Merge branch 'hid-suspend' into picolcd
[pandora-kernel.git] / arch / ia64 / kvm / kvm-ia64.c
1 /*
2  * kvm_ia64.c: Basic KVM suppport On Itanium series processors
3  *
4  *
5  *      Copyright (C) 2007, Intel Corporation.
6  *      Xiantao Zhang  (xiantao.zhang@intel.com)
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
19  * Place - Suite 330, Boston, MA 02111-1307 USA.
20  *
21  */
22
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/smp.h>
29 #include <linux/kvm_host.h>
30 #include <linux/kvm.h>
31 #include <linux/bitops.h>
32 #include <linux/hrtimer.h>
33 #include <linux/uaccess.h>
34 #include <linux/iommu.h>
35 #include <linux/intel-iommu.h>
36
37 #include <asm/pgtable.h>
38 #include <asm/gcc_intrin.h>
39 #include <asm/pal.h>
40 #include <asm/cacheflush.h>
41 #include <asm/div64.h>
42 #include <asm/tlb.h>
43 #include <asm/elf.h>
44 #include <asm/sn/addrs.h>
45 #include <asm/sn/clksupport.h>
46 #include <asm/sn/shub_mmr.h>
47
48 #include "misc.h"
49 #include "vti.h"
50 #include "iodev.h"
51 #include "ioapic.h"
52 #include "lapic.h"
53 #include "irq.h"
54
55 static unsigned long kvm_vmm_base;
56 static unsigned long kvm_vsa_base;
57 static unsigned long kvm_vm_buffer;
58 static unsigned long kvm_vm_buffer_size;
59 unsigned long kvm_vmm_gp;
60
61 static long vp_env_info;
62
63 static struct kvm_vmm_info *kvm_vmm_info;
64
65 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
66
67 struct kvm_stats_debugfs_item debugfs_entries[] = {
68         { NULL }
69 };
70
71 static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu)
72 {
73 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
74         if (vcpu->kvm->arch.is_sn2)
75                 return rtc_time();
76         else
77 #endif
78                 return ia64_getreg(_IA64_REG_AR_ITC);
79 }
80
81 static void kvm_flush_icache(unsigned long start, unsigned long len)
82 {
83         int l;
84
85         for (l = 0; l < (len + 32); l += 32)
86                 ia64_fc((void *)(start + l));
87
88         ia64_sync_i();
89         ia64_srlz_i();
90 }
91
92 static void kvm_flush_tlb_all(void)
93 {
94         unsigned long i, j, count0, count1, stride0, stride1, addr;
95         long flags;
96
97         addr    = local_cpu_data->ptce_base;
98         count0  = local_cpu_data->ptce_count[0];
99         count1  = local_cpu_data->ptce_count[1];
100         stride0 = local_cpu_data->ptce_stride[0];
101         stride1 = local_cpu_data->ptce_stride[1];
102
103         local_irq_save(flags);
104         for (i = 0; i < count0; ++i) {
105                 for (j = 0; j < count1; ++j) {
106                         ia64_ptce(addr);
107                         addr += stride1;
108                 }
109                 addr += stride0;
110         }
111         local_irq_restore(flags);
112         ia64_srlz_i();                  /* srlz.i implies srlz.d */
113 }
114
115 long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
116 {
117         struct ia64_pal_retval iprv;
118
119         PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
120                         (u64)opt_handler);
121
122         return iprv.status;
123 }
124
125 static  DEFINE_SPINLOCK(vp_lock);
126
127 int kvm_arch_hardware_enable(void *garbage)
128 {
129         long  status;
130         long  tmp_base;
131         unsigned long pte;
132         unsigned long saved_psr;
133         int slot;
134
135         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
136         local_irq_save(saved_psr);
137         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
138         local_irq_restore(saved_psr);
139         if (slot < 0)
140                 return -EINVAL;
141
142         spin_lock(&vp_lock);
143         status = ia64_pal_vp_init_env(kvm_vsa_base ?
144                                 VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
145                         __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
146         if (status != 0) {
147                 printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
148                 return -EINVAL;
149         }
150
151         if (!kvm_vsa_base) {
152                 kvm_vsa_base = tmp_base;
153                 printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
154         }
155         spin_unlock(&vp_lock);
156         ia64_ptr_entry(0x3, slot);
157
158         return 0;
159 }
160
161 void kvm_arch_hardware_disable(void *garbage)
162 {
163
164         long status;
165         int slot;
166         unsigned long pte;
167         unsigned long saved_psr;
168         unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
169
170         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
171                                 PAGE_KERNEL));
172
173         local_irq_save(saved_psr);
174         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
175         local_irq_restore(saved_psr);
176         if (slot < 0)
177                 return;
178
179         status = ia64_pal_vp_exit_env(host_iva);
180         if (status)
181                 printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
182                                 status);
183         ia64_ptr_entry(0x3, slot);
184 }
185
186 void kvm_arch_check_processor_compat(void *rtn)
187 {
188         *(int *)rtn = 0;
189 }
190
191 int kvm_dev_ioctl_check_extension(long ext)
192 {
193
194         int r;
195
196         switch (ext) {
197         case KVM_CAP_IRQCHIP:
198         case KVM_CAP_MP_STATE:
199         case KVM_CAP_IRQ_INJECT_STATUS:
200                 r = 1;
201                 break;
202         case KVM_CAP_COALESCED_MMIO:
203                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
204                 break;
205         case KVM_CAP_IOMMU:
206                 r = iommu_found();
207                 break;
208         default:
209                 r = 0;
210         }
211         return r;
212
213 }
214
215 static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
216 {
217         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
218         kvm_run->hw.hardware_exit_reason = 1;
219         return 0;
220 }
221
222 static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
223 {
224         struct kvm_mmio_req *p;
225         struct kvm_io_device *mmio_dev;
226         int r;
227
228         p = kvm_get_vcpu_ioreq(vcpu);
229
230         if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
231                 goto mmio;
232         vcpu->mmio_needed = 1;
233         vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
234         vcpu->mmio_size = kvm_run->mmio.len = p->size;
235         vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
236
237         if (vcpu->mmio_is_write)
238                 memcpy(vcpu->mmio_data, &p->data, p->size);
239         memcpy(kvm_run->mmio.data, &p->data, p->size);
240         kvm_run->exit_reason = KVM_EXIT_MMIO;
241         return 0;
242 mmio:
243         if (p->dir)
244                 r = kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, p->addr,
245                                     p->size, &p->data);
246         else
247                 r = kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, p->addr,
248                                      p->size, &p->data);
249         if (r)
250                 printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
251         p->state = STATE_IORESP_READY;
252
253         return 1;
254 }
255
256 static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
257 {
258         struct exit_ctl_data *p;
259
260         p = kvm_get_exit_data(vcpu);
261
262         if (p->exit_reason == EXIT_REASON_PAL_CALL)
263                 return kvm_pal_emul(vcpu, kvm_run);
264         else {
265                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
266                 kvm_run->hw.hardware_exit_reason = 2;
267                 return 0;
268         }
269 }
270
271 static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
272 {
273         struct exit_ctl_data *p;
274
275         p = kvm_get_exit_data(vcpu);
276
277         if (p->exit_reason == EXIT_REASON_SAL_CALL) {
278                 kvm_sal_emul(vcpu);
279                 return 1;
280         } else {
281                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
282                 kvm_run->hw.hardware_exit_reason = 3;
283                 return 0;
284         }
285
286 }
287
288 static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
289 {
290         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
291
292         if (!test_and_set_bit(vector, &vpd->irr[0])) {
293                 vcpu->arch.irq_new_pending = 1;
294                 kvm_vcpu_kick(vcpu);
295                 return 1;
296         }
297         return 0;
298 }
299
300 /*
301  *  offset: address offset to IPI space.
