Merge branch 'sh/smp'
[pandora-kernel.git] / arch / ia64 / kernel / topology.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * This file contains NUMA specific variables and functions which can
7  * be split away from DISCONTIGMEM and are used on NUMA machines with
8  * contiguous memory.
9  *              2002/08/07 Erich Focht <efocht@ess.nec.de>
10  * Populate cpu entries in sysfs for non-numa systems as well
11  *      Intel Corporation - Ashok Raj
12  * 02/27/2006 Zhang, Yanmin
13  *      Populate cpu cache entries in sysfs for cpu cache info
14  */
15
16 #include <linux/cpu.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/node.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/bootmem.h>
23 #include <linux/nodemask.h>
24 #include <linux/notifier.h>
25 #include <asm/mmzone.h>
26 #include <asm/numa.h>
27 #include <asm/cpu.h>
28
29 static struct ia64_cpu *sysfs_cpus;
30
31 void arch_fix_phys_package_id(int num, u32 slot)
32 {
33 #ifdef CONFIG_SMP
34         if (cpu_data(num)->socket_id == -1)
35                 cpu_data(num)->socket_id = slot;
36 #endif
37 }
38 EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
39
40
41 #ifdef CONFIG_HOTPLUG_CPU
42 int __ref arch_register_cpu(int num)
43 {
44 #ifdef CONFIG_ACPI
45         /*
46          * If CPEI can be re-targetted or if this is not
47          * CPEI target, then it is hotpluggable
48          */
49         if (can_cpei_retarget() || !is_cpu_cpei_target(num))
50                 sysfs_cpus[num].cpu.hotpluggable = 1;
51         map_cpu_to_node(num, node_cpuid[num].nid);
52 #endif
53         return register_cpu(&sysfs_cpus[num].cpu, num);
54 }
55 EXPORT_SYMBOL(arch_register_cpu);
56
57 void __ref arch_unregister_cpu(int num)
58 {
59         unregister_cpu(&sysfs_cpus[num].cpu);
60 #ifdef CONFIG_ACPI
61         unmap_cpu_from_node(num, cpu_to_node(num));
62 #endif
63 }
64 EXPORT_SYMBOL(arch_unregister_cpu);
65 #else
66 static int __init arch_register_cpu(int num)
67 {
68         return register_cpu(&sysfs_cpus[num].cpu, num);
69 }
70 #endif /*CONFIG_HOTPLUG_CPU*/
71
72
73 static int __init topology_init(void)
74 {
75         int i, err = 0;
76
77 #ifdef CONFIG_NUMA
78         /*
79          * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
80          */
81         for_each_online_node(i) {
82                 if ((err = register_one_node(i)))
83                         goto out;
84         }
85 #endif
86
87         sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL);
88         if (!sysfs_cpus)
89                 panic("kzalloc in topology_init failed - NR_CPUS too big?");
90
91         for_each_present_cpu(i) {
92                 if((err = arch_register_cpu(i)))
93                         goto out;
94         }
95 out:
96         return err;
97 }
98
99 subsys_initcall(topology_init);
100
101
102 /*
103  * Export cpu cache information through sysfs
104  */
105
106 /*
107  *  A bunch of string array to get pretty printing
108  */
109 static const char *cache_types[] = {
110         "",                     /* not used */
111         "Instruction",
112         "Data",
113         "Unified"       /* unified */
114 };
115
116 static const char *cache_mattrib[]={
117         "WriteThrough",
118         "WriteBack",
119         "",             /* reserved */
120         ""              /* reserved */
121 };
122
123 struct cache_info {
124         pal_cache_config_info_t cci;
125         cpumask_t shared_cpu_map;
126         int level;
127         int type;
128         struct kobject kobj;
129 };
130
131 struct cpu_cache_info {
132         struct cache_info *cache_leaves;
133         int     num_cache_leaves;
134         struct kobject kobj;
135 };
136
137 static struct cpu_cache_info    all_cpu_cache_info[NR_CPUS] __cpuinitdata;
138 #define LEAF_KOBJECT_PTR(x,y)    (&all_cpu_cache_info[x].cache_leaves[y])
139
140 #ifdef CONFIG_SMP
141 static void __cpuinit cache_shared_cpu_map_setup( unsigned int cpu,
142                 struct cache_info * this_leaf)
143 {
144         pal_cache_shared_info_t csi;
145         int num_shared, i = 0;
146         unsigned int j;
147
148         if (cpu_data(cpu)->threads_per_core <= 1 &&
149                 cpu_data(cpu)->cores_per_socket <= 1) {
150                 cpu_set(cpu, this_leaf->shared_cpu_map);
151                 return;
152         }
153
154         if (ia64_pal_cache_shared_info(this_leaf->level,
155                                         this_leaf->type,
156                                         0,
157                                         &csi) != PAL_STATUS_SUCCESS)
158                 return;
159
160         num_shared = (int) csi.num_shared;
161         do {
162                 for_each_possible_cpu(j)
163                         if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
164                                 && cpu_data(j)->core_id == csi.log1_cid
165                                 && cpu_data(j)->thread_id == csi.log1_tid)
166                                 cpu_set(j, this_leaf->shared_cpu_map);
167
168                 i++;
169         } while (i < num_shared &&
