Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394...
[pandora-kernel.git] / arch / ia64 / kvm / kvm-ia64.c
1 /*
2  * kvm_ia64.c: Basic KVM suppport On Itanium series processors
3  *
4  *
5  *      Copyright (C) 2007, Intel Corporation.
6  *      Xiantao Zhang  (xiantao.zhang@intel.com)
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
19  * Place - Suite 330, Boston, MA 02111-1307 USA.
20  *
21  */
22
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
27 #include <linux/fs.h>
28 #include <linux/smp.h>
29 #include <linux/kvm_host.h>
30 #include <linux/kvm.h>
31 #include <linux/bitops.h>
32 #include <linux/hrtimer.h>
33 #include <linux/uaccess.h>
34
35 #include <asm/pgtable.h>
36 #include <asm/gcc_intrin.h>
37 #include <asm/pal.h>
38 #include <asm/cacheflush.h>
39 #include <asm/div64.h>
40 #include <asm/tlb.h>
41
42 #include "misc.h"
43 #include "vti.h"
44 #include "iodev.h"
45 #include "ioapic.h"
46 #include "lapic.h"
47
48 static unsigned long kvm_vmm_base;
49 static unsigned long kvm_vsa_base;
50 static unsigned long kvm_vm_buffer;
51 static unsigned long kvm_vm_buffer_size;
52 unsigned long kvm_vmm_gp;
53
54 static long vp_env_info;
55
56 static struct kvm_vmm_info *kvm_vmm_info;
57
58 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
59
60 struct kvm_stats_debugfs_item debugfs_entries[] = {
61         { NULL }
62 };
63
64
65 struct fdesc{
66     unsigned long ip;
67     unsigned long gp;
68 };
69
70 static void kvm_flush_icache(unsigned long start, unsigned long len)
71 {
72         int l;
73
74         for (l = 0; l < (len + 32); l += 32)
75                 ia64_fc(start + l);
76
77         ia64_sync_i();
78         ia64_srlz_i();
79 }
80
81 static void kvm_flush_tlb_all(void)
82 {
83         unsigned long i, j, count0, count1, stride0, stride1, addr;
84         long flags;
85
86         addr    = local_cpu_data->ptce_base;
87         count0  = local_cpu_data->ptce_count[0];
88         count1  = local_cpu_data->ptce_count[1];
89         stride0 = local_cpu_data->ptce_stride[0];
90         stride1 = local_cpu_data->ptce_stride[1];
91
92         local_irq_save(flags);
93         for (i = 0; i < count0; ++i) {
94                 for (j = 0; j < count1; ++j) {
95                         ia64_ptce(addr);
96                         addr += stride1;
97                 }
98                 addr += stride0;
99         }
100         local_irq_restore(flags);
101         ia64_srlz_i();                  /* srlz.i implies srlz.d */
102 }
103
104 long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
105 {
106         struct ia64_pal_retval iprv;
107
108         PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
109                         (u64)opt_handler);
110
111         return iprv.status;
112 }
113
114 static  DEFINE_SPINLOCK(vp_lock);
115
116 void kvm_arch_hardware_enable(void *garbage)
117 {
118         long  status;
119         long  tmp_base;
120         unsigned long pte;
121         unsigned long saved_psr;
122         int slot;
123
124         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
125                                 PAGE_KERNEL));
126         local_irq_save(saved_psr);
127         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
128         local_irq_restore(saved_psr);
129         if (slot < 0)
130                 return;
131
132         spin_lock(&vp_lock);
133         status = ia64_pal_vp_init_env(kvm_vsa_base ?
134                                 VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
135                         __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
136         if (status != 0) {
137                 printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
138                 return ;
139         }
140
141         if (!kvm_vsa_base) {
142                 kvm_vsa_base = tmp_base;
143                 printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
144         }
145         spin_unlock(&vp_lock);
146         ia64_ptr_entry(0x3, slot);
147 }
148
149 void kvm_arch_hardware_disable(void *garbage)
150 {
151
152         long status;
153         int slot;
154         unsigned long pte;
155         unsigned long saved_psr;
156         unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
157
158         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
159                                 PAGE_KERNEL));
160
161         local_irq_save(saved_psr);
162         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
163         local_irq_restore(saved_psr);
164         if (slot < 0)
165                 return;
166
167         status = ia64_pal_vp_exit_env(host_iva);
168         if (status)
169                 printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
170                                 status);
171         ia64_ptr_entry(0x3, slot);
172 }
173
174 void kvm_arch_check_processor_compat(void *rtn)
175 {
176         *(int *)rtn = 0;
177 }
178
179 int kvm_dev_ioctl_check_extension(long ext)
180 {
181
182         int r;
183
184         switch (ext) {
185         case KVM_CAP_IRQCHIP:
186         case KVM_CAP_USER_MEMORY:
187
188                 r = 1;
189                 break;
190         case KVM_CAP_COALESCED_MMIO:
191                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
192                 break;
193         default:
194                 r = 0;
195         }
196         return r;
197
198 }
199
200 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
201                                         gpa_t addr, int len, int is_write)
202 {
203         struct kvm_io_device *dev;
204
205         dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len, is_write);
206
207         return dev;
208 }
209
210 static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
211 {
212         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
213         kvm_run->hw.hardware_exit_reason = 1;
214         return 0;
215 }
216
217 static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
218 {
219         struct kvm_mmio_req *p;
220         struct kvm_io_device *mmio_dev;
221
222         p = kvm_get_vcpu_ioreq(vcpu);
223
224         if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
225                 goto mmio;
226         vcpu->mmio_needed = 1;
227         vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
228         vcpu->mmio_size = kvm_run->mmio.len = p->size;
229         vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
230
231         if (vcpu->mmio_is_write)
232                 memcpy(vcpu->mmio_data, &p->data, p->size);
233         memcpy(kvm_run->mmio.data, &p->data, p->size);
234         kvm_run->exit_reason = KVM_EXIT_MMIO;
235         return 0;
236 mmio:
237         mmio_dev = vcpu_find_mmio_dev(vcpu, p->addr, p->size, !p->dir);
238         if (mmio_dev) {
239                 if (!p->dir)
240                         kvm_iodevice_write(mmio_dev, p->addr, p->size,
241                                                 &p->data);
242                 else
243                         kvm_iodevice_read(mmio_dev, p->addr, p->size,
244                                                 &p->data);
245
246         } else
247                 printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
248         p->state = STATE_IORESP_READY;
249
250         return 1;
251 }
252
253 static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
254 {
255         struct exit_ctl_data *p;
256
257         p = kvm_get_exit_data(vcpu);
258
259         if (p->exit_reason == EXIT_REASON_PAL_CALL)
260                 return kvm_pal_emul(vcpu, kvm_run);
261         else {
262                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
263                 kvm_run->hw.hardware_exit_reason = 2;
264                 return 0;
265         }
266 }
267
268 static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
269 {
270         struct exit_ctl_data *p;
271
272         p = kvm_get_exit_data(vcpu);
273
274         if (p->exit_reason == EXIT_REASON_SAL_CALL) {
275                 kvm_sal_emul(vcpu);
276                 return 1;
277         } else {
278                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
279                 kvm_run->hw.hardware_exit_reason = 3;
280                 return 0;
281         }
282
283 }
284
285 /*
286  *  offset: address offset to IPI space.
