Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[pandora-kernel.git] / arch / ia64 / kvm / kvm-ia64.c
1 /*
2  * kvm_ia64.c: Basic KVM suppport On Itanium series processors
3  *
4  *
5  *      Copyright (C) 2007, Intel Corporation.
6  *      Xiantao Zhang  (xiantao.zhang@intel.com)
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
19  * Place - Suite 330, Boston, MA 02111-1307 USA.
20  *
21  */
22
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/smp.h>
29 #include <linux/kvm_host.h>
30 #include <linux/kvm.h>
31 #include <linux/bitops.h>
32 #include <linux/hrtimer.h>
33 #include <linux/uaccess.h>
34 #include <linux/iommu.h>
35 #include <linux/intel-iommu.h>
36
37 #include <asm/pgtable.h>
38 #include <asm/gcc_intrin.h>
39 #include <asm/pal.h>
40 #include <asm/cacheflush.h>
41 #include <asm/div64.h>
42 #include <asm/tlb.h>
43 #include <asm/elf.h>
44 #include <asm/sn/addrs.h>
45 #include <asm/sn/clksupport.h>
46 #include <asm/sn/shub_mmr.h>
47
48 #include "misc.h"
49 #include "vti.h"
50 #include "iodev.h"
51 #include "ioapic.h"
52 #include "lapic.h"
53 #include "irq.h"
54
55 static unsigned long kvm_vmm_base;
56 static unsigned long kvm_vsa_base;
57 static unsigned long kvm_vm_buffer;
58 static unsigned long kvm_vm_buffer_size;
59 unsigned long kvm_vmm_gp;
60
61 static long vp_env_info;
62
63 static struct kvm_vmm_info *kvm_vmm_info;
64
65 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
66
67 struct kvm_stats_debugfs_item debugfs_entries[] = {
68         { NULL }
69 };
70
71 static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu)
72 {
73 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
74         if (vcpu->kvm->arch.is_sn2)
75                 return rtc_time();
76         else
77 #endif
78                 return ia64_getreg(_IA64_REG_AR_ITC);
79 }
80
81 static void kvm_flush_icache(unsigned long start, unsigned long len)
82 {
83         int l;
84
85         for (l = 0; l < (len + 32); l += 32)
86                 ia64_fc((void *)(start + l));
87
88         ia64_sync_i();
89         ia64_srlz_i();
90 }
91
92 static void kvm_flush_tlb_all(void)
93 {
94         unsigned long i, j, count0, count1, stride0, stride1, addr;
95         long flags;
96
97         addr    = local_cpu_data->ptce_base;
98         count0  = local_cpu_data->ptce_count[0];
99         count1  = local_cpu_data->ptce_count[1];
100         stride0 = local_cpu_data->ptce_stride[0];
101         stride1 = local_cpu_data->ptce_stride[1];
102
103         local_irq_save(flags);
104         for (i = 0; i < count0; ++i) {
105                 for (j = 0; j < count1; ++j) {
106                         ia64_ptce(addr);
107                         addr += stride1;
108                 }
109                 addr += stride0;
110         }
111         local_irq_restore(flags);
112         ia64_srlz_i();                  /* srlz.i implies srlz.d */
113 }
114
115 long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
116 {
117         struct ia64_pal_retval iprv;
118
119         PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
120                         (u64)opt_handler);
121
122         return iprv.status;
123 }
124
125 static  DEFINE_SPINLOCK(vp_lock);
126
127 int kvm_arch_hardware_enable(void *garbage)
128 {
129         long  status;
130         long  tmp_base;
131         unsigned long pte;
132         unsigned long saved_psr;
133         int slot;
134
135         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
136         local_irq_save(saved_psr);
137         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
138         local_irq_restore(saved_psr);
139         if (slot < 0)
140                 return -EINVAL;
141
142         spin_lock(&vp_lock);
143         status = ia64_pal_vp_init_env(kvm_vsa_base ?
144                                 VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
145                         __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
146         if (status != 0) {
147                 spin_unlock(&vp_lock);
148                 printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
149                 return -EINVAL;
150         }
151
152         if (!kvm_vsa_base) {
153                 kvm_vsa_base = tmp_base;
154                 printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
155         }
156         spin_unlock(&vp_lock);
157         ia64_ptr_entry(0x3, slot);
158
159         return 0;
160 }
161
162 void kvm_arch_hardware_disable(void *garbage)
163 {
164
165         long status;
166         int slot;
167         unsigned long pte;
168         unsigned long saved_psr;
169         unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
170
171         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
172                                 PAGE_KERNEL));
173
174         local_irq_save(saved_psr);
175         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
176         local_irq_restore(saved_psr);
177         if (slot < 0)
178                 return;
179
180         status = ia64_pal_vp_exit_env(host_iva);
181         if (status)
182                 printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
183                                 status);
184         ia64_ptr_entry(0x3, slot);
185 }
186
187 void kvm_arch_check_processor_compat(void *rtn)
188 {
189         *(int *)rtn = 0;
190 }
191
192 int kvm_dev_ioctl_check_extension(long ext)
193 {
194
195         int r;
196
197         switch (ext) {
198         case KVM_CAP_IRQCHIP:
199         case KVM_CAP_MP_STATE:
200         case KVM_CAP_IRQ_INJECT_STATUS:
201                 r = 1;
202                 break;
203         case KVM_CAP_COALESCED_MMIO:
204                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
205                 break;
206         case KVM_CAP_IOMMU:
207                 r = iommu_found();
208                 break;
209         default:
210                 r = 0;
211         }
212         return r;
213
214 }
215
216 static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
217 {
218         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
219         kvm_run->hw.hardware_exit_reason = 1;
220         return 0;
221 }
222
223 static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
224 {
225         struct kvm_mmio_req *p;
226         struct kvm_io_device *mmio_dev;
227         int r;
228
229         p = kvm_get_vcpu_ioreq(vcpu);
230
231         if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
232                 goto mmio;
233         vcpu->mmio_needed = 1;
234         vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
235         vcpu->mmio_size = kvm_run->mmio.len = p->size;
236         vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
237
238         if (vcpu->mmio_is_write)
239                 memcpy(vcpu->mmio_data, &p->data, p->size);
240         memcpy(kvm_run->mmio.data, &p->data, p->size);
241         kvm_run->exit_reason = KVM_EXIT_MMIO;
242         return 0;
243 mmio:
244         if (p->dir)
245                 r = kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, p->addr,
246                                     p->size, &p->data);
247         else
248                 r = kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, p->addr,
249                                      p->size, &p->data);
250         if (r)
251                 printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
252         p->state = STATE_IORESP_READY;
253
254         return 1;
255 }
256
257 static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
258 {
259         struct exit_ctl_data *p;
260
261         p = kvm_get_exit_data(vcpu);
262
263         if (p->exit_reason == EXIT_REASON_PAL_CALL)
264                 return kvm_pal_emul(vcpu, kvm_run);
265         else {
266                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
267                 kvm_run->hw.hardware_exit_reason = 2;
268                 return 0;
269         }
270 }
271
272 static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
273 {
274         struct exit_ctl_data *p;
275
276         p = kvm_get_exit_data(vcpu);
277
278         if (p->exit_reason == EXIT_REASON_SAL_CALL) {
279                 kvm_sal_emul(vcpu);
280                 return 1;
281         } else {
282                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
283                 kvm_run->hw.hardware_exit_reason = 3;
284                 return 0;
285         }
286
287 }
288
289 static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
290 {
291         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
292
293         if (!test_and_set_bit(vector, &vpd->irr[0])) {
294                 vcpu->arch.irq_new_pending = 1;
295                 kvm_vcpu_kick(vcpu);
296                 return 1;
297         }
298         return 0;
299 }
300
301 /*
302  *  offset: address offset to IPI space.