170                 ia64_pal_cache_shared_info(this_leaf->level,
171                                 this_leaf->type,
172                                 i,
173                                 &csi) == PAL_STATUS_SUCCESS);
174 }
175 #else
176 static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu,
177                 struct cache_info * this_leaf)
178 {
179         cpu_set(cpu, this_leaf->shared_cpu_map);
180         return;
181 }
182 #endif
183
184 static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
185                                         char *buf)
186 {
187         return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
188 }
189
190 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
191                                         char *buf)
192 {
193         return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
194 }
195
196 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
197 {
198         return sprintf(buf,
199                         "%s\n",
200                         cache_mattrib[this_leaf->cci.pcci_cache_attr]);
201 }
202
203 static ssize_t show_size(struct cache_info *this_leaf, char *buf)
204 {
205         return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
206 }
207
208 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
209 {
210         unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
211         number_of_sets /= this_leaf->cci.pcci_assoc;
212         number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
213
214         return sprintf(buf, "%u\n", number_of_sets);
215 }
216
217 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
218 {
219         ssize_t len;
220         cpumask_t shared_cpu_map;
221
222         cpus_and(shared_cpu_map, this_leaf->shared_cpu_map, cpu_online_map);
223         len = cpumask_scnprintf(buf, NR_CPUS+1, &shared_cpu_map);
224         len += sprintf(buf+len, "\n");
225         return len;
226 }
227
228 static ssize_t show_type(struct cache_info *this_leaf, char *buf)
229 {
230         int type = this_leaf->type + this_leaf->cci.pcci_unified;
231         return sprintf(buf, "%s\n", cache_types[type]);
232 }
233
234 static ssize_t show_level(struct cache_info *this_leaf, char *buf)
235 {
236         return sprintf(buf, "%u\n", this_leaf->level);
237 }
238
239 struct cache_attr {
240         struct attribute attr;
241         ssize_t (*show)(struct cache_info *, char *);
242         ssize_t (*store)(struct cache_info *, const char *, size_t count);
243 };
244
245 #ifdef define_one_ro
246         #undef define_one_ro
247 #endif
248 #define define_one_ro(_name) \
249         static struct cache_attr _name = \
250 __ATTR(_name, 0444, show_##_name, NULL)
251
252 define_one_ro(level);
253 define_one_ro(type);
254 define_one_ro(coherency_line_size);
255 define_one_ro(ways_of_associativity);
256 define_one_ro(size);
257 define_one_ro(number_of_sets);
258 define_one_ro(shared_cpu_map);
259 define_one_ro(attributes);
260
261 static struct attribute * cache_default_attrs[] = {
262         &type.attr,
263         &level.attr,
264         &coherency_line_size.attr,
265         &ways_of_associativity.attr,
266         &attributes.attr,
267         &size.attr,
268         &number_of_sets.attr,
269         &shared_cpu_map.attr,
270         NULL
271 };
272
273 #define to_object(k) container_of(k, struct cache_info, kobj)
274 #define to_attr(a) container_of(a, struct cache_attr, attr)
275
276 static ssize_t cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
277 {
278         struct cache_attr *fattr = to_attr(attr);
279         struct cache_info *this_leaf = to_object(kobj);
280         ssize_t ret;
281
282         ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
283         return ret;
284 }
285
286 static const struct sysfs_ops cache_sysfs_ops = {
287         .show   = cache_show
288 };
289
290 static struct kobj_type cache_ktype = {
291         .sysfs_ops      = &cache_sysfs_ops,
292         .default_attrs  = cache_default_attrs,
293 };
294
295 static struct kobj_type cache_ktype_percpu_entry = {
296         .sysfs_ops      = &cache_sysfs_ops,
297 };
298
299 static void __cpuinit cpu_cache_sysfs_exit(unsigned int cpu)
300 {
301         kfree(all_cpu_cache_info[cpu].cache_leaves);
302         all_cpu_cache_info[cpu].cache_leaves = NULL;
303         all_cpu_cache_info[cpu].num_cache_leaves = 0;
304         memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
305         return;
306 }
307
308 static int __cpuinit cpu_cache_sysfs_init(unsigned int cpu)
309 {
310         unsigned long i, levels, unique_caches;
311         pal_cache_config_info_t cci;
312         int j;
313         long status;
314         struct cache_info *this_cache;
315         int num_cache_leaves = 0;
316
317         if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
318                 printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
319                 return -1;
320         }
321
322         this_cache=kzalloc(sizeof(struct cache_info)*unique_caches,
323                         GFP_KERNEL);