302  *  value:  deliver value.
303  */
304 static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
305                                 uint64_t vector)
306 {
307         switch (dm) {
308         case SAPIC_FIXED:
309                 break;
310         case SAPIC_NMI:
311                 vector = 2;
312                 break;
313         case SAPIC_EXTINT:
314                 vector = 0;
315                 break;
316         case SAPIC_INIT:
317         case SAPIC_PMI:
318         default:
319                 printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
320                 return;
321         }
322         __apic_accept_irq(vcpu, vector);
323 }
324
325 static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
326                         unsigned long eid)
327 {
328         union ia64_lid lid;
329         int i;
330         struct kvm_vcpu *vcpu;
331
332         kvm_for_each_vcpu(i, vcpu, kvm) {
333                 lid.val = VCPU_LID(vcpu);
334                 if (lid.id == id && lid.eid == eid)
335                         return vcpu;
336         }
337
338         return NULL;
339 }
340
341 static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
342 {
343         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
344         struct kvm_vcpu *target_vcpu;
345         struct kvm_pt_regs *regs;
346         union ia64_ipi_a addr = p->u.ipi_data.addr;
347         union ia64_ipi_d data = p->u.ipi_data.data;
348
349         target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
350         if (!target_vcpu)
351                 return handle_vm_error(vcpu, kvm_run);
352
353         if (!target_vcpu->arch.launched) {
354                 regs = vcpu_regs(target_vcpu);
355
356                 regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
357                 regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
358
359                 target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
360                 if (waitqueue_active(&target_vcpu->wq))
361                         wake_up_interruptible(&target_vcpu->wq);
362         } else {
363                 vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
364                 if (target_vcpu != vcpu)
365                         kvm_vcpu_kick(target_vcpu);
366         }
367
368         return 1;
369 }
370
371 struct call_data {
372         struct kvm_ptc_g ptc_g_data;
373         struct kvm_vcpu *vcpu;
374 };
375
376 static void vcpu_global_purge(void *info)
377 {
378         struct call_data *p = (struct call_data *)info;
379         struct kvm_vcpu *vcpu = p->vcpu;
380
381         if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
382                 return;
383
384         set_bit(KVM_REQ_PTC_G, &vcpu->requests);
385         if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
386                 vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
387                                                         p->ptc_g_data;
388         } else {
389                 clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
390                 vcpu->arch.ptc_g_count = 0;
391                 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
392         }
393 }
394
395 static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
396 {
397         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
398         struct kvm *kvm = vcpu->kvm;
399         struct call_data call_data;
400         int i;
401         struct kvm_vcpu *vcpui;
402
403         call_data.ptc_g_data = p->u.ptc_g_data;
404
405         kvm_for_each_vcpu(i, vcpui, kvm) {
406                 if (vcpui->arch.mp_state == KVM_MP_STATE_UNINITIALIZED ||
407                                 vcpu == vcpui)
408                         continue;
409
410                 if (waitqueue_active(&vcpui->wq))
411                         wake_up_interruptible(&vcpui->wq);
412
413                 if (vcpui->cpu != -1) {
414                         call_data.vcpu = vcpui;
415                         smp_call_function_single(vcpui->cpu,
416                                         vcpu_global_purge, &call_data, 1);
417                 } else
418                         printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
419
420         }
421         return 1;
422 }
423
424 static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
425 {
426         return 1;
427 }
428
429 static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
430 {
431         unsigned long pte, rtc_phys_addr, map_addr;
432         int slot;
433
434         map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
435         rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
436         pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
437         slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
438         vcpu->arch.sn_rtc_tr_slot = slot;
439         if (slot < 0) {
440                 printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
441                 slot = 0;
442         }
443         return slot;
444 }
445
446 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
447 {
448
449         ktime_t kt;
450         long itc_diff;
451         unsigned long vcpu_now_itc;
452         unsigned long expires;
453         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
454         unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
455         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
456
457         if (irqchip_in_kernel(vcpu->kvm)) {
458
459                 vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset;
460
461                 if (time_after(vcpu_now_itc, vpd->itm)) {
462                         vcpu->arch.timer_check = 1;
463                         return 1;
464                 }
465                 itc_diff = vpd->itm - vcpu_now_itc;
466                 if (itc_diff < 0)
467                         itc_diff = -itc_diff;
468
469                 expires = div64_u64(itc_diff, cyc_per_usec);
470                 kt = ktime_set(0, 1000 * expires);
471
472                 vcpu->arch.ht_active = 1;
473                 hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
474
475                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
476                 kvm_vcpu_block(vcpu);
477                 hrtimer_cancel(p_ht);
478                 vcpu->arch.ht_active = 0;
479
480                 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests) ||
481                                 kvm_cpu_has_pending_timer(vcpu))
482                         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
483                                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
484
485                 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
486                         return -EINTR;
487                 return 1;
488         } else {
489                 printk(KERN_ERR"kvm: Unsupported userspace halt!");
490                 return 0;
491         }
492 }
493
494 static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
495                 struct kvm_run *kvm_run)
496 {
497         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
498         return 0;
499 }
500
501 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
502                 struct kvm_run *kvm_run)
503 {
504         return 1;
505 }
506
507 static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
508                                 struct kvm_run *kvm_run)
509 {
510         printk("VMM: %s", vcpu->arch.log_buf);
511         return 1;
512 }
513
514 static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
515                 struct kvm_run *kvm_run) = {
516         [EXIT_REASON_VM_PANIC]              = handle_vm_error,
517         [EXIT_REASON_MMIO_INSTRUCTION]      = handle_mmio,
518         [EXIT_REASON_PAL_CALL]              = handle_pal_call,
519         [EXIT_REASON_SAL_CALL]              = handle_sal_call,
520         [EXIT_REASON_SWITCH_RR6]            = handle_switch_rr6,
521         [EXIT_REASON_VM_DESTROY]            = handle_vm_shutdown,
522         [EXIT_REASON_EXTERNAL_INTERRUPT]    = handle_external_interrupt,
523         [EXIT_REASON_IPI]                   = handle_ipi,
524         [EXIT_REASON_PTC_G]                 = handle_global_purge,
525         [EXIT_REASON_DEBUG]                 = handle_vcpu_debug,
526
527 };
528
529 static const int kvm_vti_max_exit_handlers =
530                 sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
531
532 static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
533 {
534         struct exit_ctl_data *p_exit_data;
535
536         p_exit_data = kvm_get_exit_data(vcpu);
537         return p_exit_data->exit_reason;
538 }
539
540 /*
541  * The guest has exited.  See if we can fix it or if we need userspace
542  * assistance.