303  *  value:  deliver value.
304  */
305 static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
306                                 uint64_t vector)
307 {
308         switch (dm) {
309         case SAPIC_FIXED:
310                 break;
311         case SAPIC_NMI:
312                 vector = 2;
313                 break;
314         case SAPIC_EXTINT:
315                 vector = 0;
316                 break;
317         case SAPIC_INIT:
318         case SAPIC_PMI:
319         default:
320                 printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
321                 return;
322         }
323         __apic_accept_irq(vcpu, vector);
324 }
325
326 static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
327                         unsigned long eid)
328 {
329         union ia64_lid lid;
330         int i;
331         struct kvm_vcpu *vcpu;
332
333         kvm_for_each_vcpu(i, vcpu, kvm) {
334                 lid.val = VCPU_LID(vcpu);
335                 if (lid.id == id && lid.eid == eid)
336                         return vcpu;
337         }
338
339         return NULL;
340 }
341
342 static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
343 {
344         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
345         struct kvm_vcpu *target_vcpu;
346         struct kvm_pt_regs *regs;
347         union ia64_ipi_a addr = p->u.ipi_data.addr;
348         union ia64_ipi_d data = p->u.ipi_data.data;
349
350         target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
351         if (!target_vcpu)
352                 return handle_vm_error(vcpu, kvm_run);
353
354         if (!target_vcpu->arch.launched) {
355                 regs = vcpu_regs(target_vcpu);
356
357                 regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
358                 regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
359
360                 target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
361                 if (waitqueue_active(&target_vcpu->wq))
362                         wake_up_interruptible(&target_vcpu->wq);
363         } else {
364                 vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
365                 if (target_vcpu != vcpu)
366                         kvm_vcpu_kick(target_vcpu);
367         }
368
369         return 1;
370 }
371
372 struct call_data {
373         struct kvm_ptc_g ptc_g_data;
374         struct kvm_vcpu *vcpu;
375 };
376
377 static void vcpu_global_purge(void *info)
378 {
379         struct call_data *p = (struct call_data *)info;
380         struct kvm_vcpu *vcpu = p->vcpu;
381
382         if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
383                 return;
384
385         set_bit(KVM_REQ_PTC_G, &vcpu->requests);
386         if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
387                 vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
388                                                         p->ptc_g_data;
389         } else {
390                 clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
391                 vcpu->arch.ptc_g_count = 0;
392                 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
393         }
394 }
395
396 static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
397 {
398         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
399         struct kvm *kvm = vcpu->kvm;
400         struct call_data call_data;
401         int i;
402         struct kvm_vcpu *vcpui;
403
404         call_data.ptc_g_data = p->u.ptc_g_data;
405
406         kvm_for_each_vcpu(i, vcpui, kvm) {
407                 if (vcpui->arch.mp_state == KVM_MP_STATE_UNINITIALIZED ||
408                                 vcpu == vcpui)
409                         continue;
410
411                 if (waitqueue_active(&vcpui->wq))
412                         wake_up_interruptible(&vcpui->wq);
413
414                 if (vcpui->cpu != -1) {
415                         call_data.vcpu = vcpui;
416                         smp_call_function_single(vcpui->cpu,
417                                         vcpu_global_purge, &call_data, 1);
418                 } else
419                         printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
420
421         }
422         return 1;
423 }
424
425 static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
426 {
427         return 1;
428 }
429
430 static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
431 {
432         unsigned long pte, rtc_phys_addr, map_addr;
433         int slot;
434
435         map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
436         rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
437         pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
438         slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
439         vcpu->arch.sn_rtc_tr_slot = slot;
440         if (slot < 0) {
441                 printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
442                 slot = 0;
443         }
444         return slot;
445 }
446
447 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
448 {
449
450         ktime_t kt;
451         long itc_diff;
452         unsigned long vcpu_now_itc;
453         unsigned long expires;
454         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
455         unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
456         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
457
458         if (irqchip_in_kernel(vcpu->kvm)) {
459
460                 vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset;
461
462                 if (time_after(vcpu_now_itc, vpd->itm)) {
463                         vcpu->arch.timer_check = 1;
464                         return 1;
465                 }
466                 itc_diff = vpd->itm - vcpu_now_itc;
467                 if (itc_diff < 0)
468                         itc_diff = -itc_diff;
469
470                 expires = div64_u64(itc_diff, cyc_per_usec);
471                 kt = ktime_set(0, 1000 * expires);
472
473                 vcpu->arch.ht_active = 1;
474                 hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
475
476                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
477                 kvm_vcpu_block(vcpu);
478                 hrtimer_cancel(p_ht);
479                 vcpu->arch.ht_active = 0;
480
481                 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests) ||
482                                 kvm_cpu_has_pending_timer(vcpu))
483                         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
484                                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
485
486                 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
487                         return -EINTR;
488                 return 1;
489         } else {
490                 printk(KERN_ERR"kvm: Unsupported userspace halt!");
491                 return 0;
492         }
493 }
494
495 static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
496                 struct kvm_run *kvm_run)
497 {
498         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
499         return 0;
500 }
501
502 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
503                 struct kvm_run *kvm_run)
504 {
505         return 1;
506 }
507
508 static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
509                                 struct kvm_run *kvm_run)
510 {
511         printk("VMM: %s", vcpu->arch.log_buf);
512         return 1;
513 }
514
515 static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
516                 struct kvm_run *kvm_run) = {
517         [EXIT_REASON_VM_PANIC]              = handle_vm_error,
518         [EXIT_REASON_MMIO_INSTRUCTION]      = handle_mmio,
519         [EXIT_REASON_PAL_CALL]              = handle_pal_call,
520         [EXIT_REASON_SAL_CALL]              = handle_sal_call,
521         [EXIT_REASON_SWITCH_RR6]            = handle_switch_rr6,
522         [EXIT_REASON_VM_DESTROY]            = handle_vm_shutdown,
523         [EXIT_REASON_EXTERNAL_INTERRUPT]    = handle_external_interrupt,
524         [EXIT_REASON_IPI]                   = handle_ipi,
525         [EXIT_REASON_PTC_G]                 = handle_global_purge,
526         [EXIT_REASON_DEBUG]                 = handle_vcpu_debug,
527
528 };
529
530 static const int kvm_vti_max_exit_handlers =
531                 sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
532
533 static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
534 {
535         struct exit_ctl_data *p_exit_data;
536
537         p_exit_data = kvm_get_exit_data(vcpu);
538         return p_exit_data->exit_reason;
539 }
540
541 /*
542  * The guest has exited.  See if we can fix it or if we need userspace
543  * assistance.
