = 0; i < count0; ++i) {
105                 for (j = 0; j < count1; ++j) {
106                         ia64_ptce(addr);
107                         addr += stride1;
108                 }
109                 addr += stride0;
110         }
111         local_irq_restore(flags);
112         ia64_srlz_i();                  /* srlz.i implies srlz.d */
113 }
114
115 long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
116 {
117         struct ia64_pal_retval iprv;
118
119         PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
120                         (u64)opt_handler);
121
122         return iprv.status;
123 }
124
125 static  DEFINE_SPINLOCK(vp_lock);
126
127 int kvm_arch_hardware_enable(void *garbage)
128 {
129         long  status;
130         long  tmp_base;
131         unsigned long pte;
132         unsigned long saved_psr;
133         int slot;
134
135         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
136         local_irq_save(saved_psr);
137         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
138         local_irq_restore(saved_psr);
139         if (slot < 0)
140                 return -EINVAL;
141
142         spin_lock(&vp_lock);
143         status = ia64_pal_vp_init_env(kvm_vsa_base ?
144                                 VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
145                         __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
146         if (status != 0) {
147                 spin_unlock(&vp_lock);
148                 printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
149                 return -EINVAL;
150         }
151
152         if (!kvm_vsa_base) {
153                 kvm_vsa_base = tmp_base;
154                 printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
155         }
156         spin_unlock(&vp_lock);
157         ia64_ptr_entry(0x3, slot);
158
159         return 0;
160 }
161
162 void kvm_arch_hardware_disable(void *garbage)
163 {
164
165         long status;
166         int slot;
167         unsigned long pte;
168         unsigned long saved_psr;
169         unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
170
171         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
172                                 PAGE_KERNEL));
173
174         local_irq_save(saved_psr);
175         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
176         local_irq_restore(saved_psr);
177         if (slot < 0)
178                 return;
179
180         status = ia64_pal_vp_exit_env(host_iva);
181         if (status)
182                 printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
183                                 status);
184         ia64_ptr_entry(0x3, slot);
185 }
186
187 void kvm_arch_check_processor_compat(void *rtn)
188 {
189         *(int *)rtn = 0;
190 }
191
192 int kvm_dev_ioctl_check_extension(long ext)
193 {
194
195         int r;
196
197         switch (ext) {
198         case KVM_CAP_IRQCHIP:
199         case KVM_CAP_MP_STATE:
200         case KVM_CAP_IRQ_INJECT_STATUS:
201                 r = 1;
202                 break;
203         case KVM_CAP_COALESCED_MMIO:
204                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
205                 break;
206         case KVM_CAP_IOMMU:
207                 r = iommu_found();
208                 break;
209         default:
210                 r = 0;
211         }
212         return r;
213
214 }
215
216 static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
217 {
218         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
219         kvm_run->hw.hardware_exit_reason = 1;
220         return 0;
221 }
222
223 static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
224 {
225         struct kvm_mmio_req *p;
226         struct kvm_io_device *mmio_dev;
227         int r;
228
229         p = kvm_get_vcpu_ioreq(vcpu);
230
231         if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
232                 goto mmio;
233         vcpu->mmio_needed = 1;
234         vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
235         vcpu->mmio_size = kvm_run->mmio.len = p->size;
236         vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
237
238         if (vcpu->mmio_is_write)
239                 memcpy(vcpu->mmio_data, &p->data, p->size);
240         memcpy(kvm_run->mmio.data, &p->data, p->size);
241         kvm_run->exit_reason = KVM_EXIT_MMIO;
242         return 0;
243 mmio:
244         if (p->dir)
245                 r = kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, p->addr,
246                                     p->size, &p->data);
247         else
248                 r = kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, p->addr,
249                                      p->size, &p->data);
250         if (r)
251                 printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
252         p->state = STATE_IORESP_READY;
253
254         return 1;
255 }
256
257 static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
258 {
259         struct exit_ctl_data *p;
260
261         p = kvm_get_exit_data(vcpu);
262
263         if (p->exit_reason == EXIT_REASON_PAL_CALL)
264                 return kvm_pal_emul(vcpu, kvm_run);
265         else {
266                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
267                 kvm_run->hw.hardware_exit_reason = 2;
268                 return 0;
269         }
270 }
271
272 static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
273 {
274         struct exit_ctl_data *p;
275
276         p = kvm_get_exit_data(vcpu);
277
278         if (p->exit_reason == EXIT_REASON_SAL_CALL) {
279                 kvm_sal_emul(vcpu);
280                 return 1;
281         } else {
282                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
283                 kvm_run->hw.hardware_exit_reason = 3;
284                 return 0;
285         }
286
287 }
288
289 static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
290 {
291         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
292
293         if (!test_and_set_bit(vector, &vpd->irr[0])) {
294                 vcpu->arch.irq_new_pending = 1;
295                 kvm_vcpu_kick(vcpu);
296                 return 1;
297         }
298         return 0;
299 }
300
301 /*
302  *  offset: address offset to IPI space.
303  *  value:  deliver value.