543  */
544 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
545 {
546         u32 exit_reason = kvm_get_exit_reason(vcpu);
547         vcpu->arch.last_exit = exit_reason;
548
549         if (exit_reason < kvm_vti_max_exit_handlers
550                         && kvm_vti_exit_handlers[exit_reason])
551                 return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
552         else {
553                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
554                 kvm_run->hw.hardware_exit_reason = exit_reason;
555         }
556         return 0;
557 }
558
559 static inline void vti_set_rr6(unsigned long rr6)
560 {
561         ia64_set_rr(RR6, rr6);
562         ia64_srlz_i();
563 }
564
565 static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
566 {
567         unsigned long pte;
568         struct kvm *kvm = vcpu->kvm;
569         int r;
570
571         /*Insert a pair of tr to map vmm*/
572         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
573         r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
574         if (r < 0)
575                 goto out;
576         vcpu->arch.vmm_tr_slot = r;
577         /*Insert a pairt of tr to map data of vm*/
578         pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
579         r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
580                                         pte, KVM_VM_DATA_SHIFT);
581         if (r < 0)
582                 goto out;
583         vcpu->arch.vm_tr_slot = r;
584
585 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
586         if (kvm->arch.is_sn2) {
587                 r = kvm_sn2_setup_mappings(vcpu);
588                 if (r < 0)
589                         goto out;
590         }
591 #endif
592
593         r = 0;
594 out:
595         return r;
596 }
597
598 static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
599 {
600         struct kvm *kvm = vcpu->kvm;
601         ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
602         ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
603 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
604         if (kvm->arch.is_sn2)
605                 ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
606 #endif
607 }
608
609 static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
610 {
611         unsigned long psr;
612         int r;
613         int cpu = smp_processor_id();
614
615         if (vcpu->arch.last_run_cpu != cpu ||
616                         per_cpu(last_vcpu, cpu) != vcpu) {
617                 per_cpu(last_vcpu, cpu) = vcpu;
618                 vcpu->arch.last_run_cpu = cpu;
619                 kvm_flush_tlb_all();
620         }
621
622         vcpu->arch.host_rr6 = ia64_get_rr(RR6);
623         vti_set_rr6(vcpu->arch.vmm_rr);
624         local_irq_save(psr);
625         r = kvm_insert_vmm_mapping(vcpu);
626         local_irq_restore(psr);
627         return r;
628 }
629
630 static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
631 {
632         kvm_purge_vmm_mapping(vcpu);
633         vti_set_rr6(vcpu->arch.host_rr6);
634 }
635
636 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
637 {
638         union context *host_ctx, *guest_ctx;
639         int r, idx;
640
641         idx = srcu_read_lock(&vcpu->kvm->srcu);
642
643 again:
644         if (signal_pending(current)) {
645                 r = -EINTR;
646                 kvm_run->exit_reason = KVM_EXIT_INTR;
647                 goto out;
648         }
649
650         preempt_disable();
651         local_irq_disable();
652
653         /*Get host and guest context with guest address space.*/
654         host_ctx = kvm_get_host_context(vcpu);
655         guest_ctx = kvm_get_guest_context(vcpu);
656
657         clear_bit(KVM_REQ_KICK, &vcpu->requests);
658
659         r = kvm_vcpu_pre_transition(vcpu);
660         if (r < 0)
661                 goto vcpu_run_fail;
662
663         srcu_read_unlock(&vcpu->kvm->srcu, idx);
664         kvm_guest_enter();
665
666         /*
667          * Transition to the guest
668          */
669         kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
670
671         kvm_vcpu_post_transition(vcpu);
672
673         vcpu->arch.launched = 1;
674         set_bit(KVM_REQ_KICK, &vcpu->requests);
675         local_irq_enable();
676
677         /*
678          * We must have an instruction between local_irq_enable() and
679          * kvm_guest_exit(), so the timer interrupt isn't delayed by
680          * the interrupt shadow.  The stat.exits increment will do nicely.
681          * But we need to prevent reordering, hence this barrier():
682          */
683         barrier();
684         kvm_guest_exit();
685         preempt_enable();
686
687         idx = srcu_read_lock(&vcpu->kvm->srcu);
688
689         r = kvm_handle_exit(kvm_run, vcpu);
690
691         if (r > 0) {
692                 if (!need_resched())
693                         goto again;
694         }
695
696 out:
697         srcu_read_unlock(&vcpu->kvm->srcu, idx);
698         if (r > 0) {
699                 kvm_resched(vcpu);
700                 idx = srcu_read_lock(&vcpu->kvm->srcu);
701                 goto again;
702         }
703
704         return r;
705
706 vcpu_run_fail:
707         local_irq_enable();
708         preempt_enable();
709         kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
710         goto out;
711 }
712
713 static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
714 {
715         struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
716
717         if (!vcpu->mmio_is_write)
718                 memcpy(&p->data, vcpu->mmio_data, 8);
719         p->state = STATE_IORESP_READY;
720 }
721
722 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
723 {
724         int r;
725         sigset_t sigsaved;
726
727         vcpu_load(vcpu);
728
729         if (vcpu->sigset_active)
730                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
731
732         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
733                 kvm_vcpu_block(vcpu);
734                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
735                 r = -EAGAIN;
736                 goto out;
737         }
738
739         if (vcpu->mmio_needed) {
740                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
741                 kvm_set_mmio_data(vcpu);
742                 vcpu->mmio_read_completed = 1;
743                 vcpu->mmio_needed = 0;
744         }
745         r = __vcpu_run(vcpu, kvm_run);
746 out:
747         if (vcpu->sigset_active)
748                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
749
750         vcpu_put(vcpu);
751         return r;
752 }
753
754 static struct kvm *kvm_alloc_kvm(void)
755 {
756
757         struct kvm *kvm;
758         uint64_t  vm_base;
759
760         BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
761
762         vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
763
764         if (!vm_base)
765                 return ERR_PTR(-ENOMEM);
766
767         memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
768         kvm = (struct kvm *)(vm_base +
769                         offsetof(struct kvm_vm_data, kvm_vm_struct));
770         kvm->arch.vm_base = vm_base;
771         printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
772
773         return kvm;
774 }
775
776 struct kvm_io_range {
777         unsigned long start;
778         unsigned long size;
779         unsigned long type;
780 };
781
782 static const struct kvm_io_range io_ranges[] = {
783         {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
784         {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
785         {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