544  */
545 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
546 {
547         u32 exit_reason = kvm_get_exit_reason(vcpu);
548         vcpu->arch.last_exit = exit_reason;
549
550         if (exit_reason < kvm_vti_max_exit_handlers
551                         && kvm_vti_exit_handlers[exit_reason])
552                 return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
553         else {
554                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
555                 kvm_run->hw.hardware_exit_reason = exit_reason;
556         }
557         return 0;
558 }
559
560 static inline void vti_set_rr6(unsigned long rr6)
561 {
562         ia64_set_rr(RR6, rr6);
563         ia64_srlz_i();
564 }
565
566 static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
567 {
568         unsigned long pte;
569         struct kvm *kvm = vcpu->kvm;
570         int r;
571
572         /*Insert a pair of tr to map vmm*/
573         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
574         r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
575         if (r < 0)
576                 goto out;
577         vcpu->arch.vmm_tr_slot = r;
578         /*Insert a pairt of tr to map data of vm*/
579         pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
580         r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
581                                         pte, KVM_VM_DATA_SHIFT);
582         if (r < 0)
583                 goto out;
584         vcpu->arch.vm_tr_slot = r;
585
586 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
587         if (kvm->arch.is_sn2) {
588                 r = kvm_sn2_setup_mappings(vcpu);
589                 if (r < 0)
590                         goto out;
591         }
592 #endif
593
594         r = 0;
595 out:
596         return r;
597 }
598
599 static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
600 {
601         struct kvm *kvm = vcpu->kvm;
602         ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
603         ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
604 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
605         if (kvm->arch.is_sn2)
606                 ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
607 #endif
608 }
609
610 static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
611 {
612         unsigned long psr;
613         int r;
614         int cpu = smp_processor_id();
615
616         if (vcpu->arch.last_run_cpu != cpu ||
617                         per_cpu(last_vcpu, cpu) != vcpu) {
618                 per_cpu(last_vcpu, cpu) = vcpu;
619                 vcpu->arch.last_run_cpu = cpu;
620                 kvm_flush_tlb_all();
621         }
622
623         vcpu->arch.host_rr6 = ia64_get_rr(RR6);
624         vti_set_rr6(vcpu->arch.vmm_rr);
625         local_irq_save(psr);
626         r = kvm_insert_vmm_mapping(vcpu);
627         local_irq_restore(psr);
628         return r;
629 }
630
631 static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
632 {
633         kvm_purge_vmm_mapping(vcpu);
634         vti_set_rr6(vcpu->arch.host_rr6);
635 }
636
637 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
638 {
639         union context *host_ctx, *guest_ctx;
640         int r, idx;
641
642         idx = srcu_read_lock(&vcpu->kvm->srcu);
643
644 again:
645         if (signal_pending(current)) {
646                 r = -EINTR;
647                 kvm_run->exit_reason = KVM_EXIT_INTR;
648                 goto out;
649         }
650
651         preempt_disable();
652         local_irq_disable();
653
654         /*Get host and guest context with guest address space.*/
655         host_ctx = kvm_get_host_context(vcpu);
656         guest_ctx = kvm_get_guest_context(vcpu);
657
658         clear_bit(KVM_REQ_KICK, &vcpu->requests);
659
660         r = kvm_vcpu_pre_transition(vcpu);
661         if (r < 0)
662                 goto vcpu_run_fail;
663
664         srcu_read_unlock(&vcpu->kvm->srcu, idx);
665         kvm_guest_enter();
666
667         /*
668          * Transition to the guest
669          */
670         kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
671
672         kvm_vcpu_post_transition(vcpu);
673
674         vcpu->arch.launched = 1;
675         set_bit(KVM_REQ_KICK, &vcpu->requests);
676         local_irq_enable();
677
678         /*
679          * We must have an instruction between local_irq_enable() and
680          * kvm_guest_exit(), so the timer interrupt isn't delayed by
681          * the interrupt shadow.  The stat.exits increment will do nicely.
682          * But we need to prevent reordering, hence this barrier():
683          */
684         barrier();
685         kvm_guest_exit();
686         preempt_enable();
687
688         idx = srcu_read_lock(&vcpu->kvm->srcu);
689
690         r = kvm_handle_exit(kvm_run, vcpu);
691
692         if (r > 0) {
693                 if (!need_resched())
694                         goto again;
695         }
696
697 out:
698         srcu_read_unlock(&vcpu->kvm->srcu, idx);
699         if (r > 0) {
700                 kvm_resched(vcpu);
701                 idx = srcu_read_lock(&vcpu->kvm->srcu);
702                 goto again;
703         }
704
705         return r;
706
707 vcpu_run_fail:
708         local_irq_enable();
709         preempt_enable();
710         kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
711         goto out;
712 }
713
714 static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
715 {
716         struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
717
718         if (!vcpu->mmio_is_write)
719                 memcpy(&p->data, vcpu->mmio_data, 8);
720         p->state = STATE_IORESP_READY;
721 }
722
723 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
724 {
725         int r;
726         sigset_t sigsaved;
727
728         if (vcpu->sigset_active)
729                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
730
731         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
732                 kvm_vcpu_block(vcpu);
733                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
734                 r = -EAGAIN;
735                 goto out;
736         }
737
738         if (vcpu->mmio_needed) {
739                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
740                 kvm_set_mmio_data(vcpu);
741                 vcpu->mmio_read_completed = 1;
742                 vcpu->mmio_needed = 0;
743         }
744         r = __vcpu_run(vcpu, kvm_run);
745 out:
746         if (vcpu->sigset_active)
747                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
748
749         return r;
750 }
751
752 struct kvm *kvm_arch_alloc_vm(void)
753 {
754
755         struct kvm *kvm;
756         uint64_t  vm_base;
757
758         BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
759
760         vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
761
762         if (!vm_base)
763                 return NULL;
764
765         memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
766         kvm = (struct kvm *)(vm_base +
767                         offsetof(struct kvm_vm_data, kvm_vm_struct));
768         kvm->arch.vm_base = vm_base;
769         printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
770
771         return kvm;
772 }
773
774 struct kvm_io_range {
775         unsigned long start;
776         unsigned long size;
777         unsigned long type;
778 };
779
780 static const struct kvm_io_range io_ranges[] = {
781         {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
782         {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
783         {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
784         {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