304  */
305 static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
306                                 uint64_t vector)
307 {
308         switch (dm) {
309         case SAPIC_FIXED:
310                 break;
311         case SAPIC_NMI:
312                 vector = 2;
313                 break;
314         case SAPIC_EXTINT:
315                 vector = 0;
316                 break;
317         case SAPIC_INIT:
318         case SAPIC_PMI:
319         default:
320                 printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
321                 return;
322         }
323         __apic_accept_irq(vcpu, vector);
324 }
325
326 static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
327                         unsigned long eid)
328 {
329         union ia64_lid lid;
330         int i;
331         struct kvm_vcpu *vcpu;
332
333         kvm_for_each_vcpu(i, vcpu, kvm) {
334                 lid.val = VCPU_LID(vcpu);
335                 if (lid.id == id && lid.eid == eid)
336                         return vcpu;
337         }
338
339         return NULL;
340 }
341
342 static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
343 {
344         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
345         struct kvm_vcpu *target_vcpu;
346         struct kvm_pt_regs *regs;
347         union ia64_ipi_a addr = p->u.ipi_data.addr;
348         union ia64_ipi_d data = p->u.ipi_data.data;
349
350         target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
351         if (!target_vcpu)
352                 return handle_vm_error(vcpu, kvm_run);
353
354         if (!target_vcpu->arch.launched) {
355                 regs = vcpu_regs(target_vcpu);
356
357                 regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
358                 regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
359
360                 target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
361                 if (waitqueue_active(&target_vcpu->wq))
362                         wake_up_interruptible(&target_vcpu->wq);
363         } else {
364                 vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
365                 if (target_vcpu != vcpu)
366                         kvm_vcpu_kick(target_vcpu);
367         }
368
369         return 1;
370 }
371
372 struct call_data {
373         struct kvm_ptc_g ptc_g_data;
374         struct kvm_vcpu *vcpu;
375 };
376
377 static void vcpu_global_purge(void *info)
378 {
379         struct call_data *p = (struct call_data *)info;
380         struct kvm_vcpu *vcpu = p->vcpu;
381
382         if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
383                 return;
384
385         set_bit(KVM_REQ_PTC_G, &vcpu->requests);
386         if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
387                 vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
388                                                         p->ptc_g_data;
389         } else {
390                 clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
391                 vcpu->arch.ptc_g_count = 0;
392                 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
393         }
394 }
395
396 static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
397 {
398         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
399         struct kvm *kvm = vcpu->kvm;
400         struct call_data call_data;
401         int i;
402         struct kvm_vcpu *vcpui;
403
404         call_data.ptc_g_data = p->u.ptc_g_data;
405
406         kvm_for_each_vcpu(i, vcpui, kvm) {
407                 if (vcpui->arch.mp_state == KVM_MP_STATE_UNINITIALIZED ||
408                                 vcpu == vcpui)
409                         continue;
410
411                 if (waitqueue_active(&vcpui->wq))
412                         wake_up_interruptible(&vcpui->wq);
413
414                 if (vcpui->cpu != -1) {
415                         call_data.vcpu = vcpui;
416                         smp_call_function_single(vcpui->cpu,
417                                         vcpu_global_purge, &call_data, 1);
418                 } else
419                         printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
420
421         }
422         return 1;
423 }
424
425 static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
426 {
427         return 1;
428 }
429
430 static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
431 {
432         unsigned long pte, rtc_phys_addr, map_addr;
433         int slot;
434
435         map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
436         rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
437         pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
438         slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
439         vcpu->arch.sn_rtc_tr_slot = slot;
440         if (slot < 0) {
441                 printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
442                 slot = 0;
443         }
444         return slot;
445 }
446
447 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
448 {
449
450         ktime_t kt;
451         long itc_diff;
452         unsigned long vcpu_now_itc;
453         unsigned long expires;
454         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
455         unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
456         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
457
458         if (irqchip_in_kernel(vcpu->kvm)) {
459
460                 vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset;
461
462                 if (time_after(vcpu_now_itc, vpd->itm)) {
463                         vcpu->arch.timer_check = 1;
464                         return 1;
465                 }
466                 itc_diff = vpd->itm - vcpu_now_itc;
467                 if (itc_diff < 0)
468                         itc_diff = -itc_diff;
469
470                 expires = div64_u64(itc_diff, cyc_per_usec);
471                 kt = ktime_set(0, 1000 * expires);
472
473                 vcpu->arch.ht_active = 1;
474                 hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
475
476                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
477                 kvm_vcpu_block(vcpu);
478                 hrtimer_cancel(p_ht);
479                 vcpu->arch.ht_active = 0;
480
481                 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests) ||
482                                 kvm_cpu_has_pending_timer(vcpu))
483                         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
484                                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
485
486                 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
487                         return -EINTR;
488                 return 1;
489         } else {
490                 printk(KERN_ERR"kvm: Unsupported userspace halt!");
491                 return 0;
492         }
493 }
494
495 static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
496                 struct kvm_run *kvm_run)
497 {
498         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
499         return 0;
500 }
501
502 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
503                 struct kvm_run *kvm_run)
504 {
505         return 1;
506 }
507
508 static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
509                                 struct kvm_run *kvm_run)
510 {
511         printk("VMM: %s", vcpu->arch.log_buf);
512         return 1;
513 }
514
515 static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
516                 struct kvm_run *kvm_run) = {
517         [EXIT_REASON_VM_PANIC]              = handle_vm_error,
518         [EXIT_REASON_MMIO_INSTRUCTION]      = handle_mmio,
519         [EXIT_REASON_PAL_CALL]              = handle_pal_call,
520         [EXIT_REASON_SAL_CALL]              = handle_sal_call,
521         [EXIT_REASON_SWITCH_RR6]            = handle_switch_rr6,
522         [EXIT_REASON_VM_DESTROY]            = handle_vm_shutdown,
523         [EXIT_REASON_EXTERNAL_INTERRUPT]    = handle_external_interrupt,
524         [EXIT_REASON_IPI]                   = handle_ipi,
525         [EXIT_REASON_PTC_G]                 = handle_global_purge,
526         [EXIT_REASON_DEBUG]                 = handle_vcpu_debug,
527
528 };
529
530 static const int kvm_vti_max_exit_handlers =
531                 sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
532
533 static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
534 {
535         struct exit_ctl_data *p_exit_data;
536
537         p_exit_data = kvm_get_exit_data(vcpu);
538         return p_exit_data->exit_reason;
539 }
540
541 /*
542  * The guest has exited.  See if we can fix it or if we need userspace
543  * assistance.