287  *  value:  deliver value.
288  */
289 static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
290                                 uint64_t vector)
291 {
292         switch (dm) {
293         case SAPIC_FIXED:
294                 kvm_apic_set_irq(vcpu, vector, 0);
295                 break;
296         case SAPIC_NMI:
297                 kvm_apic_set_irq(vcpu, 2, 0);
298                 break;
299         case SAPIC_EXTINT:
300                 kvm_apic_set_irq(vcpu, 0, 0);
301                 break;
302         case SAPIC_INIT:
303         case SAPIC_PMI:
304         default:
305                 printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
306                 break;
307         }
308 }
309
310 static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
311                         unsigned long eid)
312 {
313         union ia64_lid lid;
314         int i;
315
316         for (i = 0; i < KVM_MAX_VCPUS; i++) {
317                 if (kvm->vcpus[i]) {
318                         lid.val = VCPU_LID(kvm->vcpus[i]);
319                         if (lid.id == id && lid.eid == eid)
320                                 return kvm->vcpus[i];
321                 }
322         }
323
324         return NULL;
325 }
326
327 static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
328 {
329         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
330         struct kvm_vcpu *target_vcpu;
331         struct kvm_pt_regs *regs;
332         union ia64_ipi_a addr = p->u.ipi_data.addr;
333         union ia64_ipi_d data = p->u.ipi_data.data;
334
335         target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
336         if (!target_vcpu)
337                 return handle_vm_error(vcpu, kvm_run);
338
339         if (!target_vcpu->arch.launched) {
340                 regs = vcpu_regs(target_vcpu);
341
342                 regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
343                 regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
344
345                 target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
346                 if (waitqueue_active(&target_vcpu->wq))
347                         wake_up_interruptible(&target_vcpu->wq);
348         } else {
349                 vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
350                 if (target_vcpu != vcpu)
351                         kvm_vcpu_kick(target_vcpu);
352         }
353
354         return 1;
355 }
356
357 struct call_data {
358         struct kvm_ptc_g ptc_g_data;
359         struct kvm_vcpu *vcpu;
360 };
361
362 static void vcpu_global_purge(void *info)
363 {
364         struct call_data *p = (struct call_data *)info;
365         struct kvm_vcpu *vcpu = p->vcpu;
366
367         if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
368                 return;
369
370         set_bit(KVM_REQ_PTC_G, &vcpu->requests);
371         if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
372                 vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
373                                                         p->ptc_g_data;
374         } else {
375                 clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
376                 vcpu->arch.ptc_g_count = 0;
377                 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
378         }
379 }
380
381 static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
382 {
383         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
384         struct kvm *kvm = vcpu->kvm;
385         struct call_data call_data;
386         int i;
387         call_data.ptc_g_data = p->u.ptc_g_data;
388
389         for (i = 0; i < KVM_MAX_VCPUS; i++) {
390                 if (!kvm->vcpus[i] || kvm->vcpus[i]->arch.mp_state ==
391                                                 KVM_MP_STATE_UNINITIALIZED ||
392                                         vcpu == kvm->vcpus[i])
393                         continue;
394
395                 if (waitqueue_active(&kvm->vcpus[i]->wq))
396                         wake_up_interruptible(&kvm->vcpus[i]->wq);
397
398                 if (kvm->vcpus[i]->cpu != -1) {
399                         call_data.vcpu = kvm->vcpus[i];
400                         smp_call_function_single(kvm->vcpus[i]->cpu,
401                                         vcpu_global_purge, &call_data, 1);
402                 } else
403                         printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
404
405         }
406         return 1;
407 }
408
409 static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
410 {
411         return 1;
412 }
413
414 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
415 {
416
417         ktime_t kt;
418         long itc_diff;
419         unsigned long vcpu_now_itc;
420
421         unsigned long expires;
422         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
423         unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
424         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
425
426         vcpu_now_itc = ia64_getreg(_IA64_REG_AR_ITC) + vcpu->arch.itc_offset;
427
428         if (time_after(vcpu_now_itc, vpd->itm)) {
429                 vcpu->arch.timer_check = 1;
430                 return 1;
431         }
432         itc_diff = vpd->itm - vcpu_now_itc;
433         if (itc_diff < 0)
434                 itc_diff = -itc_diff;
435
436         expires = div64_u64(itc_diff, cyc_per_usec);
437         kt = ktime_set(0, 1000 * expires);
438         vcpu->arch.ht_active = 1;
439         hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
440
441         if (irqchip_in_kernel(vcpu->kvm)) {
442                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
443                 kvm_vcpu_block(vcpu);
444                 hrtimer_cancel(p_ht);
445                 vcpu->arch.ht_active = 0;
446
447                 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
448                         return -EINTR;
449                 return 1;
450         } else {
451                 printk(KERN_ERR"kvm: Unsupported userspace halt!");
452                 return 0;
453         }
454 }
455
456 static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
457                 struct kvm_run *kvm_run)
458 {
459         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
460         return 0;
461 }
462
463 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
464                 struct kvm_run *kvm_run)
465 {
466         return 1;
467 }
468
469 static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
470                 struct kvm_run *kvm_run) = {
471         [EXIT_REASON_VM_PANIC]              = handle_vm_error,
472         [EXIT_REASON_MMIO_INSTRUCTION]      = handle_mmio,
473         [EXIT_REASON_PAL_CALL]              = handle_pal_call,
474         [EXIT_REASON_SAL_CALL]              = handle_sal_call,
475         [EXIT_REASON_SWITCH_RR6]            = handle_switch_rr6,
476         [EXIT_REASON_VM_DESTROY]            = handle_vm_shutdown,
477         [EXIT_REASON_EXTERNAL_INTERRUPT]    = handle_external_interrupt,
478         [EXIT_REASON_IPI]                   = handle_ipi,
479         [EXIT_REASON_PTC_G]                 = handle_global_purge,
480
481 };
482
483 static const int kvm_vti_max_exit_handlers =
484                 sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
485
486 static void kvm_prepare_guest_switch(struct kvm_vcpu *vcpu)
487 {
488 }
489
490 static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
491 {
492         struct exit_ctl_data *p_exit_data;
493
494         p_exit_data = kvm_get_exit_data(vcpu);
495         return p_exit_data->exit_reason;
496 }
497
498 /*
499  * The guest has exited.  See if we can fix it or if we need userspace
500  * assistance.