786         {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
787         {PIB_START, PIB_SIZE, GPFN_PIB},
788 };
789
790 static void kvm_build_io_pmt(struct kvm *kvm)
791 {
792         unsigned long i, j;
793
794         /* Mark I/O ranges */
795         for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
796                                                         i++) {
797                 for (j = io_ranges[i].start;
798                                 j < io_ranges[i].start + io_ranges[i].size;
799                                 j += PAGE_SIZE)
800                         kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
801                                         io_ranges[i].type, 0);
802         }
803
804 }
805
806 /*Use unused rids to virtualize guest rid.*/
807 #define GUEST_PHYSICAL_RR0      0x1739
808 #define GUEST_PHYSICAL_RR4      0x2739
809 #define VMM_INIT_RR             0x1660
810
811 static void kvm_init_vm(struct kvm *kvm)
812 {
813         BUG_ON(!kvm);
814
815         kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
816         kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
817         kvm->arch.vmm_init_rr = VMM_INIT_RR;
818
819         /*
820          *Fill P2M entries for MMIO/IO ranges
821          */
822         kvm_build_io_pmt(kvm);
823
824         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
825
826         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
827         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
828 }
829
830 struct  kvm *kvm_arch_create_vm(void)
831 {
832         struct kvm *kvm = kvm_alloc_kvm();
833
834         if (IS_ERR(kvm))
835                 return ERR_PTR(-ENOMEM);
836
837         kvm->arch.is_sn2 = ia64_platform_is("sn2");
838
839         kvm_init_vm(kvm);
840
841         return kvm;
842
843 }
844
845 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
846                                         struct kvm_irqchip *chip)
847 {
848         int r;
849
850         r = 0;
851         switch (chip->chip_id) {
852         case KVM_IRQCHIP_IOAPIC:
853                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
854                 break;
855         default:
856                 r = -EINVAL;
857                 break;
858         }
859         return r;
860 }
861
862 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
863 {
864         int r;
865
866         r = 0;
867         switch (chip->chip_id) {
868         case KVM_IRQCHIP_IOAPIC:
869                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
870                 break;
871         default:
872                 r = -EINVAL;
873                 break;
874         }
875         return r;
876 }
877
878 #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
879
880 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
881 {
882         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
883         int i;
884
885         vcpu_load(vcpu);
886
887         for (i = 0; i < 16; i++) {
888                 vpd->vgr[i] = regs->vpd.vgr[i];
889                 vpd->vbgr[i] = regs->vpd.vbgr[i];
890         }
891         for (i = 0; i < 128; i++)
892                 vpd->vcr[i] = regs->vpd.vcr[i];
893         vpd->vhpi = regs->vpd.vhpi;
894         vpd->vnat = regs->vpd.vnat;
895         vpd->vbnat = regs->vpd.vbnat;
896         vpd->vpsr = regs->vpd.vpsr;
897
898         vpd->vpr = regs->vpd.vpr;
899
900         memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
901
902         RESTORE_REGS(mp_state);
903         RESTORE_REGS(vmm_rr);
904         memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
905         memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
906         RESTORE_REGS(itr_regions);
907         RESTORE_REGS(dtr_regions);
908         RESTORE_REGS(tc_regions);
909         RESTORE_REGS(irq_check);
910         RESTORE_REGS(itc_check);
911         RESTORE_REGS(timer_check);
912         RESTORE_REGS(timer_pending);
913         RESTORE_REGS(last_itc);
914         for (i = 0; i < 8; i++) {
915                 vcpu->arch.vrr[i] = regs->vrr[i];
916                 vcpu->arch.ibr[i] = regs->ibr[i];
917                 vcpu->arch.dbr[i] = regs->dbr[i];
918         }
919         for (i = 0; i < 4; i++)
920                 vcpu->arch.insvc[i] = regs->insvc[i];
921         RESTORE_REGS(xtp);
922         RESTORE_REGS(metaphysical_rr0);
923         RESTORE_REGS(metaphysical_rr4);
924         RESTORE_REGS(metaphysical_saved_rr0);
925         RESTORE_REGS(metaphysical_saved_rr4);
926         RESTORE_REGS(fp_psr);
927         RESTORE_REGS(saved_gp);
928
929         vcpu->arch.irq_new_pending = 1;
930         vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu);
931         set_bit(KVM_REQ_RESUME, &vcpu->requests);
932
933         vcpu_put(vcpu);
934
935         return 0;
936 }
937
938 long kvm_arch_vm_ioctl(struct file *filp,
939                 unsigned int ioctl, unsigned long arg)
940 {
941         struct kvm *kvm = filp->private_data;
942         void __user *argp = (void __user *)arg;
943         int r = -ENOTTY;
944
945         switch (ioctl) {
946         case KVM_SET_MEMORY_REGION: {
947                 struct kvm_memory_region kvm_mem;
948                 struct kvm_userspace_memory_region kvm_userspace_mem;
949
950                 r = -EFAULT;
951                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
952                         goto out;
953                 kvm_userspace_mem.slot = kvm_mem.slot;
954                 kvm_userspace_mem.flags = kvm_mem.flags;
955                 kvm_userspace_mem.guest_phys_addr =
956                                         kvm_mem.guest_phys_addr;
957                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
958                 r = kvm_vm_ioctl_set_memory_region(kvm,
959                                         &kvm_userspace_mem, 0);
960                 if (r)
961                         goto out;
962                 break;
963                 }
964         case KVM_CREATE_IRQCHIP:
965                 r = -EFAULT;
966                 r = kvm_ioapic_init(kvm);
967                 if (r)
968                         goto out;
969                 r = kvm_setup_default_irq_routing(kvm);
970                 if (r) {
971                         kvm_ioapic_destroy(kvm);
972                         goto out;
973                 }
974                 break;
975         case KVM_IRQ_LINE_STATUS:
976         case KVM_IRQ_LINE: {
977                 struct kvm_irq_level irq_event;
978
979                 r = -EFAULT;
980                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
981                         goto out;
982                 if (irqchip_in_kernel(kvm)) {
983                         __s32 status;
984                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
985                                     irq_event.irq, irq_event.level);
986                         if (ioctl == KVM_IRQ_LINE_STATUS) {
987                                 irq_event.status = status;
988                                 if (copy_to_user(argp, &irq_event,
989                                                         sizeof irq_event))
990                                         goto out;
991                         }
992                         r = 0;
993                 }
994                 break;
995                 }
996         case KVM_GET_IRQCHIP: {
997                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
998                 struct kvm_irqchip chip;
999
1000                 r = -EFAULT;
1001                 if (copy_from_user(&chip, argp, sizeof chip))
1002                                 goto out;
1003                 r = -ENXIO;
1004                 if (!irqchip_in_kernel(kvm))
1005                         goto out;