544  */
545 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
546 {
547         u32 exit_reason = kvm_get_exit_reason(vcpu);
548         vcpu->arch.last_exit = exit_reason;
549
550         if (exit_reason < kvm_vti_max_exit_handlers
551                         && kvm_vti_exit_handlers[exit_reason])
552                 return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
553         else {
554                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
555                 kvm_run->hw.hardware_exit_reason = exit_reason;
556         }
557         return 0;
558 }
559
560 static inline void vti_set_rr6(unsigned long rr6)
561 {
562         ia64_set_rr(RR6, rr6);
563         ia64_srlz_i();
564 }
565
566 static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
567 {
568         unsigned long pte;
569         struct kvm *kvm = vcpu->kvm;
570         int r;
571
572         /*Insert a pair of tr to map vmm*/
573         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
574         r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
575         if (r < 0)
576                 goto out;
577         vcpu->arch.vmm_tr_slot = r;
578         /*Insert a pairt of tr to map data of vm*/
579         pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
580         r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
581                                         pte, KVM_VM_DATA_SHIFT);
582         if (r < 0)
583                 goto out;
584         vcpu->arch.vm_tr_slot = r;
585
586 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
587         if (kvm->arch.is_sn2) {
588                 r = kvm_sn2_setup_mappings(vcpu);
589                 if (r < 0)
590                         goto out;
591         }
592 #endif
593
594         r = 0;
595 out:
596         return r;
597 }
598
599 static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
600 {
601         struct kvm *kvm = vcpu->kvm;
602         ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
603         ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
604 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
605         if (kvm->arch.is_sn2)
606                 ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
607 #endif
608 }
609
610 static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
611 {
612         unsigned long psr;
613         int r;
614         int cpu = smp_processor_id();
615
616         if (vcpu->arch.last_run_cpu != cpu ||
617                         per_cpu(last_vcpu, cpu) != vcpu) {
618                 per_cpu(last_vcpu, cpu) = vcpu;
619                 vcpu->arch.last_run_cpu = cpu;
620                 kvm_flush_tlb_all();
621         }
622
623         vcpu->arch.host_rr6 = ia64_get_rr(RR6);
624         vti_set_rr6(vcpu->arch.vmm_rr);
625         local_irq_save(psr);
626         r = kvm_insert_vmm_mapping(vcpu);
627         local_irq_restore(psr);
628         return r;
629 }
630
631 static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
632 {
633         kvm_purge_vmm_mapping(vcpu);
634         vti_set_rr6(vcpu->arch.host_rr6);
635 }
636
637 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
638 {
639         union context *host_ctx, *guest_ctx;
640         int r, idx;
641
642         idx = srcu_read_lock(&vcpu->kvm->srcu);
643
644 again:
645         if (signal_pending(current)) {
646                 r = -EINTR;
647                 kvm_run->exit_reason = KVM_EXIT_INTR;
648                 goto out;
649         }
650
651         preempt_disable();
652         local_irq_disable();
653
654         /*Get host and guest context with guest address space.*/
655         host_ctx = kvm_get_host_context(vcpu);
656         guest_ctx = kvm_get_guest_context(vcpu);
657
658         clear_bit(KVM_REQ_KICK, &vcpu->requests);
659
660         r = kvm_vcpu_pre_transition(vcpu);
661         if (r < 0)
662                 goto vcpu_run_fail;
663
664         srcu_read_unlock(&vcpu->kvm->srcu, idx);
665         vcpu->mode = IN_GUEST_MODE;
666         kvm_guest_enter();
667
668         /*
669          * Transition to the guest
670          */
671         kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
672
673         kvm_vcpu_post_transition(vcpu);
674
675         vcpu->arch.launched = 1;
676         set_bit(KVM_REQ_KICK, &vcpu->requests);
677         local_irq_enable();
678
679         /*
680          * We must have an instruction between local_irq_enable() and
681          * kvm_guest_exit(), so the timer interrupt isn't delayed by
682          * the interrupt shadow.  The stat.exits increment will do nicely.
683          * But we need to prevent reordering, hence this barrier():
684          */
685         barrier();
686         kvm_guest_exit();
687         vcpu->mode = OUTSIDE_GUEST_MODE;
688         preempt_enable();
689
690         idx = srcu_read_lock(&vcpu->kvm->srcu);
691
692         r = kvm_handle_exit(kvm_run, vcpu);
693
694         if (r > 0) {
695                 if (!need_resched())
696                         goto again;
697         }
698
699 out:
700         srcu_read_unlock(&vcpu->kvm->srcu, idx);
701         if (r > 0) {
702                 kvm_resched(vcpu);
703                 idx = srcu_read_lock(&vcpu->kvm->srcu);
704                 goto again;
705         }
706
707         return r;
708
709 vcpu_run_fail:
710         local_irq_enable();
711         preempt_enable();
712         kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
713         goto out;
714 }
715
716 static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
717 {
718         struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
719
720         if (!vcpu->mmio_is_write)
721                 memcpy(&p->data, vcpu->mmio_data, 8);
722         p->state = STATE_IORESP_READY;
723 }
724
725 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
726 {
727         int r;
728         sigset_t sigsaved;
729
730         if (vcpu->sigset_active)
731                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
732
733         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
734                 kvm_vcpu_block(vcpu);
735                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
736                 r = -EAGAIN;
737                 goto out;
738         }
739
740         if (vcpu->mmio_needed) {
741                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
742                 kvm_set_mmio_data(vcpu);
743                 vcpu->mmio_read_completed = 1;
744                 vcpu->mmio_needed = 0;
745         }
746         r = __vcpu_run(vcpu, kvm_run);
747 out:
748         if (vcpu->sigset_active)
749                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
750
751         return r;
752 }
753
754 struct kvm *kvm_arch_alloc_vm(void)
755 {
756
757         struct kvm *kvm;
758         uint64_t  vm_base;
759
760         BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
761
762         vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
763
764         if (!vm_base)
765                 return NULL;
766
767         memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
768         kvm = (struct kvm *)(vm_base +
769                         offsetof(struct kvm_vm_data, kvm_vm_struct));
770         kvm->arch.vm_base = vm_base;
771         printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
772
773         return kvm;
774 }
775
776 struct kvm_io_range {
777         unsigned long start;
778         unsigned long size;
779         unsigned long type;
780 };
781
782 static const struct kvm_io_range io_ranges[] = {
783         {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
784         {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
785         {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