501  */
502 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
503 {
504         u32 exit_reason = kvm_get_exit_reason(vcpu);
505         vcpu->arch.last_exit = exit_reason;
506
507         if (exit_reason < kvm_vti_max_exit_handlers
508                         && kvm_vti_exit_handlers[exit_reason])
509                 return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
510         else {
511                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
512                 kvm_run->hw.hardware_exit_reason = exit_reason;
513         }
514         return 0;
515 }
516
517 static inline void vti_set_rr6(unsigned long rr6)
518 {
519         ia64_set_rr(RR6, rr6);
520         ia64_srlz_i();
521 }
522
523 static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
524 {
525         unsigned long pte;
526         struct kvm *kvm = vcpu->kvm;
527         int r;
528
529         /*Insert a pair of tr to map vmm*/
530         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
531         r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
532         if (r < 0)
533                 goto out;
534         vcpu->arch.vmm_tr_slot = r;
535         /*Insert a pairt of tr to map data of vm*/
536         pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
537         r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
538                                         pte, KVM_VM_DATA_SHIFT);
539         if (r < 0)
540                 goto out;
541         vcpu->arch.vm_tr_slot = r;
542         r = 0;
543 out:
544         return r;
545
546 }
547
548 static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
549 {
550
551         ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
552         ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
553
554 }
555
556 static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
557 {
558         int cpu = smp_processor_id();
559
560         if (vcpu->arch.last_run_cpu != cpu ||
561                         per_cpu(last_vcpu, cpu) != vcpu) {
562                 per_cpu(last_vcpu, cpu) = vcpu;
563                 vcpu->arch.last_run_cpu = cpu;
564                 kvm_flush_tlb_all();
565         }
566
567         vcpu->arch.host_rr6 = ia64_get_rr(RR6);
568         vti_set_rr6(vcpu->arch.vmm_rr);
569         return kvm_insert_vmm_mapping(vcpu);
570 }
571 static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
572 {
573         kvm_purge_vmm_mapping(vcpu);
574         vti_set_rr6(vcpu->arch.host_rr6);
575 }
576
577 static int  vti_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
578 {
579         union context *host_ctx, *guest_ctx;
580         int r;
581
582         /*Get host and guest context with guest address space.*/
583         host_ctx = kvm_get_host_context(vcpu);
584         guest_ctx = kvm_get_guest_context(vcpu);
585
586         r = kvm_vcpu_pre_transition(vcpu);
587         if (r < 0)
588                 goto out;
589         kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
590         kvm_vcpu_post_transition(vcpu);
591         r = 0;
592 out:
593         return r;
594 }
595
596 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
597 {
598         int r;
599
600 again:
601         preempt_disable();
602
603         kvm_prepare_guest_switch(vcpu);
604         local_irq_disable();
605
606         if (signal_pending(current)) {
607                 local_irq_enable();
608                 preempt_enable();
609                 r = -EINTR;
610                 kvm_run->exit_reason = KVM_EXIT_INTR;
611                 goto out;
612         }
613
614         vcpu->guest_mode = 1;
615         kvm_guest_enter();
616
617         r = vti_vcpu_run(vcpu, kvm_run);
618         if (r < 0) {
619                 local_irq_enable();
620                 preempt_enable();
621                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
622                 goto out;
623         }
624
625         vcpu->arch.launched = 1;
626         vcpu->guest_mode = 0;
627         local_irq_enable();
628
629         /*
630          * We must have an instruction between local_irq_enable() and
631          * kvm_guest_exit(), so the timer interrupt isn't delayed by
632          * the interrupt shadow.  The stat.exits increment will do nicely.
633          * But we need to prevent reordering, hence this barrier():
634          */
635         barrier();
636
637         kvm_guest_exit();
638
639         preempt_enable();
640
641         r = kvm_handle_exit(kvm_run, vcpu);
642
643         if (r > 0) {
644                 if (!need_resched())
645                         goto again;
646         }
647
648 out:
649         if (r > 0) {
650                 kvm_resched(vcpu);
651                 goto again;
652         }
653
654         return r;
655 }
656
657 static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
658 {
659         struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
660
661         if (!vcpu->mmio_is_write)
662                 memcpy(&p->data, vcpu->mmio_data, 8);
663         p->state = STATE_IORESP_READY;
664 }
665
666 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
667 {
668         int r;
669         sigset_t sigsaved;
670
671         vcpu_load(vcpu);
672
673         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
674                 kvm_vcpu_block(vcpu);
675                 vcpu_put(vcpu);
676                 return -EAGAIN;
677         }
678
679         if (vcpu->sigset_active)
680                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
681
682         if (vcpu->mmio_needed) {
683                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
684                 kvm_set_mmio_data(vcpu);
685                 vcpu->mmio_read_completed = 1;
686                 vcpu->mmio_needed = 0;
687         }
688         r = __vcpu_run(vcpu, kvm_run);
689
690         if (vcpu->sigset_active)
691                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
692
693         vcpu_put(vcpu);
694         return r;
695 }
696
697 /*
698  * Allocate 16M memory for every vm to hold its specific data.
699  * Its memory map is defined in kvm_host.h.