1006                 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
1007                 if (r)
1008                         goto out;
1009                 r = -EFAULT;
1010                 if (copy_to_user(argp, &chip, sizeof chip))
1011                                 goto out;
1012                 r = 0;
1013                 break;
1014                 }
1015         case KVM_SET_IRQCHIP: {
1016                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1017                 struct kvm_irqchip chip;
1018
1019                 r = -EFAULT;
1020                 if (copy_from_user(&chip, argp, sizeof chip))
1021                                 goto out;
1022                 r = -ENXIO;
1023                 if (!irqchip_in_kernel(kvm))
1024                         goto out;
1025                 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1026                 if (r)
1027                         goto out;
1028                 r = 0;
1029                 break;
1030                 }
1031         default:
1032                 ;
1033         }
1034 out:
1035         return r;
1036 }
1037
1038 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1039                 struct kvm_sregs *sregs)
1040 {
1041         return -EINVAL;
1042 }
1043
1044 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1045                 struct kvm_sregs *sregs)
1046 {
1047         return -EINVAL;
1048
1049 }
1050 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1051                 struct kvm_translation *tr)
1052 {
1053
1054         return -EINVAL;
1055 }
1056
1057 static int kvm_alloc_vmm_area(void)
1058 {
1059         if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
1060                 kvm_vmm_base = __get_free_pages(GFP_KERNEL,
1061                                 get_order(KVM_VMM_SIZE));
1062                 if (!kvm_vmm_base)
1063                         return -ENOMEM;
1064
1065                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1066                 kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
1067
1068                 printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
1069                                 kvm_vmm_base, kvm_vm_buffer);
1070         }
1071
1072         return 0;
1073 }
1074
1075 static void kvm_free_vmm_area(void)
1076 {
1077         if (kvm_vmm_base) {
1078                 /*Zero this area before free to avoid bits leak!!*/
1079                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1080                 free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
1081                 kvm_vmm_base  = 0;
1082                 kvm_vm_buffer = 0;
1083                 kvm_vsa_base = 0;
1084         }
1085 }
1086
1087 static int vti_init_vpd(struct kvm_vcpu *vcpu)
1088 {
1089         int i;
1090         union cpuid3_t cpuid3;
1091         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1092
1093         if (IS_ERR(vpd))
1094                 return PTR_ERR(vpd);
1095
1096         /* CPUID init */
1097         for (i = 0; i < 5; i++)
1098                 vpd->vcpuid[i] = ia64_get_cpuid(i);
1099
1100         /* Limit the CPUID number to 5 */
1101         cpuid3.value = vpd->vcpuid[3];
1102         cpuid3.number = 4;      /* 5 - 1 */
1103         vpd->vcpuid[3] = cpuid3.value;
1104
1105         /*Set vac and vdc fields*/
1106         vpd->vac.a_from_int_cr = 1;
1107         vpd->vac.a_to_int_cr = 1;
1108         vpd->vac.a_from_psr = 1;
1109         vpd->vac.a_from_cpuid = 1;
1110         vpd->vac.a_cover = 1;
1111         vpd->vac.a_bsw = 1;
1112         vpd->vac.a_int = 1;
1113         vpd->vdc.d_vmsw = 1;
1114
1115         /*Set virtual buffer*/
1116         vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
1117
1118         return 0;
1119 }
1120
1121 static int vti_create_vp(struct kvm_vcpu *vcpu)
1122 {
1123         long ret;
1124         struct vpd *vpd = vcpu->arch.vpd;
1125         unsigned long  vmm_ivt;
1126
1127         vmm_ivt = kvm_vmm_info->vmm_ivt;
1128
1129         printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
1130
1131         ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
1132
1133         if (ret) {
1134                 printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
1135                 return -EINVAL;
1136         }
1137         return 0;
1138 }
1139
1140 static void init_ptce_info(struct kvm_vcpu *vcpu)
1141 {
1142         ia64_ptce_info_t ptce = {0};
1143
1144         ia64_get_ptce(&ptce);
1145         vcpu->arch.ptce_base = ptce.base;
1146         vcpu->arch.ptce_count[0] = ptce.count[0];
1147         vcpu->arch.ptce_count[1] = ptce.count[1];
1148         vcpu->arch.ptce_stride[0] = ptce.stride[0];
1149         vcpu->arch.ptce_stride[1] = ptce.stride[1];
1150 }
1151
1152 static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
1153 {
1154         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
1155
1156         if (hrtimer_cancel(p_ht))
1157                 hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
1158 }
1159
1160 static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
1161 {
1162         struct kvm_vcpu *vcpu;
1163         wait_queue_head_t *q;
1164
1165         vcpu  = container_of(data, struct kvm_vcpu, arch.hlt_timer);
1166         q = &vcpu->wq;
1167
1168         if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
1169                 goto out;
1170
1171         if (waitqueue_active(q))
1172                 wake_up_interruptible(q);
1173
1174 out:
1175         vcpu->arch.timer_fired = 1;
1176         vcpu->arch.timer_check = 1;
1177         return HRTIMER_NORESTART;
1178 }
1179
1180 #define PALE_RESET_ENTRY    0x80000000ffffffb0UL
1181
1182 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1183 {
1184         struct kvm_vcpu *v;
1185         int r;
1186         int i;
1187         long itc_offset;
1188         struct kvm *kvm = vcpu->kvm;
1189         struct kvm_pt_regs *regs = vcpu_regs(vcpu);
1190
1191         union context *p_ctx = &vcpu->arch.guest;
1192         struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
1193
1194         /*Init vcpu context for first run.*/
1195         if (IS_ERR(vmm_vcpu))
1196                 return PTR_ERR(vmm_vcpu);
1197
1198         if (kvm_vcpu_is_bsp(vcpu)) {
1199                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1200
1201                 /*Set entry address for first run.*/
1202                 regs->cr_iip = PALE_RESET_ENTRY;
1203
1204                 /*Initialize itc offset for vcpus*/
1205                 itc_offset = 0UL - kvm_get_itc(vcpu);
1206                 for (i = 0; i < KVM_MAX_VCPUS; i++) {
1207                         v = (struct kvm_vcpu *)((char *)vcpu +
1208                                         sizeof(struct kvm_vcpu_data) * i);
1209                         v->arch.itc_offset = itc_offset;
1210                         v->arch.last_itc = 0;
1211                 }
1212         } else
1213                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
1214
1215         r = -ENOMEM;
1216         vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
1217         if (!vcpu->arch.apic)
1218                 goto out;
1219         vcpu->arch.apic->vcpu = vcpu;
1220
1221         p_ctx->gr[1] = 0;
1222         p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
1223         p_ctx->gr[13] = (unsigned long)vmm_vcpu;
1224         p_ctx->psr = 0x1008522000UL;
1225         p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
1226         p_ctx->caller_unat = 0;
1227         p_ctx->pr = 0x0;
1228         p_ctx->ar[36] = 0x0; /*unat*/
1229         p_ctx->ar[19] = 0x0; /*rnat*/
1230         p_ctx->ar[18] = (unsigned long)vmm_vcpu +
1231                                 ((sizeof(struct kvm_vcpu)+15) & ~15);