786         {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
787         {PIB_START, PIB_SIZE, GPFN_PIB},
788 };
789
790 static void kvm_build_io_pmt(struct kvm *kvm)
791 {
792         unsigned long i, j;
793
794         /* Mark I/O ranges */
795         for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
796                                                         i++) {
797                 for (j = io_ranges[i].start;
798                                 j < io_ranges[i].start + io_ranges[i].size;
799                                 j += PAGE_SIZE)
800                         kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
801                                         io_ranges[i].type, 0);
802         }
803
804 }
805
806 /*Use unused rids to virtualize guest rid.*/
807 #define GUEST_PHYSICAL_RR0      0x1739
808 #define GUEST_PHYSICAL_RR4      0x2739
809 #define VMM_INIT_RR             0x1660
810
811 int kvm_arch_init_vm(struct kvm *kvm)
812 {
813         BUG_ON(!kvm);
814
815         kvm->arch.is_sn2 = ia64_platform_is("sn2");
816
817         kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
818         kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
819         kvm->arch.vmm_init_rr = VMM_INIT_RR;
820
821         /*
822          *Fill P2M entries for MMIO/IO ranges
823          */
824         kvm_build_io_pmt(kvm);
825
826         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
827
828         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
829         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
830
831         return 0;
832 }
833
834 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
835                                         struct kvm_irqchip *chip)
836 {
837         int r;
838
839         r = 0;
840         switch (chip->chip_id) {
841         case KVM_IRQCHIP_IOAPIC:
842                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
843                 break;
844         default:
845                 r = -EINVAL;
846                 break;
847         }
848         return r;
849 }
850
851 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
852 {
853         int r;
854
855         r = 0;
856         switch (chip->chip_id) {
857         case KVM_IRQCHIP_IOAPIC:
858                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
859                 break;
860         default:
861                 r = -EINVAL;
862                 break;
863         }
864         return r;
865 }
866
867 #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
868
869 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
870 {
871         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
872         int i;
873
874         for (i = 0; i < 16; i++) {
875                 vpd->vgr[i] = regs->vpd.vgr[i];
876                 vpd->vbgr[i] = regs->vpd.vbgr[i];
877         }
878         for (i = 0; i < 128; i++)
879                 vpd->vcr[i] = regs->vpd.vcr[i];
880         vpd->vhpi = regs->vpd.vhpi;
881         vpd->vnat = regs->vpd.vnat;
882         vpd->vbnat = regs->vpd.vbnat;
883         vpd->vpsr = regs->vpd.vpsr;
884
885         vpd->vpr = regs->vpd.vpr;
886
887         memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
888
889         RESTORE_REGS(mp_state);
890         RESTORE_REGS(vmm_rr);
891         memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
892         memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
893         RESTORE_REGS(itr_regions);
894         RESTORE_REGS(dtr_regions);
895         RESTORE_REGS(tc_regions);
896         RESTORE_REGS(irq_check);
897         RESTORE_REGS(itc_check);
898         RESTORE_REGS(timer_check);
899         RESTORE_REGS(timer_pending);
900         RESTORE_REGS(last_itc);
901         for (i = 0; i < 8; i++) {
902                 vcpu->arch.vrr[i] = regs->vrr[i];
903                 vcpu->arch.ibr[i] = regs->ibr[i];
904                 vcpu->arch.dbr[i] = regs->dbr[i];
905         }
906         for (i = 0; i < 4; i++)
907                 vcpu->arch.insvc[i] = regs->insvc[i];
908         RESTORE_REGS(xtp);
909         RESTORE_REGS(metaphysical_rr0);
910         RESTORE_REGS(metaphysical_rr4);
911         RESTORE_REGS(metaphysical_saved_rr0);
912         RESTORE_REGS(metaphysical_saved_rr4);
913         RESTORE_REGS(fp_psr);
914         RESTORE_REGS(saved_gp);
915
916         vcpu->arch.irq_new_pending = 1;
917         vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu);
918         set_bit(KVM_REQ_RESUME, &vcpu->requests);
919
920         return 0;
921 }
922
923 long kvm_arch_vm_ioctl(struct file *filp,
924                 unsigned int ioctl, unsigned long arg)
925 {
926         struct kvm *kvm = filp->private_data;
927         void __user *argp = (void __user *)arg;
928         int r = -ENOTTY;
929
930         switch (ioctl) {
931         case KVM_SET_MEMORY_REGION: {
932                 struct kvm_memory_region kvm_mem;
933                 struct kvm_userspace_memory_region kvm_userspace_mem;
934
935                 r = -EFAULT;
936                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
937                         goto out;
938                 kvm_userspace_mem.slot = kvm_mem.slot;
939                 kvm_userspace_mem.flags = kvm_mem.flags;
940                 kvm_userspace_mem.guest_phys_addr =
941                                         kvm_mem.guest_phys_addr;
942                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
943                 r = kvm_vm_ioctl_set_memory_region(kvm,
944                                         &kvm_userspace_mem, 0);
945                 if (r)
946                         goto out;
947                 break;
948                 }
949         case KVM_CREATE_IRQCHIP:
950                 r = -EFAULT;
951                 r = kvm_ioapic_init(kvm);
952                 if (r)
953                         goto out;
954                 r = kvm_setup_default_irq_routing(kvm);
955                 if (r) {
956                         mutex_lock(&kvm->slots_lock);
957                         kvm_ioapic_destroy(kvm);
958                         mutex_unlock(&kvm->slots_lock);
959                         goto out;
960                 }
961                 break;
962         case KVM_IRQ_LINE_STATUS:
963         case KVM_IRQ_LINE: {
964                 struct kvm_irq_level irq_event;
965
966                 r = -EFAULT;
967                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
968                         goto out;
969                 r = -ENXIO;
970                 if (irqchip_in_kernel(kvm)) {
971                         __s32 status;
972                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
973                                     irq_event.irq, irq_event.level);
974                         if (ioctl == KVM_IRQ_LINE_STATUS) {
975                                 r = -EFAULT;
976                                 irq_event.status = status;
977                                 if (copy_to_user(argp, &irq_event,
978                                                         sizeof irq_event))
979                                         goto out;
980                         }
981                         r = 0;
982                 }
983                 break;
984                 }
985         case KVM_GET_IRQCHIP: {
986                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
987                 struct kvm_irqchip chip;
988
989                 r = -EFAULT;
990                 if (copy_from_user(&chip, argp, sizeof chip))
991                                 goto out;
992                 r = -ENXIO;
993                 if (!irqchip_in_kernel(kvm))
994                         goto out;