700  */
701 static struct kvm *kvm_alloc_kvm(void)
702 {
703
704         struct kvm *kvm;
705         uint64_t  vm_base;
706
707         vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
708
709         if (!vm_base)
710                 return ERR_PTR(-ENOMEM);
711         printk(KERN_DEBUG"kvm: VM data's base Address:0x%lx\n", vm_base);
712
713         /* Zero all pages before use! */
714         memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
715
716         kvm = (struct kvm *)(vm_base + KVM_VM_OFS);
717         kvm->arch.vm_base = vm_base;
718
719         return kvm;
720 }
721
722 struct kvm_io_range {
723         unsigned long start;
724         unsigned long size;
725         unsigned long type;
726 };
727
728 static const struct kvm_io_range io_ranges[] = {
729         {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
730         {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
731         {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
732         {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
733         {PIB_START, PIB_SIZE, GPFN_PIB},
734 };
735
736 static void kvm_build_io_pmt(struct kvm *kvm)
737 {
738         unsigned long i, j;
739
740         /* Mark I/O ranges */
741         for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
742                                                         i++) {
743                 for (j = io_ranges[i].start;
744                                 j < io_ranges[i].start + io_ranges[i].size;
745                                 j += PAGE_SIZE)
746                         kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
747                                         io_ranges[i].type, 0);
748         }
749
750 }
751
752 /*Use unused rids to virtualize guest rid.*/
753 #define GUEST_PHYSICAL_RR0      0x1739
754 #define GUEST_PHYSICAL_RR4      0x2739
755 #define VMM_INIT_RR             0x1660
756
757 static void kvm_init_vm(struct kvm *kvm)
758 {
759         long vm_base;
760
761         BUG_ON(!kvm);
762
763         kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
764         kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
765         kvm->arch.vmm_init_rr = VMM_INIT_RR;
766
767         vm_base = kvm->arch.vm_base;
768         if (vm_base) {
769                 kvm->arch.vhpt_base = vm_base + KVM_VHPT_OFS;
770                 kvm->arch.vtlb_base = vm_base + KVM_VTLB_OFS;
771                 kvm->arch.vpd_base  = vm_base + KVM_VPD_OFS;
772         }
773
774         /*
775          *Fill P2M entries for MMIO/IO ranges
776          */
777         kvm_build_io_pmt(kvm);
778
779 }
780
781 struct  kvm *kvm_arch_create_vm(void)
782 {
783         struct kvm *kvm = kvm_alloc_kvm();
784
785         if (IS_ERR(kvm))
786                 return ERR_PTR(-ENOMEM);
787         kvm_init_vm(kvm);
788
789         return kvm;
790
791 }
792
793 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
794                                         struct kvm_irqchip *chip)
795 {
796         int r;
797
798         r = 0;
799         switch (chip->chip_id) {
800         case KVM_IRQCHIP_IOAPIC:
801                 memcpy(&chip->chip.ioapic, ioapic_irqchip(kvm),
802                                 sizeof(struct kvm_ioapic_state));
803                 break;
804         default:
805                 r = -EINVAL;
806                 break;
807         }
808         return r;
809 }
810
811 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
812 {
813         int r;
814
815         r = 0;
816         switch (chip->chip_id) {
817         case KVM_IRQCHIP_IOAPIC:
818                 memcpy(ioapic_irqchip(kvm),
819                                 &chip->chip.ioapic,
820                                 sizeof(struct kvm_ioapic_state));
821                 break;
822         default:
823                 r = -EINVAL;
824                 break;
825         }
826         return r;
827 }
828
829 #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
830
831 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
832 {
833         int i;
834         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
835         int r;
836
837         vcpu_load(vcpu);
838
839         for (i = 0; i < 16; i++) {
840                 vpd->vgr[i] = regs->vpd.vgr[i];
841                 vpd->vbgr[i] = regs->vpd.vbgr[i];
842         }
843         for (i = 0; i < 128; i++)
844                 vpd->vcr[i] = regs->vpd.vcr[i];
845         vpd->vhpi = regs->vpd.vhpi;
846         vpd->vnat = regs->vpd.vnat;
847         vpd->vbnat = regs->vpd.vbnat;
848         vpd->vpsr = regs->vpd.vpsr;
849
850         vpd->vpr = regs->vpd.vpr;
851
852         r = -EFAULT;
853         r = copy_from_user(&vcpu->arch.guest, regs->saved_guest,
854                                                 sizeof(union context));
855         if (r)
856                 goto out;
857         r = copy_from_user(vcpu + 1, regs->saved_stack +
858                         sizeof(struct kvm_vcpu),
859                         IA64_STK_OFFSET - sizeof(struct kvm_vcpu));
860         if (r)
861                 goto out;
862         vcpu->arch.exit_data =
863                 ((struct kvm_vcpu *)(regs->saved_stack))->arch.exit_data;
864
865         RESTORE_REGS(mp_state);
866         RESTORE_REGS(vmm_rr);
867         memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
868         memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
869         RESTORE_REGS(itr_regions);
870         RESTORE_REGS(dtr_regions);
871         RESTORE_REGS(tc_regions);
872         RESTORE_REGS(irq_check);
873         RESTORE_REGS(itc_check);
874         RESTORE_REGS(timer_check);
875         RESTORE_REGS(timer_pending);
876         RESTORE_REGS(last_itc);
877         for (i = 0; i < 8; i++) {
878                 vcpu->arch.vrr[i] = regs->vrr[i];
879                 vcpu->arch.ibr[i] = regs->ibr[i];
880                 vcpu->arch.dbr[i] = regs->dbr[i];
881         }
882         for (i = 0; i < 4; i++)
883                 vcpu->arch.insvc[i] = regs->insvc[i];
884         RESTORE_REGS(xtp);
885         RESTORE_REGS(metaphysical_rr0);
886         RESTORE_REGS(metaphysical_rr4);
887         RESTORE_REGS(metaphysical_saved_rr0);
888         RESTORE_REGS(metaphysical_saved_rr4);
889         RESTORE_REGS(fp_psr);
890         RESTORE_REGS(saved_gp);
891
892         vcpu->arch.irq_new_pending = 1;
893         vcpu->arch.itc_offset = regs->saved_itc - ia64_getreg(_IA64_REG_AR_ITC);
894         set_bit(KVM_REQ_RESUME, &vcpu->requests);
895
896         vcpu_put(vcpu);
897         r = 0;
898 out:
899         return r;
900 }
901
902 long kvm_arch_vm_ioctl(struct file *filp,
903                 unsigned int ioctl, unsigned long arg)
904 {
905         struct kvm *kvm = filp->private_data;
906         void __user *argp = (void __user *)arg;
907         int r = -EINVAL;
908
909         switch (ioctl) {
910         case KVM_SET_MEMORY_REGION: {
911                 struct kvm_memory_region kvm_mem;
912                 struct kvm_userspace_memory_region kvm_userspace_mem;
913
914                 r = -EFAULT;
915                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
916                         goto out;
917                 kvm_userspace_mem.slot = kvm_mem.slot;
918                 kvm_userspace_mem.flags = kvm_mem.flags;
919                 kvm_userspace_mem.guest_phys_addr =