785         {PIB_START, PIB_SIZE, GPFN_PIB},
786 };
787
788 static void kvm_build_io_pmt(struct kvm *kvm)
789 {
790         unsigned long i, j;
791
792         /* Mark I/O ranges */
793         for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
794                                                         i++) {
795                 for (j = io_ranges[i].start;
796                                 j < io_ranges[i].start + io_ranges[i].size;
797                                 j += PAGE_SIZE)
798                         kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
799                                         io_ranges[i].type, 0);
800         }
801
802 }
803
804 /*Use unused rids to virtualize guest rid.*/
805 #define GUEST_PHYSICAL_RR0      0x1739
806 #define GUEST_PHYSICAL_RR4      0x2739
807 #define VMM_INIT_RR             0x1660
808
809 int kvm_arch_init_vm(struct kvm *kvm)
810 {
811         BUG_ON(!kvm);
812
813         kvm->arch.is_sn2 = ia64_platform_is("sn2");
814
815         kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
816         kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
817         kvm->arch.vmm_init_rr = VMM_INIT_RR;
818
819         /*
820          *Fill P2M entries for MMIO/IO ranges
821          */
822         kvm_build_io_pmt(kvm);
823
824         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
825
826         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
827         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
828
829         return 0;
830 }
831
832 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
833                                         struct kvm_irqchip *chip)
834 {
835         int r;
836
837         r = 0;
838         switch (chip->chip_id) {
839         case KVM_IRQCHIP_IOAPIC:
840                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
841                 break;
842         default:
843                 r = -EINVAL;
844                 break;
845         }
846         return r;
847 }
848
849 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
850 {
851         int r;
852
853         r = 0;
854         switch (chip->chip_id) {
855         case KVM_IRQCHIP_IOAPIC:
856                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
857                 break;
858         default:
859                 r = -EINVAL;
860                 break;
861         }
862         return r;
863 }
864
865 #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
866
867 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
868 {
869         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
870         int i;
871
872         for (i = 0; i < 16; i++) {
873                 vpd->vgr[i] = regs->vpd.vgr[i];
874                 vpd->vbgr[i] = regs->vpd.vbgr[i];
875         }
876         for (i = 0; i < 128; i++)
877                 vpd->vcr[i] = regs->vpd.vcr[i];
878         vpd->vhpi = regs->vpd.vhpi;
879         vpd->vnat = regs->vpd.vnat;
880         vpd->vbnat = regs->vpd.vbnat;
881         vpd->vpsr = regs->vpd.vpsr;
882
883         vpd->vpr = regs->vpd.vpr;
884
885         memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
886
887         RESTORE_REGS(mp_state);
888         RESTORE_REGS(vmm_rr);
889         memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
890         memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
891         RESTORE_REGS(itr_regions);
892         RESTORE_REGS(dtr_regions);
893         RESTORE_REGS(tc_regions);
894         RESTORE_REGS(irq_check);
895         RESTORE_REGS(itc_check);
896         RESTORE_REGS(timer_check);
897         RESTORE_REGS(timer_pending);
898         RESTORE_REGS(last_itc);
899         for (i = 0; i < 8; i++) {
900                 vcpu->arch.vrr[i] = regs->vrr[i];
901                 vcpu->arch.ibr[i] = regs->ibr[i];
902                 vcpu->arch.dbr[i] = regs->dbr[i];
903         }
904         for (i = 0; i < 4; i++)
905                 vcpu->arch.insvc[i] = regs->insvc[i];
906         RESTORE_REGS(xtp);
907         RESTORE_REGS(metaphysical_rr0);
908         RESTORE_REGS(metaphysical_rr4);
909         RESTORE_REGS(metaphysical_saved_rr0);
910         RESTORE_REGS(metaphysical_saved_rr4);
911         RESTORE_REGS(fp_psr);
912         RESTORE_REGS(saved_gp);
913
914         vcpu->arch.irq_new_pending = 1;
915         vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu);
916         set_bit(KVM_REQ_RESUME, &vcpu->requests);
917
918         return 0;
919 }
920
921 long kvm_arch_vm_ioctl(struct file *filp,
922                 unsigned int ioctl, unsigned long arg)
923 {
924         struct kvm *kvm = filp->private_data;
925         void __user *argp = (void __user *)arg;
926         int r = -ENOTTY;
927
928         switch (ioctl) {
929         case KVM_SET_MEMORY_REGION: {
930                 struct kvm_memory_region kvm_mem;
931                 struct kvm_userspace_memory_region kvm_userspace_mem;
932
933                 r = -EFAULT;
934                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
935                         goto out;
936                 kvm_userspace_mem.slot = kvm_mem.slot;
937                 kvm_userspace_mem.flags = kvm_mem.flags;
938                 kvm_userspace_mem.guest_phys_addr =
939                                         kvm_mem.guest_phys_addr;
940                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
941                 r = kvm_vm_ioctl_set_memory_region(kvm,
942                                         &kvm_userspace_mem, 0);
943                 if (r)
944                         goto out;
945                 break;
946                 }
947         case KVM_CREATE_IRQCHIP:
948                 r = -EFAULT;
949                 r = kvm_ioapic_init(kvm);
950                 if (r)
951                         goto out;
952                 r = kvm_setup_default_irq_routing(kvm);
953                 if (r) {
954                         mutex_lock(&kvm->slots_lock);
955                         kvm_ioapic_destroy(kvm);
956                         mutex_unlock(&kvm->slots_lock);
957                         goto out;
958                 }
959                 break;
960         case KVM_IRQ_LINE_STATUS:
961         case KVM_IRQ_LINE: {
962                 struct kvm_irq_level irq_event;
963
964                 r = -EFAULT;
965                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
966                         goto out;
967                 r = -ENXIO;
968                 if (irqchip_in_kernel(kvm)) {
969                         __s32 status;
970                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
971                                     irq_event.irq, irq_event.level);
972                         if (ioctl == KVM_IRQ_LINE_STATUS) {
973                                 r = -EFAULT;
974                                 irq_event.status = status;
975                                 if (copy_to_user(argp, &irq_event,
976                                                         sizeof irq_event))
977                                         goto out;
978                         }
979                         r = 0;
980                 }
981                 break;
982                 }
983         case KVM_GET_IRQCHIP: {
984                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
985                 struct kvm_irqchip chip;
986
987                 r = -EFAULT;
988                 if (copy_from_user(&chip, argp, sizeof chip))
989                                 goto out;
990                 r = -ENXIO;
991                 if (!irqchip_in_kernel(kvm))
992                         goto out;
993                 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