995                 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
996                 if (r)
997                         goto out;
998                 r = -EFAULT;
999                 if (copy_to_user(argp, &chip, sizeof chip))
1000                                 goto out;
1001                 r = 0;
1002                 break;
1003                 }
1004         case KVM_SET_IRQCHIP: {
1005                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1006                 struct kvm_irqchip chip;
1007
1008                 r = -EFAULT;
1009                 if (copy_from_user(&chip, argp, sizeof chip))
1010                                 goto out;
1011                 r = -ENXIO;
1012                 if (!irqchip_in_kernel(kvm))
1013                         goto out;
1014                 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1015                 if (r)
1016                         goto out;
1017                 r = 0;
1018                 break;
1019                 }
1020         default:
1021                 ;
1022         }
1023 out:
1024         return r;
1025 }
1026
1027 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1028                 struct kvm_sregs *sregs)
1029 {
1030         return -EINVAL;
1031 }
1032
1033 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1034                 struct kvm_sregs *sregs)
1035 {
1036         return -EINVAL;
1037
1038 }
1039 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1040                 struct kvm_translation *tr)
1041 {
1042
1043         return -EINVAL;
1044 }
1045
1046 static int kvm_alloc_vmm_area(void)
1047 {
1048         if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
1049                 kvm_vmm_base = __get_free_pages(GFP_KERNEL,
1050                                 get_order(KVM_VMM_SIZE));
1051                 if (!kvm_vmm_base)
1052                         return -ENOMEM;
1053
1054                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1055                 kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
1056
1057                 printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
1058                                 kvm_vmm_base, kvm_vm_buffer);
1059         }
1060
1061         return 0;
1062 }
1063
1064 static void kvm_free_vmm_area(void)
1065 {
1066         if (kvm_vmm_base) {
1067                 /*Zero this area before free to avoid bits leak!!*/
1068                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1069                 free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
1070                 kvm_vmm_base  = 0;
1071                 kvm_vm_buffer = 0;
1072                 kvm_vsa_base = 0;
1073         }
1074 }
1075
1076 static int vti_init_vpd(struct kvm_vcpu *vcpu)
1077 {
1078         int i;
1079         union cpuid3_t cpuid3;
1080         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1081
1082         if (IS_ERR(vpd))
1083                 return PTR_ERR(vpd);
1084
1085         /* CPUID init */
1086         for (i = 0; i < 5; i++)
1087                 vpd->vcpuid[i] = ia64_get_cpuid(i);
1088
1089         /* Limit the CPUID number to 5 */
1090         cpuid3.value = vpd->vcpuid[3];
1091         cpuid3.number = 4;      /* 5 - 1 */
1092         vpd->vcpuid[3] = cpuid3.value;
1093
1094         /*Set vac and vdc fields*/
1095         vpd->vac.a_from_int_cr = 1;
1096         vpd->vac.a_to_int_cr = 1;
1097         vpd->vac.a_from_psr = 1;
1098         vpd->vac.a_from_cpuid = 1;
1099         vpd->vac.a_cover = 1;
1100         vpd->vac.a_bsw = 1;
1101         vpd->vac.a_int = 1;
1102         vpd->vdc.d_vmsw = 1;
1103
1104         /*Set virtual buffer*/
1105         vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
1106
1107         return 0;
1108 }
1109
1110 static int vti_create_vp(struct kvm_vcpu *vcpu)
1111 {
1112         long ret;
1113         struct vpd *vpd = vcpu->arch.vpd;
1114         unsigned long  vmm_ivt;
1115
1116         vmm_ivt = kvm_vmm_info->vmm_ivt;
1117
1118         printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
1119
1120         ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
1121
1122         if (ret) {
1123                 printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
1124                 return -EINVAL;
1125         }
1126         return 0;
1127 }
1128
1129 static void init_ptce_info(struct kvm_vcpu *vcpu)
1130 {
1131         ia64_ptce_info_t ptce = {0};
1132
1133         ia64_get_ptce(&ptce);
1134         vcpu->arch.ptce_base = ptce.base;
1135         vcpu->arch.ptce_count[0] = ptce.count[0];
1136         vcpu->arch.ptce_count[1] = ptce.count[1];
1137         vcpu->arch.ptce_stride[0] = ptce.stride[0];
1138         vcpu->arch.ptce_stride[1] = ptce.stride[1];
1139 }
1140
1141 static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
1142 {
1143         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
1144
1145         if (hrtimer_cancel(p_ht))
1146                 hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
1147 }
1148
1149 static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
1150 {
1151         struct kvm_vcpu *vcpu;
1152         wait_queue_head_t *q;
1153
1154         vcpu  = container_of(data, struct kvm_vcpu, arch.hlt_timer);
1155         q = &vcpu->wq;
1156
1157         if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
1158                 goto out;
1159
1160         if (waitqueue_active(q))
1161                 wake_up_interruptible(q);
1162
1163 out:
1164         vcpu->arch.timer_fired = 1;
1165         vcpu->arch.timer_check = 1;
1166         return HRTIMER_NORESTART;
1167 }
1168
1169 #define PALE_RESET_ENTRY    0x80000000ffffffb0UL
1170
1171 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1172 {
1173         struct kvm_vcpu *v;
1174         int r;
1175         int i;
1176         long itc_offset;
1177         struct kvm *kvm = vcpu->kvm;
1178         struct kvm_pt_regs *regs = vcpu_regs(vcpu);
1179
1180         union context *p_ctx = &vcpu->arch.guest;
1181         struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
1182
1183         /*Init vcpu context for first run.*/
1184         if (IS_ERR(vmm_vcpu))
1185                 return PTR_ERR(vmm_vcpu);
1186
1187         if (kvm_vcpu_is_bsp(vcpu)) {
1188                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1189
1190                 /*Set entry address for first run.*/
1191                 regs->cr_iip = PALE_RESET_ENTRY;
1192
1193                 /*Initialize itc offset for vcpus*/
1194                 itc_offset = 0UL - kvm_get_itc(vcpu);
1195                 for (i = 0; i < KVM_MAX_VCPUS; i++) {
1196                         v = (struct kvm_vcpu *)((char *)vcpu +
1197                                         sizeof(struct kvm_vcpu_data) * i);
1198                         v->arch.itc_offset = itc_offset;
1199                         v->arch.last_itc = 0;
1200                 }
1201         } else
1202                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
1203
1204         r = -ENOMEM;
1205         vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
1206         if (!vcpu->arch.apic)
1207                 goto out;
1208         vcpu->arch.apic->vcpu = vcpu;
1209
1210         p_ctx->gr[1] = 0;
1211         p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
1212         p_ctx->gr[13] = (unsigned long)vmm_vcpu;
1213         p_ctx->psr = 0x1008522000UL;
1214         p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
1215         p_ctx->caller_unat = 0;
1216         p_ctx->pr = 0x0;
1217         p_ctx->ar[36] = 0x0; /*unat*/
1218         p_ctx->ar[19] = 0x0; /*rnat*/
1219         p_ctx->ar[18] = (unsigned long)vmm_vcpu +
1220                                 ((sizeof(struct kvm_vcpu)+15) & ~15);