920                                         kvm_mem.guest_phys_addr;
921                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
922                 r = kvm_vm_ioctl_set_memory_region(kvm,
923                                         &kvm_userspace_mem, 0);
924                 if (r)
925                         goto out;
926                 break;
927                 }
928         case KVM_CREATE_IRQCHIP:
929                 r = -EFAULT;
930                 r = kvm_ioapic_init(kvm);
931                 if (r)
932                         goto out;
933                 break;
934         case KVM_IRQ_LINE: {
935                 struct kvm_irq_level irq_event;
936
937                 r = -EFAULT;
938                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
939                         goto out;
940                 if (irqchip_in_kernel(kvm)) {
941                         mutex_lock(&kvm->lock);
942                         kvm_ioapic_set_irq(kvm->arch.vioapic,
943                                                 irq_event.irq,
944                                                 irq_event.level);
945                         mutex_unlock(&kvm->lock);
946                         r = 0;
947                 }
948                 break;
949                 }
950         case KVM_GET_IRQCHIP: {
951                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
952                 struct kvm_irqchip chip;
953
954                 r = -EFAULT;
955                 if (copy_from_user(&chip, argp, sizeof chip))
956                                 goto out;
957                 r = -ENXIO;
958                 if (!irqchip_in_kernel(kvm))
959                         goto out;
960                 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
961                 if (r)
962                         goto out;
963                 r = -EFAULT;
964                 if (copy_to_user(argp, &chip, sizeof chip))
965                                 goto out;
966                 r = 0;
967                 break;
968                 }
969         case KVM_SET_IRQCHIP: {
970                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
971                 struct kvm_irqchip chip;
972
973                 r = -EFAULT;
974                 if (copy_from_user(&chip, argp, sizeof chip))
975                                 goto out;
976                 r = -ENXIO;
977                 if (!irqchip_in_kernel(kvm))
978                         goto out;
979                 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
980                 if (r)
981                         goto out;
982                 r = 0;
983                 break;
984                 }
985         default:
986                 ;
987         }
988 out:
989         return r;
990 }
991
992 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
993                 struct kvm_sregs *sregs)
994 {
995         return -EINVAL;
996 }
997
998 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
999                 struct kvm_sregs *sregs)
1000 {
1001         return -EINVAL;
1002
1003 }
1004 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1005                 struct kvm_translation *tr)
1006 {
1007
1008         return -EINVAL;
1009 }
1010
1011 static int kvm_alloc_vmm_area(void)
1012 {
1013         if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
1014                 kvm_vmm_base = __get_free_pages(GFP_KERNEL,
1015                                 get_order(KVM_VMM_SIZE));
1016                 if (!kvm_vmm_base)
1017                         return -ENOMEM;
1018
1019                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1020                 kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
1021
1022                 printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
1023                                 kvm_vmm_base, kvm_vm_buffer);
1024         }
1025
1026         return 0;
1027 }
1028
1029 static void kvm_free_vmm_area(void)
1030 {
1031         if (kvm_vmm_base) {
1032                 /*Zero this area before free to avoid bits leak!!*/
1033                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1034                 free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
1035                 kvm_vmm_base  = 0;
1036                 kvm_vm_buffer = 0;
1037                 kvm_vsa_base = 0;
1038         }
1039 }
1040
1041 static void vti_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1042 {
1043 }
1044
1045 static int vti_init_vpd(struct kvm_vcpu *vcpu)
1046 {
1047         int i;
1048         union cpuid3_t cpuid3;
1049         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1050
1051         if (IS_ERR(vpd))
1052                 return PTR_ERR(vpd);
1053
1054         /* CPUID init */
1055         for (i = 0; i < 5; i++)
1056                 vpd->vcpuid[i] = ia64_get_cpuid(i);
1057
1058         /* Limit the CPUID number to 5 */
1059         cpuid3.value = vpd->vcpuid[3];
1060         cpuid3.number = 4;      /* 5 - 1 */
1061         vpd->vcpuid[3] = cpuid3.value;
1062
1063         /*Set vac and vdc fields*/
1064         vpd->vac.a_from_int_cr = 1;
1065         vpd->vac.a_to_int_cr = 1;
1066         vpd->vac.a_from_psr = 1;
1067         vpd->vac.a_from_cpuid = 1;
1068         vpd->vac.a_cover = 1;
1069         vpd->vac.a_bsw = 1;
1070         vpd->vac.a_int = 1;
1071         vpd->vdc.d_vmsw = 1;
1072
1073         /*Set virtual buffer*/
1074         vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
1075
1076         return 0;
1077 }
1078
1079 static int vti_create_vp(struct kvm_vcpu *vcpu)
1080 {
1081         long ret;
1082         struct vpd *vpd = vcpu->arch.vpd;
1083         unsigned long  vmm_ivt;
1084
1085         vmm_ivt = kvm_vmm_info->vmm_ivt;
1086
1087         printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
1088
1089         ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
1090
1091         if (ret) {
1092                 printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
1093                 return -EINVAL;
1094         }
1095         return 0;
1096 }
1097
1098 static void init_ptce_info(struct kvm_vcpu *vcpu)
1099 {
1100         ia64_ptce_info_t ptce = {0};
1101
1102         ia64_get_ptce(&ptce);
1103         vcpu->arch.ptce_base = ptce.base;
1104         vcpu->arch.ptce_count[0] = ptce.count[0];
1105         vcpu->arch.ptce_count[1] = ptce.count[1];
1106         vcpu->arch.ptce_stride[0] = ptce.stride[0];
1107         vcpu->arch.ptce_stride[1] = ptce.stride[1];
1108 }
1109
1110 static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
1111 {
1112         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
1113
1114         if (hrtimer_cancel(p_ht))
1115                 hrtimer_start(p_ht, p_ht->expires, HRTIMER_MODE_ABS);
1116 }
1117
1118 static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
1119 {
1120         struct kvm_vcpu *vcpu;
1121         wait_queue_head_t *q;
1122
1123         vcpu  = container_of(data, struct kvm_vcpu, arch.hlt_timer);
1124         if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
1125                 goto out;
1126
1127         q = &vcpu->wq;
1128         if (waitqueue_active(q)) {
1129                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1130                 wake_up_interruptible(q);
1131         }
1132 out:
1133         vcpu->arch.timer_check = 1;