994                 if (r)
995                         goto out;
996                 r = -EFAULT;
997                 if (copy_to_user(argp, &chip, sizeof chip))
998                                 goto out;
999                 r = 0;
1000                 break;
1001                 }
1002         case KVM_SET_IRQCHIP: {
1003                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1004                 struct kvm_irqchip chip;
1005
1006                 r = -EFAULT;
1007                 if (copy_from_user(&chip, argp, sizeof chip))
1008                                 goto out;
1009                 r = -ENXIO;
1010                 if (!irqchip_in_kernel(kvm))
1011                         goto out;
1012                 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1013                 if (r)
1014                         goto out;
1015                 r = 0;
1016                 break;
1017                 }
1018         default:
1019                 ;
1020         }
1021 out:
1022         return r;
1023 }
1024
1025 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1026                 struct kvm_sregs *sregs)
1027 {
1028         return -EINVAL;
1029 }
1030
1031 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1032                 struct kvm_sregs *sregs)
1033 {
1034         return -EINVAL;
1035
1036 }
1037 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1038                 struct kvm_translation *tr)
1039 {
1040
1041         return -EINVAL;
1042 }
1043
1044 static int kvm_alloc_vmm_area(void)
1045 {
1046         if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
1047                 kvm_vmm_base = __get_free_pages(GFP_KERNEL,
1048                                 get_order(KVM_VMM_SIZE));
1049                 if (!kvm_vmm_base)
1050                         return -ENOMEM;
1051
1052                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1053                 kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
1054
1055                 printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
1056                                 kvm_vmm_base, kvm_vm_buffer);
1057         }
1058
1059         return 0;
1060 }
1061
1062 static void kvm_free_vmm_area(void)
1063 {
1064         if (kvm_vmm_base) {
1065                 /*Zero this area before free to avoid bits leak!!*/
1066                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1067                 free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
1068                 kvm_vmm_base  = 0;
1069                 kvm_vm_buffer = 0;
1070                 kvm_vsa_base = 0;
1071         }
1072 }
1073
1074 static int vti_init_vpd(struct kvm_vcpu *vcpu)
1075 {
1076         int i;
1077         union cpuid3_t cpuid3;
1078         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1079
1080         if (IS_ERR(vpd))
1081                 return PTR_ERR(vpd);
1082
1083         /* CPUID init */
1084         for (i = 0; i < 5; i++)
1085                 vpd->vcpuid[i] = ia64_get_cpuid(i);
1086
1087         /* Limit the CPUID number to 5 */
1088         cpuid3.value = vpd->vcpuid[3];
1089         cpuid3.number = 4;      /* 5 - 1 */
1090         vpd->vcpuid[3] = cpuid3.value;
1091
1092         /*Set vac and vdc fields*/
1093         vpd->vac.a_from_int_cr = 1;
1094         vpd->vac.a_to_int_cr = 1;
1095         vpd->vac.a_from_psr = 1;
1096         vpd->vac.a_from_cpuid = 1;
1097         vpd->vac.a_cover = 1;
1098         vpd->vac.a_bsw = 1;
1099         vpd->vac.a_int = 1;
1100         vpd->vdc.d_vmsw = 1;
1101
1102         /*Set virtual buffer*/
1103         vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
1104
1105         return 0;
1106 }
1107
1108 static int vti_create_vp(struct kvm_vcpu *vcpu)
1109 {
1110         long ret;
1111         struct vpd *vpd = vcpu->arch.vpd;
1112         unsigned long  vmm_ivt;
1113
1114         vmm_ivt = kvm_vmm_info->vmm_ivt;
1115
1116         printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
1117
1118         ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
1119
1120         if (ret) {
1121                 printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
1122                 return -EINVAL;
1123         }
1124         return 0;
1125 }
1126
1127 static void init_ptce_info(struct kvm_vcpu *vcpu)
1128 {
1129         ia64_ptce_info_t ptce = {0};
1130
1131         ia64_get_ptce(&ptce);
1132         vcpu->arch.ptce_base = ptce.base;
1133         vcpu->arch.ptce_count[0] = ptce.count[0];
1134         vcpu->arch.ptce_count[1] = ptce.count[1];
1135         vcpu->arch.ptce_stride[0] = ptce.stride[0];
1136         vcpu->arch.ptce_stride[1] = ptce.stride[1];
1137 }
1138
1139 static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
1140 {
1141         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
1142
1143         if (hrtimer_cancel(p_ht))
1144                 hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
1145 }
1146
1147 static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
1148 {
1149         struct kvm_vcpu *vcpu;
1150         wait_queue_head_t *q;
1151
1152         vcpu  = container_of(data, struct kvm_vcpu, arch.hlt_timer);
1153         q = &vcpu->wq;
1154
1155         if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
1156                 goto out;
1157
1158         if (waitqueue_active(q))
1159                 wake_up_interruptible(q);
1160
1161 out:
1162         vcpu->arch.timer_fired = 1;
1163         vcpu->arch.timer_check = 1;
1164         return HRTIMER_NORESTART;
1165 }
1166
1167 #define PALE_RESET_ENTRY    0x80000000ffffffb0UL
1168
1169 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1170 {
1171         struct kvm_vcpu *v;
1172         int r;
1173         int i;
1174         long itc_offset;
1175         struct kvm *kvm = vcpu->kvm;
1176         struct kvm_pt_regs *regs = vcpu_regs(vcpu);
1177
1178         union context *p_ctx = &vcpu->arch.guest;
1179         struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
1180
1181         /*Init vcpu context for first run.*/
1182         if (IS_ERR(vmm_vcpu))
1183                 return PTR_ERR(vmm_vcpu);
1184
1185         if (kvm_vcpu_is_bsp(vcpu)) {
1186                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1187
1188                 /*Set entry address for first run.*/
1189                 regs->cr_iip = PALE_RESET_ENTRY;
1190
1191                 /*Initialize itc offset for vcpus*/
1192                 itc_offset = 0UL - kvm_get_itc(vcpu);
1193                 for (i = 0; i < KVM_MAX_VCPUS; i++) {
1194                         v = (struct kvm_vcpu *)((char *)vcpu +
1195                                         sizeof(struct kvm_vcpu_data) * i);
1196                         v->arch.itc_offset = itc_offset;
1197                         v->arch.last_itc = 0;
1198                 }
1199         } else
1200                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
1201
1202         r = -ENOMEM;
1203         vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
1204         if (!vcpu->arch.apic)
1205                 goto out;
1206         vcpu->arch.apic->vcpu = vcpu;
1207
1208         p_ctx->gr[1] = 0;
1209         p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
1210         p_ctx->gr[13] = (unsigned long)vmm_vcpu;
1211         p_ctx->psr = 0x1008522000UL;
1212         p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
1213         p_ctx->caller_unat = 0;
1214         p_ctx->pr = 0x0;
1215         p_ctx->ar[36] = 0x0; /*unat*/
1216         p_ctx->ar[19] = 0x0; /*rnat*/
1217         p_ctx->ar[18] = (unsigned long)vmm_vcpu +
1218                                 ((sizeof(struct kvm_vcpu)+15) & ~15);