1221         p_ctx->ar[64] = 0x0; /*pfs*/
1222         p_ctx->cr[0] = 0x7e04UL;
1223         p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
1224         p_ctx->cr[8] = 0x3c;
1225
1226         /*Initialize region register*/
1227         p_ctx->rr[0] = 0x30;
1228         p_ctx->rr[1] = 0x30;
1229         p_ctx->rr[2] = 0x30;
1230         p_ctx->rr[3] = 0x30;
1231         p_ctx->rr[4] = 0x30;
1232         p_ctx->rr[5] = 0x30;
1233         p_ctx->rr[7] = 0x30;
1234
1235         /*Initialize branch register 0*/
1236         p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
1237
1238         vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
1239         vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
1240         vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
1241
1242         hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1243         vcpu->arch.hlt_timer.function = hlt_timer_fn;
1244
1245         vcpu->arch.last_run_cpu = -1;
1246         vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
1247         vcpu->arch.vsa_base = kvm_vsa_base;
1248         vcpu->arch.__gp = kvm_vmm_gp;
1249         vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
1250         vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
1251         vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
1252         init_ptce_info(vcpu);
1253
1254         r = 0;
1255 out:
1256         return r;
1257 }
1258
1259 static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
1260 {
1261         unsigned long psr;
1262         int r;
1263
1264         local_irq_save(psr);
1265         r = kvm_insert_vmm_mapping(vcpu);
1266         local_irq_restore(psr);
1267         if (r)
1268                 goto fail;
1269         r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
1270         if (r)
1271                 goto fail;
1272
1273         r = vti_init_vpd(vcpu);
1274         if (r) {
1275                 printk(KERN_DEBUG"kvm: vpd init error!!\n");
1276                 goto uninit;
1277         }
1278
1279         r = vti_create_vp(vcpu);
1280         if (r)
1281                 goto uninit;
1282
1283         kvm_purge_vmm_mapping(vcpu);
1284
1285         return 0;
1286 uninit:
1287         kvm_vcpu_uninit(vcpu);
1288 fail:
1289         return r;
1290 }
1291
1292 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1293                 unsigned int id)
1294 {
1295         struct kvm_vcpu *vcpu;
1296         unsigned long vm_base = kvm->arch.vm_base;
1297         int r;
1298         int cpu;
1299
1300         BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
1301
1302         r = -EINVAL;
1303         if (id >= KVM_MAX_VCPUS) {
1304                 printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
1305                                 KVM_MAX_VCPUS);
1306                 goto fail;
1307         }
1308
1309         r = -ENOMEM;
1310         if (!vm_base) {
1311                 printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
1312                 goto fail;
1313         }
1314         vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
1315                                         vcpu_data[id].vcpu_struct));
1316         vcpu->kvm = kvm;
1317
1318         cpu = get_cpu();
1319         r = vti_vcpu_setup(vcpu, id);
1320         put_cpu();
1321
1322         if (r) {
1323                 printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
1324                 goto fail;
1325         }
1326
1327         return vcpu;
1328 fail:
1329         return ERR_PTR(r);
1330 }
1331
1332 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1333 {
1334         return 0;
1335 }
1336
1337 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1338 {
1339         return -EINVAL;
1340 }
1341
1342 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1343 {
1344         return -EINVAL;
1345 }
1346
1347 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1348                                         struct kvm_guest_debug *dbg)
1349 {
1350         return -EINVAL;
1351 }
1352
1353 void kvm_arch_free_vm(struct kvm *kvm)
1354 {
1355         unsigned long vm_base = kvm->arch.vm_base;
1356
1357         if (vm_base) {
1358                 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
1359                 free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
1360         }
1361
1362 }
1363
1364 static void kvm_release_vm_pages(struct kvm *kvm)
1365 {
1366         struct kvm_memslots *slots;
1367         struct kvm_memory_slot *memslot;
1368         int i, j;
1369         unsigned long base_gfn;
1370
1371         slots = kvm_memslots(kvm);
1372         for (i = 0; i < slots->nmemslots; i++) {
1373                 memslot = &slots->memslots[i];
1374                 base_gfn = memslot->base_gfn;
1375
1376                 for (j = 0; j < memslot->npages; j++) {
1377                         if (memslot->rmap[j])
1378                                 put_page((struct page *)memslot->rmap[j]);
1379                 }
1380         }
1381 }
1382
1383 void kvm_arch_sync_events(struct kvm *kvm)
1384 {
1385 }
1386
1387 void kvm_arch_destroy_vm(struct kvm *kvm)
1388 {
1389         kvm_iommu_unmap_guest(kvm);
1390 #ifdef  KVM_CAP_DEVICE_ASSIGNMENT
1391         kvm_free_all_assigned_devices(kvm);
1392 #endif
1393         kfree(kvm->arch.vioapic);
1394         kvm_release_vm_pages(kvm);
1395 }
1396
1397 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1398 {
1399 }
1400
1401 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1402 {
1403         if (cpu != vcpu->cpu) {
1404                 vcpu->cpu = cpu;
1405                 if (vcpu->arch.ht_active)
1406                         kvm_migrate_hlt_timer(vcpu);
1407         }
1408 }
1409
1410 #define SAVE_REGS(_x)   regs->_x = vcpu->arch._x
1411
1412 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1413 {
1414         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1415         int i;
1416
1417         vcpu_load(vcpu);
1418
1419         for (i = 0; i < 16; i++) {
1420                 regs->vpd.vgr[i] = vpd->vgr[i];
1421                 regs->vpd.vbgr[i] = vpd->vbgr[i];
1422         }
1423         for (i = 0; i < 128; i++)
1424                 regs->vpd.vcr[i] = vpd->vcr[i];
1425         regs->vpd.vhpi = vpd->vhpi;
1426         regs->vpd.vnat = vpd->vnat;
1427         regs->vpd.vbnat = vpd->vbnat;
1428         regs->vpd.vpsr = vpd->vpsr;
1429         regs->vpd.vpr = vpd->vpr;
1430
1431         memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
1432
1433         SAVE_REGS(mp_state);
1434         SAVE_REGS(vmm_rr);
1435         memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
1436         memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
1437         SAVE_REGS(itr_regions);
1438         SAVE_REGS(dtr_regions);
1439         SAVE_REGS(tc_regions);
1440         SAVE_REGS(irq_check);
1441         SAVE_REGS(itc_check);
1442         SAVE_REGS(timer_check);
1443         SAVE_REGS(timer_pending);
1444         SAVE_REGS(last_itc);
1445         for (i = 0; i < 8; i++) {
1446                 regs->vrr[i] = vcpu->arch.vrr[i];
1447                 regs->ibr[i] = vcpu->arch.ibr[i];
1448                 regs->dbr[i] = vcpu->arch.dbr[i];
1449         }
1450         for (i = 0; i < 4; i++)
1451                 regs->insvc[i] = vcpu->arch.insvc[i];
1452         regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu);
1453         SAVE_REGS(xtp);
1454         SAVE_REGS(metaphysical_rr0);
1455         SAVE_REGS(metaphysical_rr4);
1456         SAVE_REGS(metaphysical_saved_rr0);
1457         SAVE_REGS(metaphysical_saved_rr4);
1458         SAVE_REGS(fp_psr);
1459         SAVE_REGS(saved_gp);
1460
1461         vcpu_put(vcpu);