1134         return HRTIMER_NORESTART;
1135 }
1136
1137 #define PALE_RESET_ENTRY    0x80000000ffffffb0UL
1138
1139 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1140 {
1141         struct kvm_vcpu *v;
1142         int r;
1143         int i;
1144         long itc_offset;
1145         struct kvm *kvm = vcpu->kvm;
1146         struct kvm_pt_regs *regs = vcpu_regs(vcpu);
1147
1148         union context *p_ctx = &vcpu->arch.guest;
1149         struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
1150
1151         /*Init vcpu context for first run.*/
1152         if (IS_ERR(vmm_vcpu))
1153                 return PTR_ERR(vmm_vcpu);
1154
1155         if (vcpu->vcpu_id == 0) {
1156                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1157
1158                 /*Set entry address for first run.*/
1159                 regs->cr_iip = PALE_RESET_ENTRY;
1160
1161                 /*Initilize itc offset for vcpus*/
1162                 itc_offset = 0UL - ia64_getreg(_IA64_REG_AR_ITC);
1163                 for (i = 0; i < MAX_VCPU_NUM; i++) {
1164                         v = (struct kvm_vcpu *)((char *)vcpu + VCPU_SIZE * i);
1165                         v->arch.itc_offset = itc_offset;
1166                         v->arch.last_itc = 0;
1167                 }
1168         } else
1169                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
1170
1171         r = -ENOMEM;
1172         vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
1173         if (!vcpu->arch.apic)
1174                 goto out;
1175         vcpu->arch.apic->vcpu = vcpu;
1176
1177         p_ctx->gr[1] = 0;
1178         p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + IA64_STK_OFFSET);
1179         p_ctx->gr[13] = (unsigned long)vmm_vcpu;
1180         p_ctx->psr = 0x1008522000UL;
1181         p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
1182         p_ctx->caller_unat = 0;
1183         p_ctx->pr = 0x0;
1184         p_ctx->ar[36] = 0x0; /*unat*/
1185         p_ctx->ar[19] = 0x0; /*rnat*/
1186         p_ctx->ar[18] = (unsigned long)vmm_vcpu +
1187                                 ((sizeof(struct kvm_vcpu)+15) & ~15);
1188         p_ctx->ar[64] = 0x0; /*pfs*/
1189         p_ctx->cr[0] = 0x7e04UL;
1190         p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
1191         p_ctx->cr[8] = 0x3c;
1192
1193         /*Initilize region register*/
1194         p_ctx->rr[0] = 0x30;
1195         p_ctx->rr[1] = 0x30;
1196         p_ctx->rr[2] = 0x30;
1197         p_ctx->rr[3] = 0x30;
1198         p_ctx->rr[4] = 0x30;
1199         p_ctx->rr[5] = 0x30;
1200         p_ctx->rr[7] = 0x30;
1201
1202         /*Initilize branch register 0*/
1203         p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
1204
1205         vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
1206         vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
1207         vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
1208
1209         hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1210         vcpu->arch.hlt_timer.function = hlt_timer_fn;
1211
1212         vcpu->arch.last_run_cpu = -1;
1213         vcpu->arch.vpd = (struct vpd *)VPD_ADDR(vcpu->vcpu_id);
1214         vcpu->arch.vsa_base = kvm_vsa_base;
1215         vcpu->arch.__gp = kvm_vmm_gp;
1216         vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
1217         vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_ADDR(vcpu->vcpu_id);
1218         vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_ADDR(vcpu->vcpu_id);
1219         init_ptce_info(vcpu);
1220
1221         r = 0;
1222 out:
1223         return r;
1224 }
1225
1226 static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
1227 {
1228         unsigned long psr;
1229         int r;
1230
1231         local_irq_save(psr);
1232         r = kvm_insert_vmm_mapping(vcpu);
1233         if (r)
1234                 goto fail;
1235         r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
1236         if (r)
1237                 goto fail;
1238
1239         r = vti_init_vpd(vcpu);
1240         if (r) {
1241                 printk(KERN_DEBUG"kvm: vpd init error!!\n");
1242                 goto uninit;
1243         }
1244
1245         r = vti_create_vp(vcpu);
1246         if (r)
1247                 goto uninit;
1248
1249         kvm_purge_vmm_mapping(vcpu);
1250         local_irq_restore(psr);
1251
1252         return 0;
1253 uninit:
1254         kvm_vcpu_uninit(vcpu);
1255 fail:
1256         local_irq_restore(psr);
1257         return r;
1258 }
1259
1260 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1261                 unsigned int id)
1262 {
1263         struct kvm_vcpu *vcpu;
1264         unsigned long vm_base = kvm->arch.vm_base;
1265         int r;
1266         int cpu;
1267
1268         r = -ENOMEM;
1269         if (!vm_base) {
1270                 printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
1271                 goto fail;
1272         }
1273         vcpu = (struct kvm_vcpu *)(vm_base + KVM_VCPU_OFS + VCPU_SIZE * id);
1274         vcpu->kvm = kvm;
1275
1276         cpu = get_cpu();
1277         vti_vcpu_load(vcpu, cpu);
1278         r = vti_vcpu_setup(vcpu, id);
1279         put_cpu();
1280
1281         if (r) {
1282                 printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
1283                 goto fail;
1284         }
1285
1286         return vcpu;
1287 fail:
1288         return ERR_PTR(r);
1289 }
1290
1291 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1292 {
1293         return 0;
1294 }
1295
1296 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1297 {
1298         return -EINVAL;
1299 }
1300
1301 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1302 {
1303         return -EINVAL;
1304 }
1305
1306 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
1307                 struct kvm_debug_guest *dbg)
1308 {
1309         return -EINVAL;
1310 }
1311
1312 static void free_kvm(struct kvm *kvm)
1313 {
1314         unsigned long vm_base = kvm->arch.vm_base;
1315
1316         if (vm_base) {
1317                 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
1318                 free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
1319         }
1320
1321 }
1322
1323 static void kvm_release_vm_pages(struct kvm *kvm)
1324 {
1325         struct kvm_memory_slot *memslot;
1326         int i, j;
1327         unsigned long base_gfn;
1328
1329         for (i = 0; i < kvm->nmemslots; i++) {
1330                 memslot = &kvm->memslots[i];
1331                 base_gfn = memslot->base_gfn;
1332
1333                 for (j = 0; j < memslot->npages; j++) {
1334                         if (memslot->rmap[j])
1335                                 put_page((struct page *)memslot->rmap[j]);
1336                 }
1337         }
1338 }
1339
1340 void kvm_arch_destroy_vm(struct kvm *kvm)
1341 {
1342         kfree(kvm->arch.vioapic);
1343         kvm_release_vm_pages(kvm);
1344         kvm_free_physmem(kvm);
1345         free_kvm(kvm);
1346 }
1347
1348 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1349 {
1350 }
1351
1352 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1353 {
1354         if (cpu != vcpu->cpu) {
1355                 vcpu->cpu = cpu;
1356                 if (vcpu->arch.ht_active)
1357                         kvm_migrate_hlt_timer(vcpu);
1358         }
1359 }
1360