1219         p_ctx->ar[64] = 0x0; /*pfs*/
1220         p_ctx->cr[0] = 0x7e04UL;
1221         p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
1222         p_ctx->cr[8] = 0x3c;
1223
1224         /*Initialize region register*/
1225         p_ctx->rr[0] = 0x30;
1226         p_ctx->rr[1] = 0x30;
1227         p_ctx->rr[2] = 0x30;
1228         p_ctx->rr[3] = 0x30;
1229         p_ctx->rr[4] = 0x30;
1230         p_ctx->rr[5] = 0x30;
1231         p_ctx->rr[7] = 0x30;
1232
1233         /*Initialize branch register 0*/
1234         p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
1235
1236         vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
1237         vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
1238         vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
1239
1240         hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1241         vcpu->arch.hlt_timer.function = hlt_timer_fn;
1242
1243         vcpu->arch.last_run_cpu = -1;
1244         vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
1245         vcpu->arch.vsa_base = kvm_vsa_base;
1246         vcpu->arch.__gp = kvm_vmm_gp;
1247         vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
1248         vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
1249         vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
1250         init_ptce_info(vcpu);
1251
1252         r = 0;
1253 out:
1254         return r;
1255 }
1256
1257 static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
1258 {
1259         unsigned long psr;
1260         int r;
1261
1262         local_irq_save(psr);
1263         r = kvm_insert_vmm_mapping(vcpu);
1264         local_irq_restore(psr);
1265         if (r)
1266                 goto fail;
1267         r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
1268         if (r)
1269                 goto fail;
1270
1271         r = vti_init_vpd(vcpu);
1272         if (r) {
1273                 printk(KERN_DEBUG"kvm: vpd init error!!\n");
1274                 goto uninit;
1275         }
1276
1277         r = vti_create_vp(vcpu);
1278         if (r)
1279                 goto uninit;
1280
1281         kvm_purge_vmm_mapping(vcpu);
1282
1283         return 0;
1284 uninit:
1285         kvm_vcpu_uninit(vcpu);
1286 fail:
1287         return r;
1288 }
1289
1290 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1291                 unsigned int id)
1292 {
1293         struct kvm_vcpu *vcpu;
1294         unsigned long vm_base = kvm->arch.vm_base;
1295         int r;
1296         int cpu;
1297
1298         BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
1299
1300         r = -EINVAL;
1301         if (id >= KVM_MAX_VCPUS) {
1302                 printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
1303                                 KVM_MAX_VCPUS);
1304                 goto fail;
1305         }
1306
1307         r = -ENOMEM;
1308         if (!vm_base) {
1309                 printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
1310                 goto fail;
1311         }
1312         vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
1313                                         vcpu_data[id].vcpu_struct));
1314         vcpu->kvm = kvm;
1315
1316         cpu = get_cpu();
1317         r = vti_vcpu_setup(vcpu, id);
1318         put_cpu();
1319
1320         if (r) {
1321                 printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
1322                 goto fail;
1323         }
1324
1325         return vcpu;
1326 fail:
1327         return ERR_PTR(r);
1328 }
1329
1330 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1331 {
1332         return 0;
1333 }
1334
1335 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1336 {
1337         return -EINVAL;
1338 }
1339
1340 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1341 {
1342         return -EINVAL;
1343 }
1344
1345 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1346                                         struct kvm_guest_debug *dbg)
1347 {
1348         return -EINVAL;
1349 }
1350
1351 void kvm_arch_free_vm(struct kvm *kvm)
1352 {
1353         unsigned long vm_base = kvm->arch.vm_base;
1354
1355         if (vm_base) {
1356                 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
1357                 free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
1358         }
1359
1360 }
1361
1362 static void kvm_release_vm_pages(struct kvm *kvm)
1363 {
1364         struct kvm_memslots *slots;
1365         struct kvm_memory_slot *memslot;
1366         int i, j;
1367         unsigned long base_gfn;
1368
1369         slots = kvm_memslots(kvm);
1370         for (i = 0; i < slots->nmemslots; i++) {
1371                 memslot = &slots->memslots[i];
1372                 base_gfn = memslot->base_gfn;
1373
1374                 for (j = 0; j < memslot->npages; j++) {
1375                         if (memslot->rmap[j])
1376                                 put_page((struct page *)memslot->rmap[j]);
1377                 }
1378         }
1379 }
1380
1381 void kvm_arch_sync_events(struct kvm *kvm)
1382 {
1383 }
1384
1385 void kvm_arch_destroy_vm(struct kvm *kvm)
1386 {
1387         kvm_iommu_unmap_guest(kvm);
1388 #ifdef  KVM_CAP_DEVICE_ASSIGNMENT
1389         kvm_free_all_assigned_devices(kvm);
1390 #endif
1391         kfree(kvm->arch.vioapic);
1392         kvm_release_vm_pages(kvm);
1393 }
1394
1395 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1396 {
1397 }
1398
1399 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1400 {
1401         if (cpu != vcpu->cpu) {
1402                 vcpu->cpu = cpu;
1403                 if (vcpu->arch.ht_active)
1404                         kvm_migrate_hlt_timer(vcpu);
1405         }
1406 }
1407
1408 #define SAVE_REGS(_x)   regs->_x = vcpu->arch._x
1409
1410 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1411 {
1412         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1413         int i;
1414
1415         vcpu_load(vcpu);
1416
1417         for (i = 0; i < 16; i++) {
1418                 regs->vpd.vgr[i] = vpd->vgr[i];
1419                 regs->vpd.vbgr[i] = vpd->vbgr[i];
1420         }
1421         for (i = 0; i < 128; i++)
1422                 regs->vpd.vcr[i] = vpd->vcr[i];
1423         regs->vpd.vhpi = vpd->vhpi;
1424         regs->vpd.vnat = vpd->vnat;
1425         regs->vpd.vbnat = vpd->vbnat;
1426         regs->vpd.vpsr = vpd->vpsr;
1427         regs->vpd.vpr = vpd->vpr;
1428
1429         memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
1430
1431         SAVE_REGS(mp_state);
1432         SAVE_REGS(vmm_rr);
1433         memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
1434         memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
1435         SAVE_REGS(itr_regions);
1436         SAVE_REGS(dtr_regions);
1437         SAVE_REGS(tc_regions);
1438         SAVE_REGS(irq_check);
1439         SAVE_REGS(itc_check);
1440         SAVE_REGS(timer_check);
1441         SAVE_REGS(timer_pending);
1442         SAVE_REGS(last_itc);
1443         for (i = 0; i < 8; i++) {
1444                 regs->vrr[i] = vcpu->arch.vrr[i];
1445                 regs->ibr[i] = vcpu->arch.ibr[i];
1446                 regs->dbr[i] = vcpu->arch.dbr[i];
1447         }
1448         for (i = 0; i < 4; i++)
1449                 regs->insvc[i] = vcpu->arch.insvc[i];
1450         regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu);
1451         SAVE_REGS(xtp);
1452         SAVE_REGS(metaphysical_rr0);
1453         SAVE_REGS(metaphysical_rr4);
1454         SAVE_REGS(metaphysical_saved_rr0);
1455         SAVE_REGS(metaphysical_saved_rr4);
1456         SAVE_REGS(fp_psr);
1457         SAVE_REGS(saved_gp);
1458
1459         vcpu_put(vcpu);
1460         return 0;