1232         p_ctx->ar[64] = 0x0; /*pfs*/
1233         p_ctx->cr[0] = 0x7e04UL;
1234         p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
1235         p_ctx->cr[8] = 0x3c;
1236
1237         /*Initilize region register*/
1238         p_ctx->rr[0] = 0x30;
1239         p_ctx->rr[1] = 0x30;
1240         p_ctx->rr[2] = 0x30;
1241         p_ctx->rr[3] = 0x30;
1242         p_ctx->rr[4] = 0x30;
1243         p_ctx->rr[5] = 0x30;
1244         p_ctx->rr[7] = 0x30;
1245
1246         /*Initilize branch register 0*/
1247         p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
1248
1249         vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
1250         vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
1251         vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
1252
1253         hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1254         vcpu->arch.hlt_timer.function = hlt_timer_fn;
1255
1256         vcpu->arch.last_run_cpu = -1;
1257         vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
1258         vcpu->arch.vsa_base = kvm_vsa_base;
1259         vcpu->arch.__gp = kvm_vmm_gp;
1260         vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
1261         vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
1262         vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
1263         init_ptce_info(vcpu);
1264
1265         r = 0;
1266 out:
1267         return r;
1268 }
1269
1270 static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
1271 {
1272         unsigned long psr;
1273         int r;
1274
1275         local_irq_save(psr);
1276         r = kvm_insert_vmm_mapping(vcpu);
1277         local_irq_restore(psr);
1278         if (r)
1279                 goto fail;
1280         r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
1281         if (r)
1282                 goto fail;
1283
1284         r = vti_init_vpd(vcpu);
1285         if (r) {
1286                 printk(KERN_DEBUG"kvm: vpd init error!!\n");
1287                 goto uninit;
1288         }
1289
1290         r = vti_create_vp(vcpu);
1291         if (r)
1292                 goto uninit;
1293
1294         kvm_purge_vmm_mapping(vcpu);
1295
1296         return 0;
1297 uninit:
1298         kvm_vcpu_uninit(vcpu);
1299 fail:
1300         return r;
1301 }
1302
1303 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1304                 unsigned int id)
1305 {
1306         struct kvm_vcpu *vcpu;
1307         unsigned long vm_base = kvm->arch.vm_base;
1308         int r;
1309         int cpu;
1310
1311         BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
1312
1313         r = -EINVAL;
1314         if (id >= KVM_MAX_VCPUS) {
1315                 printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
1316                                 KVM_MAX_VCPUS);
1317                 goto fail;
1318         }
1319
1320         r = -ENOMEM;
1321         if (!vm_base) {
1322                 printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
1323                 goto fail;
1324         }
1325         vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
1326                                         vcpu_data[id].vcpu_struct));
1327         vcpu->kvm = kvm;
1328
1329         cpu = get_cpu();
1330         r = vti_vcpu_setup(vcpu, id);
1331         put_cpu();
1332
1333         if (r) {
1334                 printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
1335                 goto fail;
1336         }
1337
1338         return vcpu;
1339 fail:
1340         return ERR_PTR(r);
1341 }
1342
1343 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1344 {
1345         return 0;
1346 }
1347
1348 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1349 {
1350         return -EINVAL;
1351 }
1352
1353 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1354 {
1355         return -EINVAL;
1356 }
1357
1358 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1359                                         struct kvm_guest_debug *dbg)
1360 {
1361         return -EINVAL;
1362 }
1363
1364 static void free_kvm(struct kvm *kvm)
1365 {
1366         unsigned long vm_base = kvm->arch.vm_base;
1367
1368         if (vm_base) {
1369                 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
1370                 free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
1371         }
1372
1373 }
1374
1375 static void kvm_release_vm_pages(struct kvm *kvm)
1376 {
1377         struct kvm_memslots *slots;
1378         struct kvm_memory_slot *memslot;
1379         int i, j;
1380         unsigned long base_gfn;
1381
1382         slots = rcu_dereference(kvm->memslots);
1383         for (i = 0; i < slots->nmemslots; i++) {
1384                 memslot = &slots->memslots[i];
1385                 base_gfn = memslot->base_gfn;
1386
1387                 for (j = 0; j < memslot->npages; j++) {
1388                         if (memslot->rmap[j])
1389                                 put_page((struct page *)memslot->rmap[j]);
1390                 }
1391         }
1392 }
1393
1394 void kvm_arch_sync_events(struct kvm *kvm)
1395 {
1396 }
1397
1398 void kvm_arch_destroy_vm(struct kvm *kvm)
1399 {
1400         kvm_iommu_unmap_guest(kvm);
1401 #ifdef  KVM_CAP_DEVICE_ASSIGNMENT
1402         kvm_free_all_assigned_devices(kvm);
1403 #endif
1404         kfree(kvm->arch.vioapic);
1405         kvm_release_vm_pages(kvm);
1406         kvm_free_physmem(kvm);
1407         cleanup_srcu_struct(&kvm->srcu);
1408         free_kvm(kvm);
1409 }
1410
1411 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1412 {
1413 }
1414
1415 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1416 {
1417         if (cpu != vcpu->cpu) {
1418                 vcpu->cpu = cpu;
1419                 if (vcpu->arch.ht_active)
1420                         kvm_migrate_hlt_timer(vcpu);
1421         }
1422 }
1423
1424 #define SAVE_REGS(_x)   regs->_x = vcpu->arch._x
1425
1426 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1427 {
1428         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1429         int i;
1430
1431         vcpu_load(vcpu);
1432
1433         for (i = 0; i < 16; i++) {
1434                 regs->vpd.vgr[i] = vpd->vgr[i];
1435                 regs->vpd.vbgr[i] = vpd->vbgr[i];
1436         }
1437         for (i = 0; i < 128; i++)
1438                 regs->vpd.vcr[i] = vpd->vcr[i];
1439         regs->vpd.vhpi = vpd->vhpi;
1440         regs->vpd.vnat = vpd->vnat;
1441         regs->vpd.vbnat = vpd->vbnat;
1442         regs->vpd.vpsr = vpd->vpsr;
1443         regs->vpd.vpr = vpd->vpr;
1444
1445         memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
1446
1447         SAVE_REGS(mp_state);
1448         SAVE_REGS(vmm_rr);
1449         memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
1450         memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
1451         SAVE_REGS(itr_regions);
1452         SAVE_REGS(dtr_regions);
1453         SAVE_REGS(tc_regions);
1454         SAVE_REGS(irq_check);
1455         SAVE_REGS(itc_check);
1456         SAVE_REGS(timer_check);
1457         SAVE_REGS(timer_pending);
1458         SAVE_REGS(last_itc);
1459         for (i = 0; i < 8; i++) {
1460                 regs->vrr[i] = vcpu->arch.vrr[i];
1461                 regs->ibr[i] = vcpu->arch.ibr[i];
1462                 regs->dbr[i] = vcpu->arch.dbr[i];
1463         }
1464         for (i = 0; i < 4; i++)
1465                 regs->insvc[i] = vcpu->arch.insvc[i];
1466         regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu);
1467         SAVE_REGS(xtp);
1468         SAVE_REGS(metaphysical_rr0);
1469         SAVE_REGS(metaphysical_rr4);
1470         SAVE_REGS(metaphysical_saved_rr0);
1471         SAVE_REGS(metaphysical_saved_rr4);