1361 #define SAVE_REGS(_x)   regs->_x = vcpu->arch._x
1362
1363 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1364 {
1365         int i;
1366         int r;
1367         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1368         vcpu_load(vcpu);
1369
1370         for (i = 0; i < 16; i++) {
1371                 regs->vpd.vgr[i] = vpd->vgr[i];
1372                 regs->vpd.vbgr[i] = vpd->vbgr[i];
1373         }
1374         for (i = 0; i < 128; i++)
1375                 regs->vpd.vcr[i] = vpd->vcr[i];
1376         regs->vpd.vhpi = vpd->vhpi;
1377         regs->vpd.vnat = vpd->vnat;
1378         regs->vpd.vbnat = vpd->vbnat;
1379         regs->vpd.vpsr = vpd->vpsr;
1380         regs->vpd.vpr = vpd->vpr;
1381
1382         r = -EFAULT;
1383         r = copy_to_user(regs->saved_guest, &vcpu->arch.guest,
1384                                         sizeof(union context));
1385         if (r)
1386                 goto out;
1387         r = copy_to_user(regs->saved_stack, (void *)vcpu, IA64_STK_OFFSET);
1388         if (r)
1389                 goto out;
1390         SAVE_REGS(mp_state);
1391         SAVE_REGS(vmm_rr);
1392         memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
1393         memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
1394         SAVE_REGS(itr_regions);
1395         SAVE_REGS(dtr_regions);
1396         SAVE_REGS(tc_regions);
1397         SAVE_REGS(irq_check);
1398         SAVE_REGS(itc_check);
1399         SAVE_REGS(timer_check);
1400         SAVE_REGS(timer_pending);
1401         SAVE_REGS(last_itc);
1402         for (i = 0; i < 8; i++) {
1403                 regs->vrr[i] = vcpu->arch.vrr[i];
1404                 regs->ibr[i] = vcpu->arch.ibr[i];
1405                 regs->dbr[i] = vcpu->arch.dbr[i];
1406         }
1407         for (i = 0; i < 4; i++)
1408                 regs->insvc[i] = vcpu->arch.insvc[i];
1409         regs->saved_itc = vcpu->arch.itc_offset + ia64_getreg(_IA64_REG_AR_ITC);
1410         SAVE_REGS(xtp);
1411         SAVE_REGS(metaphysical_rr0);
1412         SAVE_REGS(metaphysical_rr4);
1413         SAVE_REGS(metaphysical_saved_rr0);
1414         SAVE_REGS(metaphysical_saved_rr4);
1415         SAVE_REGS(fp_psr);
1416         SAVE_REGS(saved_gp);
1417         vcpu_put(vcpu);
1418         r = 0;
1419 out:
1420         return r;
1421 }
1422
1423 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1424 {
1425
1426         hrtimer_cancel(&vcpu->arch.hlt_timer);
1427         kfree(vcpu->arch.apic);
1428 }
1429
1430
1431 long kvm_arch_vcpu_ioctl(struct file *filp,
1432                 unsigned int ioctl, unsigned long arg)
1433 {
1434         return -EINVAL;
1435 }
1436
1437 int kvm_arch_set_memory_region(struct kvm *kvm,
1438                 struct kvm_userspace_memory_region *mem,
1439                 struct kvm_memory_slot old,
1440                 int user_alloc)
1441 {
1442         unsigned long i;
1443         struct page *page;
1444         int npages = mem->memory_size >> PAGE_SHIFT;
1445         struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
1446         unsigned long base_gfn = memslot->base_gfn;
1447
1448         for (i = 0; i < npages; i++) {
1449                 page = gfn_to_page(kvm, base_gfn + i);
1450                 kvm_set_pmt_entry(kvm, base_gfn + i,
1451                                 page_to_pfn(page) << PAGE_SHIFT,
1452                                 _PAGE_AR_RWX|_PAGE_MA_WB);
1453                 memslot->rmap[i] = (unsigned long)page;
1454         }
1455
1456         return 0;
1457 }
1458
1459 void kvm_arch_flush_shadow(struct kvm *kvm)
1460 {
1461 }
1462
1463 long kvm_arch_dev_ioctl(struct file *filp,
1464                 unsigned int ioctl, unsigned long arg)
1465 {
1466         return -EINVAL;
1467 }
1468
1469 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1470 {
1471         kvm_vcpu_uninit(vcpu);
1472 }
1473
1474 static int vti_cpu_has_kvm_support(void)
1475 {
1476         long  avail = 1, status = 1, control = 1;
1477         long ret;
1478
1479         ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
1480         if (ret)
1481                 goto out;
1482
1483         if (!(avail & PAL_PROC_VM_BIT))
1484                 goto out;
1485
1486         printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
1487
1488         ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
1489         if (ret)
1490                 goto out;
1491         printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
1492
1493         if (!(vp_env_info & VP_OPCODE)) {
1494                 printk(KERN_WARNING"kvm: No opcode ability on hardware, "
1495                                 "vm_env_info:0x%lx\n", vp_env_info);
1496         }
1497
1498         return 1;
1499 out:
1500         return 0;
1501 }
1502
1503 static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
1504                                                 struct module *module)
1505 {
1506         unsigned long module_base;
1507         unsigned long vmm_size;
1508
1509         unsigned long vmm_offset, func_offset, fdesc_offset;
1510         struct fdesc *p_fdesc;
1511
1512         BUG_ON(!module);
1513
1514         if (!kvm_vmm_base) {
1515                 printk("kvm: kvm area hasn't been initilized yet!!\n");
1516                 return -EFAULT;
1517         }
1518
1519         /*Calculate new position of relocated vmm module.*/
1520         module_base = (unsigned long)module->module_core;
1521         vmm_size = module->core_size;
1522         if (unlikely(vmm_size > KVM_VMM_SIZE))
1523                 return -EFAULT;
1524
1525         memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
1526         kvm_flush_icache(kvm_vmm_base, vmm_size);
1527
1528         /*Recalculate kvm_vmm_info based on new VMM*/
1529         vmm_offset = vmm_info->vmm_ivt - module_base;
1530         kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
1531         printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
1532                         kvm_vmm_info->vmm_ivt);
1533
1534         fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
1535         kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
1536                                                         fdesc_offset);
1537         func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
1538         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1539         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1540         p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
1541
1542         printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
1543                         KVM_VMM_BASE+func_offset);
1544
1545         fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
1546         kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
1547                         fdesc_offset);
1548         func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
1549         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1550         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1551         p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
1552
1553         kvm_vmm_gp = p_fdesc->gp;
1554
1555         printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
1556                                                 kvm_vmm_info->vmm_entry);
1557         printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