1461 }
1462
1463 int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
1464                                   struct kvm_ia64_vcpu_stack *stack)
1465 {
1466         memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
1467         return 0;
1468 }
1469
1470 int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
1471                                   struct kvm_ia64_vcpu_stack *stack)
1472 {
1473         memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
1474                sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
1475
1476         vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
1477         return 0;
1478 }
1479
1480 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1481 {
1482
1483         hrtimer_cancel(&vcpu->arch.hlt_timer);
1484         kfree(vcpu->arch.apic);
1485 }
1486
1487
1488 long kvm_arch_vcpu_ioctl(struct file *filp,
1489                          unsigned int ioctl, unsigned long arg)
1490 {
1491         struct kvm_vcpu *vcpu = filp->private_data;
1492         void __user *argp = (void __user *)arg;
1493         struct kvm_ia64_vcpu_stack *stack = NULL;
1494         long r;
1495
1496         switch (ioctl) {
1497         case KVM_IA64_VCPU_GET_STACK: {
1498                 struct kvm_ia64_vcpu_stack __user *user_stack;
1499                 void __user *first_p = argp;
1500
1501                 r = -EFAULT;
1502                 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1503                         goto out;
1504
1505                 if (!access_ok(VERIFY_WRITE, user_stack,
1506                                sizeof(struct kvm_ia64_vcpu_stack))) {
1507                         printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
1508                                "Illegal user destination address for stack\n");
1509                         goto out;
1510                 }
1511                 stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1512                 if (!stack) {
1513                         r = -ENOMEM;
1514                         goto out;
1515                 }
1516
1517                 r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
1518                 if (r)
1519                         goto out;
1520
1521                 if (copy_to_user(user_stack, stack,
1522                                  sizeof(struct kvm_ia64_vcpu_stack))) {
1523                         r = -EFAULT;
1524                         goto out;
1525                 }
1526
1527                 break;
1528         }
1529         case KVM_IA64_VCPU_SET_STACK: {
1530                 struct kvm_ia64_vcpu_stack __user *user_stack;
1531                 void __user *first_p = argp;
1532
1533                 r = -EFAULT;
1534                 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1535                         goto out;
1536
1537                 if (!access_ok(VERIFY_READ, user_stack,
1538                             sizeof(struct kvm_ia64_vcpu_stack))) {
1539                         printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
1540                                "Illegal user address for stack\n");
1541                         goto out;
1542                 }
1543                 stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1544                 if (!stack) {
1545                         r = -ENOMEM;
1546                         goto out;
1547                 }
1548                 if (copy_from_user(stack, user_stack,
1549                                    sizeof(struct kvm_ia64_vcpu_stack)))
1550                         goto out;
1551
1552                 r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
1553                 break;
1554         }
1555
1556         default:
1557                 r = -EINVAL;
1558         }
1559
1560 out:
1561         kfree(stack);
1562         return r;
1563 }
1564
1565 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1566                 struct kvm_memory_slot *memslot,
1567                 struct kvm_memory_slot old,
1568                 struct kvm_userspace_memory_region *mem,
1569                 int user_alloc)
1570 {
1571         unsigned long i;
1572         unsigned long pfn;
1573         int npages = memslot->npages;
1574         unsigned long base_gfn = memslot->base_gfn;
1575
1576         if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
1577                 return -ENOMEM;
1578
1579         for (i = 0; i < npages; i++) {
1580                 pfn = gfn_to_pfn(kvm, base_gfn + i);
1581                 if (!kvm_is_mmio_pfn(pfn)) {
1582                         kvm_set_pmt_entry(kvm, base_gfn + i,
1583                                         pfn << PAGE_SHIFT,
1584                                 _PAGE_AR_RWX | _PAGE_MA_WB);
1585                         memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
1586                 } else {
1587                         kvm_set_pmt_entry(kvm, base_gfn + i,
1588                                         GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
1589                                         _PAGE_MA_UC);
1590                         memslot->rmap[i] = 0;
1591                         }
1592         }
1593
1594         return 0;
1595 }
1596
1597 void kvm_arch_commit_memory_region(struct kvm *kvm,
1598                 struct kvm_userspace_memory_region *mem,
1599                 struct kvm_memory_slot old,
1600                 int user_alloc)
1601 {
1602         return;
1603 }
1604
1605 void kvm_arch_flush_shadow(struct kvm *kvm)
1606 {
1607         kvm_flush_remote_tlbs(kvm);
1608 }
1609
1610 long kvm_arch_dev_ioctl(struct file *filp,
1611                         unsigned int ioctl, unsigned long arg)
1612 {
1613         return -EINVAL;
1614 }
1615
1616 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1617 {
1618         kvm_vcpu_uninit(vcpu);
1619 }
1620
1621 static int vti_cpu_has_kvm_support(void)
1622 {
1623         long  avail = 1, status = 1, control = 1;
1624         long ret;
1625
1626         ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
1627         if (ret)
1628                 goto out;
1629
1630         if (!(avail & PAL_PROC_VM_BIT))
1631                 goto out;
1632
1633         printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
1634
1635         ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
1636         if (ret)
1637                 goto out;
1638         printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
1639
1640         if (!(vp_env_info & VP_OPCODE)) {
1641                 printk(KERN_WARNING"kvm: No opcode ability on hardware, "
1642                                 "vm_env_info:0x%lx\n", vp_env_info);
1643         }
1644
1645         return 1;
1646 out:
1647         return 0;
1648 }
1649
1650
1651 /*
1652  * On SN2, the ITC isn't stable, so copy in fast path code to use the
1653  * SN2 RTC, replacing the ITC based default verion.
1654  */
1655 static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info,
1656                           struct module *module)
1657 {
1658         unsigned long new_ar, new_ar_sn2;
1659         unsigned long module_base;
1660
1661         if (!ia64_platform_is("sn2"))
1662                 return;
1663
1664         module_base = (unsigned long)module->module_core;
1665
1666         new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base;
1667         new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base;
1668
1669         printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC "
1670                "as source\n");
1671
1672         /*
1673          * Copy the SN2 version of mov_ar into place. They are both
1674          * the same size, so 6 bundles is sufficient (6 * 0x10).