1472         SAVE_REGS(fp_psr);
1473         SAVE_REGS(saved_gp);
1474
1475         vcpu_put(vcpu);
1476         return 0;
1477 }
1478
1479 int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
1480                                   struct kvm_ia64_vcpu_stack *stack)
1481 {
1482         memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
1483         return 0;
1484 }
1485
1486 int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
1487                                   struct kvm_ia64_vcpu_stack *stack)
1488 {
1489         memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
1490                sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
1491
1492         vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
1493         return 0;
1494 }
1495
1496 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1497 {
1498
1499         hrtimer_cancel(&vcpu->arch.hlt_timer);
1500         kfree(vcpu->arch.apic);
1501 }
1502
1503
1504 long kvm_arch_vcpu_ioctl(struct file *filp,
1505                          unsigned int ioctl, unsigned long arg)
1506 {
1507         struct kvm_vcpu *vcpu = filp->private_data;
1508         void __user *argp = (void __user *)arg;
1509         struct kvm_ia64_vcpu_stack *stack = NULL;
1510         long r;
1511
1512         switch (ioctl) {
1513         case KVM_IA64_VCPU_GET_STACK: {
1514                 struct kvm_ia64_vcpu_stack __user *user_stack;
1515                 void __user *first_p = argp;
1516
1517                 r = -EFAULT;
1518                 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1519                         goto out;
1520
1521                 if (!access_ok(VERIFY_WRITE, user_stack,
1522                                sizeof(struct kvm_ia64_vcpu_stack))) {
1523                         printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
1524                                "Illegal user destination address for stack\n");
1525                         goto out;
1526                 }
1527                 stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1528                 if (!stack) {
1529                         r = -ENOMEM;
1530                         goto out;
1531                 }
1532
1533                 r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
1534                 if (r)
1535                         goto out;
1536
1537                 if (copy_to_user(user_stack, stack,
1538                                  sizeof(struct kvm_ia64_vcpu_stack)))
1539                         goto out;
1540
1541                 break;
1542         }
1543         case KVM_IA64_VCPU_SET_STACK: {
1544                 struct kvm_ia64_vcpu_stack __user *user_stack;
1545                 void __user *first_p = argp;
1546
1547                 r = -EFAULT;
1548                 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1549                         goto out;
1550
1551                 if (!access_ok(VERIFY_READ, user_stack,
1552                             sizeof(struct kvm_ia64_vcpu_stack))) {
1553                         printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
1554                                "Illegal user address for stack\n");
1555                         goto out;
1556                 }
1557                 stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1558                 if (!stack) {
1559                         r = -ENOMEM;
1560                         goto out;
1561                 }
1562                 if (copy_from_user(stack, user_stack,
1563                                    sizeof(struct kvm_ia64_vcpu_stack)))
1564                         goto out;
1565
1566                 r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
1567                 break;
1568         }
1569
1570         default:
1571                 r = -EINVAL;
1572         }
1573
1574 out:
1575         kfree(stack);
1576         return r;
1577 }
1578
1579 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1580                 struct kvm_memory_slot *memslot,
1581                 struct kvm_memory_slot old,
1582                 struct kvm_userspace_memory_region *mem,
1583                 int user_alloc)
1584 {
1585         unsigned long i;
1586         unsigned long pfn;
1587         int npages = memslot->npages;
1588         unsigned long base_gfn = memslot->base_gfn;
1589
1590         if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
1591                 return -ENOMEM;
1592
1593         for (i = 0; i < npages; i++) {
1594                 pfn = gfn_to_pfn(kvm, base_gfn + i);
1595                 if (!kvm_is_mmio_pfn(pfn)) {
1596                         kvm_set_pmt_entry(kvm, base_gfn + i,
1597                                         pfn << PAGE_SHIFT,
1598                                 _PAGE_AR_RWX | _PAGE_MA_WB);
1599                         memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
1600                 } else {
1601                         kvm_set_pmt_entry(kvm, base_gfn + i,
1602                                         GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
1603                                         _PAGE_MA_UC);
1604                         memslot->rmap[i] = 0;
1605                         }
1606         }
1607
1608         return 0;
1609 }
1610
1611 void kvm_arch_commit_memory_region(struct kvm *kvm,
1612                 struct kvm_userspace_memory_region *mem,
1613                 struct kvm_memory_slot old,
1614                 int user_alloc)
1615 {
1616         return;
1617 }
1618
1619 void kvm_arch_flush_shadow(struct kvm *kvm)
1620 {
1621         kvm_flush_remote_tlbs(kvm);
1622 }
1623
1624 long kvm_arch_dev_ioctl(struct file *filp,
1625                         unsigned int ioctl, unsigned long arg)
1626 {
1627         return -EINVAL;
1628 }
1629
1630 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1631 {
1632         kvm_vcpu_uninit(vcpu);
1633 }
1634
1635 static int vti_cpu_has_kvm_support(void)
1636 {
1637         long  avail = 1, status = 1, control = 1;
1638         long ret;
1639
1640         ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
1641         if (ret)
1642                 goto out;
1643
1644         if (!(avail & PAL_PROC_VM_BIT))
1645                 goto out;
1646
1647         printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
1648
1649         ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
1650         if (ret)
1651                 goto out;
1652         printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
1653
1654         if (!(vp_env_info & VP_OPCODE)) {
1655                 printk(KERN_WARNING"kvm: No opcode ability on hardware, "
1656                                 "vm_env_info:0x%lx\n", vp_env_info);
1657         }
1658
1659         return 1;
1660 out:
1661         return 0;
1662 }
1663
1664
1665 /*
1666  * On SN2, the ITC isn't stable, so copy in fast path code to use the
1667  * SN2 RTC, replacing the ITC based default verion.
1668  */
1669 static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info,
1670                           struct module *module)
1671 {
1672         unsigned long new_ar, new_ar_sn2;
1673         unsigned long module_base;
1674
1675         if (!ia64_platform_is("sn2"))
1676                 return;
1677
1678         module_base = (unsigned long)module->module_core;
1679
1680         new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base;
1681         new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base;
1682
1683         printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC "
1684                "as source\n");
1685
1686         /*
1687          * Copy the SN2 version of mov_ar into place. They are both
1688          * the same size, so 6 bundles is sufficient (6 * 0x10).