324         if (this_cache == NULL)
325                 return -ENOMEM;
326
327         for (i=0; i < levels; i++) {
328                 for (j=2; j >0 ; j--) {
329                         if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
330                                         PAL_STATUS_SUCCESS)
331                                 continue;
332
333                         this_cache[num_cache_leaves].cci = cci;
334                         this_cache[num_cache_leaves].level = i + 1;
335                         this_cache[num_cache_leaves].type = j;
336
337                         cache_shared_cpu_map_setup(cpu,
338                                         &this_cache[num_cache_leaves]);
339                         num_cache_leaves ++;
340                 }
341         }
342
343         all_cpu_cache_info[cpu].cache_leaves = this_cache;
344         all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
345
346         memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
347
348         return 0;
349 }
350
351 /* Add cache interface for CPU device */
352 static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
353 {
354         unsigned int cpu = sys_dev->id;
355         unsigned long i, j;
356         struct cache_info *this_object;
357         int retval = 0;
358         cpumask_t oldmask;
359
360         if (all_cpu_cache_info[cpu].kobj.parent)
361                 return 0;
362
363         oldmask = current->cpus_allowed;
364         retval = set_cpus_allowed(current, cpumask_of_cpu(cpu));
365         if (unlikely(retval))
366                 return retval;
367
368         retval = cpu_cache_sysfs_init(cpu);
369         set_cpus_allowed(current, oldmask);
370         if (unlikely(retval < 0))
371                 return retval;
372
373         retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
374                                       &cache_ktype_percpu_entry, &sys_dev->kobj,
375                                       "%s", "cache");
376         if (unlikely(retval < 0)) {
377                 cpu_cache_sysfs_exit(cpu);
378                 return retval;
379         }
380
381         for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
382                 this_object = LEAF_KOBJECT_PTR(cpu,i);
383                 retval = kobject_init_and_add(&(this_object->kobj),
384                                               &cache_ktype,
385                                               &all_cpu_cache_info[cpu].kobj,
386                                               "index%1lu", i);
387                 if (unlikely(retval)) {
388                         for (j = 0; j < i; j++) {
389                                 kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
390                         }
391                         kobject_put(&all_cpu_cache_info[cpu].kobj);
392                         cpu_cache_sysfs_exit(cpu);
393                         return retval;
394                 }
395                 kobject_uevent(&(this_object->kobj), KOBJ_ADD);
396         }
397         kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
398         return retval;
399 }
400
401 /* Remove cache interface for CPU device */
402 static int __cpuinit cache_remove_dev(struct sys_device * sys_dev)
403 {
404         unsigned int cpu = sys_dev->id;
405         unsigned long i;
406
407         for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
408                 kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
409
410         if (all_cpu_cache_info[cpu].kobj.parent) {
411                 kobject_put(&all_cpu_cache_info[cpu].kobj);
412                 memset(&all_cpu_cache_info[cpu].kobj,
413                         0,
414                         sizeof(struct kobject));
415         }
416
417         cpu_cache_sysfs_exit(cpu);
418
419         return 0;
420 }
421
422 /*
423  * When a cpu is hot-plugged, do a check and initiate
424  * cache kobject if necessary
425  */
426 static int __cpuinit cache_cpu_callback(struct notifier_block *nfb,
427                 unsigned long action, void *hcpu)
428 {
429         unsigned int cpu = (unsigned long)hcpu;
430         struct sys_device *sys_dev;
431
432         sys_dev = get_cpu_sysdev(cpu);
433         switch (action) {
434         case CPU_ONLINE:
435         case CPU_ONLINE_FROZEN:
436                 cache_add_dev(sys_dev);
437                 break;
438         case CPU_DEAD:
439         case CPU_DEAD_FROZEN:
440                 cache_remove_dev(sys_dev);
441                 break;
442         }
443         return NOTIFY_OK;
444 }
445
446 static struct notifier_block __cpuinitdata cache_cpu_notifier =
447 {
448         .notifier_call = cache_cpu_callback
449 };
450
451 static int __init cache_sysfs_init(void)
452 {
453         int i;
454
455         for_each_online_cpu(i) {
456                 struct sys_device *sys_dev = get_cpu_sysdev((unsigned int)i);
457                 cache_add_dev(sys_dev);
458         }
459
460         register_hotcpu_notifier(&cache_cpu_notifier);
461
462         return 0;
463 }
464
465 device_initcall(cache_sysfs_init);
466