1675          */
1676         memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60);
1677 }
1678
1679 static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
1680                             struct module *module)
1681 {
1682         unsigned long module_base;
1683         unsigned long vmm_size;
1684
1685         unsigned long vmm_offset, func_offset, fdesc_offset;
1686         struct fdesc *p_fdesc;
1687
1688         BUG_ON(!module);
1689
1690         if (!kvm_vmm_base) {
1691                 printk("kvm: kvm area hasn't been initialized yet!!\n");
1692                 return -EFAULT;
1693         }
1694
1695         /*Calculate new position of relocated vmm module.*/
1696         module_base = (unsigned long)module->module_core;
1697         vmm_size = module->core_size;
1698         if (unlikely(vmm_size > KVM_VMM_SIZE))
1699                 return -EFAULT;
1700
1701         memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
1702         kvm_patch_vmm(vmm_info, module);
1703         kvm_flush_icache(kvm_vmm_base, vmm_size);
1704
1705         /*Recalculate kvm_vmm_info based on new VMM*/
1706         vmm_offset = vmm_info->vmm_ivt - module_base;
1707         kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
1708         printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
1709                         kvm_vmm_info->vmm_ivt);
1710
1711         fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
1712         kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
1713                                                         fdesc_offset);
1714         func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
1715         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1716         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1717         p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
1718
1719         printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
1720                         KVM_VMM_BASE+func_offset);
1721
1722         fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
1723         kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
1724                         fdesc_offset);
1725         func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
1726         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1727         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1728         p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
1729
1730         kvm_vmm_gp = p_fdesc->gp;
1731
1732         printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
1733                                                 kvm_vmm_info->vmm_entry);
1734         printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
1735                                                 KVM_VMM_BASE + func_offset);
1736
1737         return 0;
1738 }
1739
1740 int kvm_arch_init(void *opaque)
1741 {
1742         int r;
1743         struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
1744
1745         if (!vti_cpu_has_kvm_support()) {
1746                 printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
1747                 r = -EOPNOTSUPP;
1748                 goto out;
1749         }
1750
1751         if (kvm_vmm_info) {
1752                 printk(KERN_ERR "kvm: Already loaded VMM module!\n");
1753                 r = -EEXIST;
1754                 goto out;
1755         }
1756
1757         r = -ENOMEM;
1758         kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
1759         if (!kvm_vmm_info)
1760                 goto out;
1761
1762         if (kvm_alloc_vmm_area())
1763                 goto out_free0;
1764
1765         r = kvm_relocate_vmm(vmm_info, vmm_info->module);
1766         if (r)
1767                 goto out_free1;
1768
1769         return 0;
1770
1771 out_free1:
1772         kvm_free_vmm_area();
1773 out_free0:
1774         kfree(kvm_vmm_info);
1775 out:
1776         return r;
1777 }
1778
1779 void kvm_arch_exit(void)
1780 {
1781         kvm_free_vmm_area();
1782         kfree(kvm_vmm_info);
1783         kvm_vmm_info = NULL;
1784 }
1785
1786 static void kvm_ia64_sync_dirty_log(struct kvm *kvm,
1787                                     struct kvm_memory_slot *memslot)
1788 {
1789         int i;
1790         long base;
1791         unsigned long n;
1792         unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
1793                         offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
1794
1795         n = kvm_dirty_bitmap_bytes(memslot);
1796         base = memslot->base_gfn / BITS_PER_LONG;
1797
1798         spin_lock(&kvm->arch.dirty_log_lock);
1799         for (i = 0; i < n/sizeof(long); ++i) {
1800                 memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
1801                 dirty_bitmap[base + i] = 0;
1802         }
1803         spin_unlock(&kvm->arch.dirty_log_lock);
1804 }
1805
1806 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1807                 struct kvm_dirty_log *log)
1808 {
1809         int r;
1810         unsigned long n;
1811         struct kvm_memory_slot *memslot;
1812         int is_dirty = 0;
1813
1814         mutex_lock(&kvm->slots_lock);
1815
1816         r = -EINVAL;
1817         if (log->slot >= KVM_MEMORY_SLOTS)
1818                 goto out;
1819
1820         memslot = &kvm->memslots->memslots[log->slot];
1821         r = -ENOENT;
1822         if (!memslot->dirty_bitmap)
1823                 goto out;
1824
1825         kvm_ia64_sync_dirty_log(kvm, memslot);
1826         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1827         if (r)
1828                 goto out;
1829
1830         /* If nothing is dirty, don't bother messing with page tables. */
1831         if (is_dirty) {
1832                 kvm_flush_remote_tlbs(kvm);
1833                 n = kvm_dirty_bitmap_bytes(memslot);
1834                 memset(memslot->dirty_bitmap, 0, n);
1835         }
1836         r = 0;
1837 out:
1838         mutex_unlock(&kvm->slots_lock);
1839         return r;
1840 }
1841
1842 int kvm_arch_hardware_setup(void)
1843 {
1844         return 0;
1845 }
1846
1847 void kvm_arch_hardware_unsetup(void)
1848 {
1849 }
1850
1851 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1852 {
1853         int me;
1854         int cpu = vcpu->cpu;
1855
1856         if (waitqueue_active(&vcpu->wq))
1857                 wake_up_interruptible(&vcpu->wq);
1858
1859         me = get_cpu();
1860         if (cpu != me && (unsigned) cpu < nr_cpu_ids && cpu_online(cpu))
1861                 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
1862                         smp_send_reschedule(cpu);
1863         put_cpu();
1864 }
1865
1866 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
1867 {
1868         return __apic_accept_irq(vcpu, irq->vector);
1869 }
1870
1871 int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
1872 {
1873         return apic->vcpu->vcpu_id == dest;
1874 }
1875
1876 int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
1877 {
1878         return 0;
1879 }
1880
1881 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1882 {
1883         return vcpu1->arch.xtp - vcpu2->arch.xtp;
1884 }
1885
1886 int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1887                 int short_hand, int dest, int dest_mode)
1888 {
1889         struct kvm_lapic *target = vcpu->arch.apic;
1890         return (dest_mode == 0) ?
1891                 kvm_apic_match_physical_addr(target, dest) :
1892                 kvm_apic_match_logical_addr(target, dest);
1893 }
1894
1895 static int find_highest_bits(int *dat)
1896 {
1897         u32  bits, bitnum;
1898         int i;
1899
1900         /* loop for all 256 bits */
1901         for (i = 7; i >= 0 ; i--) {
1902                 bits = dat[i];
1903                 if (bits) {
1904                         bitnum = fls(bits);
1905                         return i * 32 + bitnum - 1;
1906                 }
1907         }
1908
1909         return -1;
1910 }
1911
1912 int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
1913 {
1914     struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1915
1916     if (vpd->irr[0] & (1UL << NMI_VECTOR))
1917                 return NMI_VECTOR;
1918     if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
1919                 return ExtINT_VECTOR;
1920
1921     return find_highest_bits((int *)&vpd->irr[0]);
1922 }
1923
1924 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1925 {
1926         return vcpu->arch.timer_fired;
1927 }
1928
1929 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1930 {
1931         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE) ||
1932                 (kvm_highest_pending_irq(vcpu) != -1);
1933 }
1934
1935 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1936                                     struct kvm_mp_state *mp_state)
1937 {
1938         mp_state->mp_state = vcpu->arch.mp_state;
1939         return 0;
1940 }
1941
1942 static int vcpu_reset(struct kvm_vcpu *vcpu)
1943 {
1944         int r;
1945         long psr;
1946         local_irq_save(psr);
1947         r = kvm_insert_vmm_mapping(vcpu);
1948         local_irq_restore(psr);
1949         if (r)
1950                 goto fail;
1951
1952         vcpu->arch.launched = 0;
1953         kvm_arch_vcpu_uninit(vcpu);
1954         r = kvm_arch_vcpu_init(vcpu);
1955         if (r)
1956                 goto fail;
1957
1958         kvm_purge_vmm_mapping(vcpu);
1959         r = 0;
1960 fail:
1961         return r;
1962 }
1963
1964 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1965                                     struct kvm_mp_state *mp_state)
1966 {
1967         int r = 0;
1968
1969         vcpu->arch.mp_state = mp_state->mp_state;
1970         if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
1971                 r = vcpu_reset(vcpu);
1972         return r;
1973 }