1558                                                 KVM_VMM_BASE + func_offset);
1559
1560         return 0;
1561 }
1562
1563 int kvm_arch_init(void *opaque)
1564 {
1565         int r;
1566         struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
1567
1568         if (!vti_cpu_has_kvm_support()) {
1569                 printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
1570                 r = -EOPNOTSUPP;
1571                 goto out;
1572         }
1573
1574         if (kvm_vmm_info) {
1575                 printk(KERN_ERR "kvm: Already loaded VMM module!\n");
1576                 r = -EEXIST;
1577                 goto out;
1578         }
1579
1580         r = -ENOMEM;
1581         kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
1582         if (!kvm_vmm_info)
1583                 goto out;
1584
1585         if (kvm_alloc_vmm_area())
1586                 goto out_free0;
1587
1588         r = kvm_relocate_vmm(vmm_info, vmm_info->module);
1589         if (r)
1590                 goto out_free1;
1591
1592         return 0;
1593
1594 out_free1:
1595         kvm_free_vmm_area();
1596 out_free0:
1597         kfree(kvm_vmm_info);
1598 out:
1599         return r;
1600 }
1601
1602 void kvm_arch_exit(void)
1603 {
1604         kvm_free_vmm_area();
1605         kfree(kvm_vmm_info);
1606         kvm_vmm_info = NULL;
1607 }
1608
1609 static int kvm_ia64_sync_dirty_log(struct kvm *kvm,
1610                 struct kvm_dirty_log *log)
1611 {
1612         struct kvm_memory_slot *memslot;
1613         int r, i;
1614         long n, base;
1615         unsigned long *dirty_bitmap = (unsigned long *)((void *)kvm - KVM_VM_OFS
1616                                         + KVM_MEM_DIRTY_LOG_OFS);
1617
1618         r = -EINVAL;
1619         if (log->slot >= KVM_MEMORY_SLOTS)
1620                 goto out;
1621
1622         memslot = &kvm->memslots[log->slot];
1623         r = -ENOENT;
1624         if (!memslot->dirty_bitmap)
1625                 goto out;
1626
1627         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1628         base = memslot->base_gfn / BITS_PER_LONG;
1629
1630         for (i = 0; i < n/sizeof(long); ++i) {
1631                 memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
1632                 dirty_bitmap[base + i] = 0;
1633         }
1634         r = 0;
1635 out:
1636         return r;
1637 }
1638
1639 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1640                 struct kvm_dirty_log *log)
1641 {
1642         int r;
1643         int n;
1644         struct kvm_memory_slot *memslot;
1645         int is_dirty = 0;
1646
1647         spin_lock(&kvm->arch.dirty_log_lock);
1648
1649         r = kvm_ia64_sync_dirty_log(kvm, log);
1650         if (r)
1651                 goto out;
1652
1653         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1654         if (r)
1655                 goto out;
1656
1657         /* If nothing is dirty, don't bother messing with page tables. */
1658         if (is_dirty) {
1659                 kvm_flush_remote_tlbs(kvm);
1660                 memslot = &kvm->memslots[log->slot];
1661                 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1662                 memset(memslot->dirty_bitmap, 0, n);
1663         }
1664         r = 0;
1665 out:
1666         spin_unlock(&kvm->arch.dirty_log_lock);
1667         return r;
1668 }
1669
1670 int kvm_arch_hardware_setup(void)
1671 {
1672         return 0;
1673 }
1674
1675 void kvm_arch_hardware_unsetup(void)
1676 {
1677 }
1678
1679 static void vcpu_kick_intr(void *info)
1680 {
1681 #ifdef DEBUG
1682         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
1683         printk(KERN_DEBUG"vcpu_kick_intr %p \n", vcpu);
1684 #endif
1685 }
1686
1687 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1688 {
1689         int ipi_pcpu = vcpu->cpu;
1690
1691         if (waitqueue_active(&vcpu->wq))
1692                 wake_up_interruptible(&vcpu->wq);
1693
1694         if (vcpu->guest_mode)
1695                 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
1696 }
1697
1698 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, u8 vec, u8 trig)
1699 {
1700
1701         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1702
1703         if (!test_and_set_bit(vec, &vpd->irr[0])) {
1704                 vcpu->arch.irq_new_pending = 1;
1705                  if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
1706                         kvm_vcpu_kick(vcpu);
1707                 else if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) {
1708                         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1709                         if (waitqueue_active(&vcpu->wq))
1710                                 wake_up_interruptible(&vcpu->wq);
1711                 }
1712                 return 1;
1713         }
1714         return 0;
1715 }
1716
1717 int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
1718 {
1719         return apic->vcpu->vcpu_id == dest;
1720 }
1721
1722 int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
1723 {
1724         return 0;
1725 }
1726
1727 struct kvm_vcpu *kvm_get_lowest_prio_vcpu(struct kvm *kvm, u8 vector,
1728                                        unsigned long bitmap)
1729 {
1730         struct kvm_vcpu *lvcpu = kvm->vcpus[0];
1731         int i;
1732
1733         for (i = 1; i < KVM_MAX_VCPUS; i++) {
1734                 if (!kvm->vcpus[i])
1735                         continue;
1736                 if (lvcpu->arch.xtp > kvm->vcpus[i]->arch.xtp)
1737                         lvcpu = kvm->vcpus[i];
1738         }
1739
1740         return lvcpu;
1741 }
1742
1743 static int find_highest_bits(int *dat)
1744 {
1745         u32  bits, bitnum;
1746         int i;
1747
1748         /* loop for all 256 bits */
1749         for (i = 7; i >= 0 ; i--) {
1750                 bits = dat[i];
1751                 if (bits) {
1752                         bitnum = fls(bits);
1753                         return i * 32 + bitnum - 1;
1754                 }
1755         }
1756
1757         return -1;
1758 }
1759
1760 int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
1761 {
1762     struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1763
1764     if (vpd->irr[0] & (1UL << NMI_VECTOR))
1765                 return NMI_VECTOR;
1766     if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
1767                 return ExtINT_VECTOR;
1768
1769     return find_highest_bits((int *)&vpd->irr[0]);
1770 }
1771
1772 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu)
1773 {
1774         if (kvm_highest_pending_irq(vcpu) != -1)
1775                 return 1;
1776         return 0;
1777 }
1778
1779 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1780 {
1781         return 0;
1782 }
1783
1784 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1785 {
1786         return gfn;
1787 }
1788
1789 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1790 {
1791         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE;
1792 }
1793
1794 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1795                                     struct kvm_mp_state *mp_state)
1796 {
1797         return -EINVAL;
1798 }
1799
1800 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1801                                     struct kvm_mp_state *mp_state)
1802 {
1803         return -EINVAL;
1804 }