1689          */
1690         memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60);
1691 }
1692
1693 static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
1694                             struct module *module)
1695 {
1696         unsigned long module_base;
1697         unsigned long vmm_size;
1698
1699         unsigned long vmm_offset, func_offset, fdesc_offset;
1700         struct fdesc *p_fdesc;
1701
1702         BUG_ON(!module);
1703
1704         if (!kvm_vmm_base) {
1705                 printk("kvm: kvm area hasn't been initilized yet!!\n");
1706                 return -EFAULT;
1707         }
1708
1709         /*Calculate new position of relocated vmm module.*/
1710         module_base = (unsigned long)module->module_core;
1711         vmm_size = module->core_size;
1712         if (unlikely(vmm_size > KVM_VMM_SIZE))
1713                 return -EFAULT;
1714
1715         memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
1716         kvm_patch_vmm(vmm_info, module);
1717         kvm_flush_icache(kvm_vmm_base, vmm_size);
1718
1719         /*Recalculate kvm_vmm_info based on new VMM*/
1720         vmm_offset = vmm_info->vmm_ivt - module_base;
1721         kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
1722         printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
1723                         kvm_vmm_info->vmm_ivt);
1724
1725         fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
1726         kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
1727                                                         fdesc_offset);
1728         func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
1729         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1730         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1731         p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
1732
1733         printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
1734                         KVM_VMM_BASE+func_offset);
1735
1736         fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
1737         kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
1738                         fdesc_offset);
1739         func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
1740         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1741         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1742         p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
1743
1744         kvm_vmm_gp = p_fdesc->gp;
1745
1746         printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
1747                                                 kvm_vmm_info->vmm_entry);
1748         printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
1749                                                 KVM_VMM_BASE + func_offset);
1750
1751         return 0;
1752 }
1753
1754 int kvm_arch_init(void *opaque)
1755 {
1756         int r;
1757         struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
1758
1759         if (!vti_cpu_has_kvm_support()) {
1760                 printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
1761                 r = -EOPNOTSUPP;
1762                 goto out;
1763         }
1764
1765         if (kvm_vmm_info) {
1766                 printk(KERN_ERR "kvm: Already loaded VMM module!\n");
1767                 r = -EEXIST;
1768                 goto out;
1769         }
1770
1771         r = -ENOMEM;
1772         kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
1773         if (!kvm_vmm_info)
1774                 goto out;
1775
1776         if (kvm_alloc_vmm_area())
1777                 goto out_free0;
1778
1779         r = kvm_relocate_vmm(vmm_info, vmm_info->module);
1780         if (r)
1781                 goto out_free1;
1782
1783         return 0;
1784
1785 out_free1:
1786         kvm_free_vmm_area();
1787 out_free0:
1788         kfree(kvm_vmm_info);
1789 out:
1790         return r;
1791 }
1792
1793 void kvm_arch_exit(void)
1794 {
1795         kvm_free_vmm_area();
1796         kfree(kvm_vmm_info);
1797         kvm_vmm_info = NULL;
1798 }
1799
1800 static int kvm_ia64_sync_dirty_log(struct kvm *kvm,
1801                 struct kvm_dirty_log *log)
1802 {
1803         struct kvm_memory_slot *memslot;
1804         int r, i;
1805         long n, base;
1806         unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
1807                         offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
1808
1809         r = -EINVAL;
1810         if (log->slot >= KVM_MEMORY_SLOTS)
1811                 goto out;
1812
1813         memslot = &kvm->memslots->memslots[log->slot];
1814         r = -ENOENT;
1815         if (!memslot->dirty_bitmap)
1816                 goto out;
1817
1818         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1819         base = memslot->base_gfn / BITS_PER_LONG;
1820
1821         for (i = 0; i < n/sizeof(long); ++i) {
1822                 memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
1823                 dirty_bitmap[base + i] = 0;
1824         }
1825         r = 0;
1826 out:
1827         return r;
1828 }
1829
1830 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1831                 struct kvm_dirty_log *log)
1832 {
1833         int r;
1834         int n;
1835         struct kvm_memory_slot *memslot;
1836         int is_dirty = 0;
1837
1838         mutex_lock(&kvm->slots_lock);
1839         spin_lock(&kvm->arch.dirty_log_lock);
1840
1841         r = kvm_ia64_sync_dirty_log(kvm, log);
1842         if (r)
1843                 goto out;
1844
1845         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1846         if (r)
1847                 goto out;
1848
1849         /* If nothing is dirty, don't bother messing with page tables. */
1850         if (is_dirty) {
1851                 kvm_flush_remote_tlbs(kvm);
1852                 memslot = &kvm->memslots->memslots[log->slot];
1853                 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1854                 memset(memslot->dirty_bitmap, 0, n);
1855         }
1856         r = 0;
1857 out:
1858         mutex_unlock(&kvm->slots_lock);
1859         spin_unlock(&kvm->arch.dirty_log_lock);
1860         return r;
1861 }
1862
1863 int kvm_arch_hardware_setup(void)
1864 {
1865         return 0;
1866 }
1867
1868 void kvm_arch_hardware_unsetup(void)
1869 {
1870 }
1871
1872 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1873 {
1874         int me;
1875         int cpu = vcpu->cpu;
1876
1877         if (waitqueue_active(&vcpu->wq))
1878                 wake_up_interruptible(&vcpu->wq);
1879
1880         me = get_cpu();
1881         if (cpu != me && (unsigned) cpu < nr_cpu_ids && cpu_online(cpu))
1882                 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
1883                         smp_send_reschedule(cpu);
1884         put_cpu();
1885 }
1886
1887 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
1888 {
1889         return __apic_accept_irq(vcpu, irq->vector);
1890 }
1891
1892 int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
1893 {
1894         return apic->vcpu->vcpu_id == dest;
1895 }
1896
1897 int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
1898 {
1899         return 0;
1900 }
1901
1902 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1903 {
1904         return vcpu1->arch.xtp - vcpu2->arch.xtp;
1905 }
1906
1907 int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1908                 int short_hand, int dest, int dest_mode)
1909 {
1910         struct kvm_lapic *target = vcpu->arch.apic;
1911         return (dest_mode == 0) ?
1912                 kvm_apic_match_physical_addr(target, dest) :
1913                 kvm_apic_match_logical_addr(target, dest);
1914 }
1915
1916 static int find_highest_bits(int *dat)
1917 {
1918         u32  bits, bitnum;
1919         int i;
1920
1921         /* loop for all 256 bits */
1922         for (i = 7; i >= 0 ; i--) {
1923                 bits = dat[i];
1924                 if (bits) {
1925                         bitnum = fls(bits);
1926                         return i * 32 + bitnum - 1;
1927                 }
1928         }
1929
1930         return -1;
1931 }
1932
1933 int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
1934 {
1935     struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1936
1937     if (vpd->irr[0] & (1UL << NMI_VECTOR))
1938                 return NMI_VECTOR;
1939     if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
1940                 return ExtINT_VECTOR;
1941
1942     return find_highest_bits((int *)&vpd->irr[0]);
1943 }
1944
1945 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1946 {
1947         return vcpu->arch.timer_fired;
1948 }
1949
1950 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1951 {
1952         return gfn;
1953 }
1954
1955 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1956 {
1957         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE) ||
1958                 (kvm_highest_pending_irq(vcpu) != -1);
1959 }
1960
1961 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1962                                     struct kvm_mp_state *mp_state)
1963 {
1964         vcpu_load(vcpu);
1965         mp_state->mp_state = vcpu->arch.mp_state;
1966         vcpu_put(vcpu);
1967         return 0;
1968 }
1969
1970 static int vcpu_reset(struct kvm_vcpu *vcpu)
1971 {
1972         int r;
1973         long psr;
1974         local_irq_save(psr);
1975         r = kvm_insert_vmm_mapping(vcpu);
1976         local_irq_restore(psr);
1977         if (r)
1978                 goto fail;
1979
1980         vcpu->arch.launched = 0;
1981         kvm_arch_vcpu_uninit(vcpu);
1982         r = kvm_arch_vcpu_init(vcpu);
1983         if (r)
1984                 goto fail;
1985
1986         kvm_purge_vmm_mapping(vcpu);
1987         r = 0;
1988 fail:
1989         return r;
1990 }
1991
1992 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1993                                     struct kvm_mp_state *mp_state)
1994 {
1995         int r = 0;
1996
1997         vcpu_load(vcpu);
1998         vcpu->arch.mp_state = mp_state->mp_state;
1999         if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
2000                 r = vcpu_reset(vcpu);
2001         vcpu_put(vcpu);
2002         return r;
2003 }