1462         return 0;
1463 }
1464
1465 int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
1466                                   struct kvm_ia64_vcpu_stack *stack)
1467 {
1468         memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
1469         return 0;
1470 }
1471
1472 int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
1473                                   struct kvm_ia64_vcpu_stack *stack)
1474 {
1475         memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
1476                sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
1477
1478         vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
1479         return 0;
1480 }
1481
1482 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1483 {
1484
1485         hrtimer_cancel(&vcpu->arch.hlt_timer);
1486         kfree(vcpu->arch.apic);
1487 }
1488
1489
1490 long kvm_arch_vcpu_ioctl(struct file *filp,
1491                          unsigned int ioctl, unsigned long arg)
1492 {
1493         struct kvm_vcpu *vcpu = filp->private_data;
1494         void __user *argp = (void __user *)arg;
1495         struct kvm_ia64_vcpu_stack *stack = NULL;
1496         long r;
1497
1498         switch (ioctl) {
1499         case KVM_IA64_VCPU_GET_STACK: {
1500                 struct kvm_ia64_vcpu_stack __user *user_stack;
1501                 void __user *first_p = argp;
1502
1503                 r = -EFAULT;
1504                 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1505                         goto out;
1506
1507                 if (!access_ok(VERIFY_WRITE, user_stack,
1508                                sizeof(struct kvm_ia64_vcpu_stack))) {
1509                         printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
1510                                "Illegal user destination address for stack\n");
1511                         goto out;
1512                 }
1513                 stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1514                 if (!stack) {
1515                         r = -ENOMEM;
1516                         goto out;
1517                 }
1518
1519                 r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
1520                 if (r)
1521                         goto out;
1522
1523                 if (copy_to_user(user_stack, stack,
1524                                  sizeof(struct kvm_ia64_vcpu_stack))) {
1525                         r = -EFAULT;
1526                         goto out;
1527                 }
1528
1529                 break;
1530         }
1531         case KVM_IA64_VCPU_SET_STACK: {
1532                 struct kvm_ia64_vcpu_stack __user *user_stack;
1533                 void __user *first_p = argp;
1534
1535                 r = -EFAULT;
1536                 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1537                         goto out;
1538
1539                 if (!access_ok(VERIFY_READ, user_stack,
1540                             sizeof(struct kvm_ia64_vcpu_stack))) {
1541                         printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
1542                                "Illegal user address for stack\n");
1543                         goto out;
1544                 }
1545                 stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1546                 if (!stack) {
1547                         r = -ENOMEM;
1548                         goto out;
1549                 }
1550                 if (copy_from_user(stack, user_stack,
1551                                    sizeof(struct kvm_ia64_vcpu_stack)))
1552                         goto out;
1553
1554                 r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
1555                 break;
1556         }
1557
1558         default:
1559                 r = -EINVAL;
1560         }
1561
1562 out:
1563         kfree(stack);
1564         return r;
1565 }
1566
1567 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1568                 struct kvm_memory_slot *memslot,
1569                 struct kvm_memory_slot old,
1570                 struct kvm_userspace_memory_region *mem,
1571                 int user_alloc)
1572 {
1573         unsigned long i;
1574         unsigned long pfn;
1575         int npages = memslot->npages;
1576         unsigned long base_gfn = memslot->base_gfn;
1577
1578         if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
1579                 return -ENOMEM;
1580
1581         for (i = 0; i < npages; i++) {
1582                 pfn = gfn_to_pfn(kvm, base_gfn + i);
1583                 if (!kvm_is_mmio_pfn(pfn)) {
1584                         kvm_set_pmt_entry(kvm, base_gfn + i,
1585                                         pfn << PAGE_SHIFT,
1586                                 _PAGE_AR_RWX | _PAGE_MA_WB);
1587                         memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
1588                 } else {
1589                         kvm_set_pmt_entry(kvm, base_gfn + i,
1590                                         GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
1591                                         _PAGE_MA_UC);
1592                         memslot->rmap[i] = 0;
1593                         }
1594         }
1595
1596         return 0;
1597 }
1598
1599 void kvm_arch_commit_memory_region(struct kvm *kvm,
1600                 struct kvm_userspace_memory_region *mem,
1601                 struct kvm_memory_slot old,
1602                 int user_alloc)
1603 {
1604         return;
1605 }
1606
1607 void kvm_arch_flush_shadow(struct kvm *kvm)
1608 {
1609         kvm_flush_remote_tlbs(kvm);
1610 }
1611
1612 long kvm_arch_dev_ioctl(struct file *filp,
1613                         unsigned int ioctl, unsigned long arg)
1614 {
1615         return -EINVAL;
1616 }
1617
1618 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1619 {
1620         kvm_vcpu_uninit(vcpu);
1621 }
1622
1623 static int vti_cpu_has_kvm_support(void)
1624 {
1625         long  avail = 1, status = 1, control = 1;
1626         long ret;
1627
1628         ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
1629         if (ret)
1630                 goto out;
1631
1632         if (!(avail & PAL_PROC_VM_BIT))
1633                 goto out;
1634
1635         printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
1636
1637         ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
1638         if (ret)
1639                 goto out;
1640         printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
1641
1642         if (!(vp_env_info & VP_OPCODE)) {
1643                 printk(KERN_WARNING"kvm: No opcode ability on hardware, "
1644                                 "vm_env_info:0x%lx\n", vp_env_info);
1645         }
1646
1647         return 1;
1648 out:
1649         return 0;
1650 }
1651
1652
1653 /*
1654  * On SN2, the ITC isn't stable, so copy in fast path code to use the
1655  * SN2 RTC, replacing the ITC based default verion.
1656  */
1657 static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info,
1658                           struct module *module)
1659 {
1660         unsigned long new_ar, new_ar_sn2;
1661         unsigned long module_base;
1662
1663         if (!ia64_platform_is("sn2"))
1664                 return;
1665
1666         module_base = (unsigned long)module->module_core;
1667
1668         new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base;
1669         new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base;
1670
1671         printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC "
1672                "as source\n");
1673
1674         /*
1675          * Copy the SN2 version of mov_ar into place. They are both
1676          * the same size, so 6 bundles is sufficient (6 * 0x10).
1677          */
1678         memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60);
1679 }
1680
1681 static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
1682                             struct module *module)
1683 {
1684         unsigned long module_base;
1685         unsigned long vmm_size;
1686
1687         unsigned long vmm_offset, func_offset, fdesc_offset;
1688         struct fdesc *p_fdesc;
1689
1690         BUG_ON(!module);
1691
1692         if (!kvm_vmm_base) {
1693                 printk("kvm: kvm area hasn't been initialized yet!!\n");
1694                 return -EFAULT;
1695         }
1696
1697         /*Calculate new position of relocated vmm module.*/
1698         module_base = (unsigned long)module->module_core;
1699         vmm_size = module->core_size;
1700         if (unlikely(vmm_size > KVM_VMM_SIZE))
1701                 return -EFAULT;
1702
1703         memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
1704         kvm_patch_vmm(vmm_info, module);
1705         kvm_flush_icache(kvm_vmm_base, vmm_size);
1706
1707         /*Recalculate kvm_vmm_info based on new VMM*/
1708         vmm_offset = vmm_info->vmm_ivt - module_base;
1709         kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
1710         printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
1711                         kvm_vmm_info->vmm_ivt);
1712
1713         fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
1714         kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
1715                                                         fdesc_offset);
1716         func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
1717         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1718         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1719         p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
1720
1721         printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
1722                         KVM_VMM_BASE+func_offset);
1723
1724         fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
1725         kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
1726                         fdesc_offset);
1727         func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
1728         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1729         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1730         p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
1731
1732         kvm_vmm_gp = p_fdesc->gp;
1733
1734         printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
1735                                                 kvm_vmm_info->vmm_entry);
1736         printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
1737                                                 KVM_VMM_BASE + func_offset);
1738
1739         return 0;
1740 }
1741
1742 int kvm_arch_init(void *opaque)
1743 {
1744         int r;
1745         struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
1746
1747         if (!vti_cpu_has_kvm_support()) {
1748                 printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
1749                 r = -EOPNOTSUPP;
1750                 goto out;
1751         }
1752
1753         if (kvm_vmm_info) {
1754                 printk(KERN_ERR "kvm: Already loaded VMM module!\n");
1755                 r = -EEXIST;
1756                 goto out;
1757         }
1758
1759         r = -ENOMEM;
1760         kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
1761         if (!kvm_vmm_info)
1762                 goto out;
1763
1764         if (kvm_alloc_vmm_area())
1765                 goto out_free0;
1766
1767         r = kvm_relocate_vmm(vmm_info, vmm_info->module);
1768         if (r)
1769                 goto out_free1;
1770
1771         return 0;
1772
1773 out_free1:
1774         kvm_free_vmm_area();
1775 out_free0:
1776         kfree(kvm_vmm_info);
1777 out:
1778         return r;
1779 }
1780
1781 void kvm_arch_exit(void)
1782 {
1783         kvm_free_vmm_area();
1784         kfree(kvm_vmm_info);
1785         kvm_vmm_info = NULL;
1786 }
1787
1788 static void kvm_ia64_sync_dirty_log(struct kvm *kvm,
1789                                     struct kvm_memory_slot *memslot)
1790 {
1791         int i;
1792         long base;
1793         unsigned long n;
1794         unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
1795                         offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
1796
1797         n = kvm_dirty_bitmap_bytes(memslot);
1798         base = memslot->base_gfn / BITS_PER_LONG;
1799
1800         spin_lock(&kvm->arch.dirty_log_lock);
1801         for (i = 0; i < n/sizeof(long); ++i) {
1802                 memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
1803                 dirty_bitmap[base + i] = 0;
1804         }
1805         spin_unlock(&kvm->arch.dirty_log_lock);
1806 }
1807
1808 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1809                 struct kvm_dirty_log *log)
1810 {
1811         int r;
1812         unsigned long n;
1813         struct kvm_memory_slot *memslot;
1814         int is_dirty = 0;
1815
1816         mutex_lock(&kvm->slots_lock);
1817
1818         r = -EINVAL;
1819         if (log->slot >= KVM_MEMORY_SLOTS)
1820                 goto out;
1821
1822         memslot = &kvm->memslots->memslots[log->slot];
1823         r = -ENOENT;
1824         if (!memslot->dirty_bitmap)
1825                 goto out;
1826
1827         kvm_ia64_sync_dirty_log(kvm, memslot);
1828         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1829         if (r)
1830                 goto out;
1831
1832         /* If nothing is dirty, don't bother messing with page tables. */
1833         if (is_dirty) {
1834                 kvm_flush_remote_tlbs(kvm);
1835                 n = kvm_dirty_bitmap_bytes(memslot);
1836                 memset(memslot->dirty_bitmap, 0, n);
1837         }
1838         r = 0;
1839 out:
1840         mutex_unlock(&kvm->slots_lock);
1841         return r;
1842 }
1843
1844 int kvm_arch_hardware_setup(void)
1845 {
1846         return 0;
1847 }
1848
1849 void kvm_arch_hardware_unsetup(void)
1850 {
1851 }
1852
1853 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1854 {
1855         int me;
1856         int cpu = vcpu->cpu;
1857
1858         if (waitqueue_active(&vcpu->wq))
1859                 wake_up_interruptible(&vcpu->wq);
1860
1861         me = get_cpu();
1862         if (cpu != me && (unsigned) cpu < nr_cpu_ids && cpu_online(cpu))
1863                 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
1864                         smp_send_reschedule(cpu);
1865         put_cpu();
1866 }
1867
1868 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
1869 {
1870         return __apic_accept_irq(vcpu, irq->vector);
1871 }
1872
1873 int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
1874 {
1875         return apic->vcpu->vcpu_id == dest;
1876 }
1877
1878 int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
1879 {
1880         return 0;
1881 }
1882
1883 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1884 {
1885         return vcpu1->arch.xtp - vcpu2->arch.xtp;
1886 }
1887
1888 int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1889                 int short_hand, int dest, int dest_mode)
1890 {
1891         struct kvm_lapic *target = vcpu->arch.apic;
1892         return (dest_mode == 0) ?
1893                 kvm_apic_match_physical_addr(target, dest) :
1894                 kvm_apic_match_logical_addr(target, dest);
1895 }
1896
1897 static int find_highest_bits(int *dat)
1898 {
1899         u32  bits, bitnum;
1900         int i;
1901
1902         /* loop for all 256 bits */
1903         for (i = 7; i >= 0 ; i--) {
1904                 bits = dat[i];
1905                 if (bits) {
1906                         bitnum = fls(bits);
1907                         return i * 32 + bitnum - 1;
1908                 }
1909         }
1910
1911         return -1;
1912 }
1913
1914 int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
1915 {
1916     struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1917
1918     if (vpd->irr[0] & (1UL << NMI_VECTOR))
1919                 return NMI_VECTOR;
1920     if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
1921                 return ExtINT_VECTOR;
1922
1923     return find_highest_bits((int *)&vpd->irr[0]);
1924 }
1925
1926 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1927 {
1928         return vcpu->arch.timer_fired;
1929 }
1930
1931 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1932 {
1933         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE) ||
1934                 (kvm_highest_pending_irq(vcpu) != -1);
1935 }
1936
1937 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1938                                     struct kvm_mp_state *mp_state)
1939 {
1940         mp_state->mp_state = vcpu->arch.mp_state;
1941         return 0;
1942 }
1943
1944 static int vcpu_reset(struct kvm_vcpu *vcpu)
1945 {
1946         int r;
1947         long psr;
1948         local_irq_save(psr);
1949         r = kvm_insert_vmm_mapping(vcpu);
1950         local_irq_restore(psr);
1951         if (r)
1952                 goto fail;
1953
1954         vcpu->arch.launched = 0;
1955         kvm_arch_vcpu_uninit(vcpu);
1956         r = kvm_arch_vcpu_init(vcpu);
1957         if (r)
1958                 goto fail;
1959
1960         kvm_purge_vmm_mapping(vcpu);
1961         r = 0;
1962 fail:
1963         return r;
1964 }
1965
1966 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1967                                     struct kvm_mp_state *mp_state)
1968 {
1969         int r = 0;
1970
1971         vcpu->arch.mp_state = mp_state->mp_state;
1972         if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
1973                 r = vcpu_reset(vcpu);
1974         return r;
1975 }