Merge git://git.infradead.org/battery-2.6
[pandora-kernel.git] / arch / ia64 / kernel / time.c
1 /*
2  * linux/arch/ia64/kernel/time.c
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *      Stephane Eranian <eranian@hpl.hp.com>
6  *      David Mosberger <davidm@hpl.hp.com>
7  * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8  * Copyright (C) 1999-2000 VA Linux Systems
9  * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10  */
11
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/time.h>
19 #include <linux/interrupt.h>
20 #include <linux/efi.h>
21 #include <linux/timex.h>
22 #include <linux/clocksource.h>
23 #include <linux/platform_device.h>
24
25 #include <asm/machvec.h>
26 #include <asm/delay.h>
27 #include <asm/hw_irq.h>
28 #include <asm/paravirt.h>
29 #include <asm/ptrace.h>
30 #include <asm/sal.h>
31 #include <asm/sections.h>
32 #include <asm/system.h>
33
34 #include "fsyscall_gtod_data.h"
35
36 static cycle_t itc_get_cycles(struct clocksource *cs);
37
38 struct fsyscall_gtod_data_t fsyscall_gtod_data = {
39         .lock = SEQLOCK_UNLOCKED,
40 };
41
42 struct itc_jitter_data_t itc_jitter_data;
43
44 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
45
46 #ifdef CONFIG_IA64_DEBUG_IRQ
47
48 unsigned long last_cli_ip;
49 EXPORT_SYMBOL(last_cli_ip);
50
51 #endif
52
53 #ifdef CONFIG_PARAVIRT
54 /* We need to define a real function for sched_clock, to override the
55    weak default version */
56 unsigned long long sched_clock(void)
57 {
58         return paravirt_sched_clock();
59 }
60 #endif
61
62 #ifdef CONFIG_PARAVIRT
63 static void
64 paravirt_clocksource_resume(struct clocksource *cs)
65 {
66         if (pv_time_ops.clocksource_resume)
67                 pv_time_ops.clocksource_resume();
68 }
69 #endif
70
71 static struct clocksource clocksource_itc = {
72         .name           = "itc",
73         .rating         = 350,
74         .read           = itc_get_cycles,
75         .mask           = CLOCKSOURCE_MASK(64),
76         .mult           = 0, /*to be calculated*/
77         .shift          = 16,
78         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
79 #ifdef CONFIG_PARAVIRT
80         .resume         = paravirt_clocksource_resume,
81 #endif
82 };
83 static struct clocksource *itc_clocksource;
84
85 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
86
87 #include <linux/kernel_stat.h>
88
89 extern cputime_t cycle_to_cputime(u64 cyc);
90
91 /*
92  * Called from the context switch with interrupts disabled, to charge all
93  * accumulated times to the current process, and to prepare accounting on
94  * the next process.
95  */
96 void ia64_account_on_switch(struct task_struct *prev, struct task_struct *next)
97 {
98         struct thread_info *pi = task_thread_info(prev);
99         struct thread_info *ni = task_thread_info(next);
100         cputime_t delta_stime, delta_utime;
101         __u64 now;
102
103         now = ia64_get_itc();
104
105         delta_stime = cycle_to_cputime(pi->ac_stime + (now - pi->ac_stamp));
106         if (idle_task(smp_processor_id()) != prev)
107                 account_system_time(prev, 0, delta_stime, delta_stime);
108         else
109                 account_idle_time(delta_stime);
110
111         if (pi->ac_utime) {
112                 delta_utime = cycle_to_cputime(pi->ac_utime);
113                 account_user_time(prev, delta_utime, delta_utime);
114         }
115
116         pi->ac_stamp = ni->ac_stamp = now;
117         ni->ac_stime = ni->ac_utime = 0;
118 }
119
120 /*
121  * Account time for a transition between system, hard irq or soft irq state.
122  * Note that this function is called with interrupts enabled.
123  */
124 void account_system_vtime(struct task_struct *tsk)
125 {
126         struct thread_info *ti = task_thread_info(tsk);
127         unsigned long flags;
128         cputime_t delta_stime;
129         __u64 now;
130
131         local_irq_save(flags);
132
133         now = ia64_get_itc();
134
135         delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
136         if (irq_count() || idle_task(smp_processor_id()) != tsk)
137                 account_system_time(tsk, 0, delta_stime, delta_stime);
138         else
139                 account_idle_time(delta_stime);
140         ti->ac_stime = 0;
141
142         ti->ac_stamp = now;
143
144         local_irq_restore(flags);
145 }
146 EXPORT_SYMBOL_GPL(account_system_vtime);
147
148 /*
149  * Called from the timer interrupt handler to charge accumulated user time
150  * to the current process.  Must be called with interrupts disabled.
151  */
152 void account_process_tick(struct task_struct *p, int user_tick)
153 {
154         struct thread_info *ti = task_thread_info(p);
155         cputime_t delta_utime;
156
157         if (ti->ac_utime) {
158                 delta_utime = cycle_to_cputime(ti->ac_utime);
159                 account_user_time(p, delta_utime, delta_utime);
160                 ti->ac_utime = 0;
161         }
162 }
163
164 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
165
166 static irqreturn_t
167 timer_interrupt (int irq, void *dev_id)
168 {
169         unsigned long new_itm;
170
171         if (cpu_is_offline(smp_processor_id())) {
172                 return IRQ_HANDLED;
173         }
174
175         platform_timer_interrupt(irq, dev_id);
176
177         new_itm = local_cpu_data->itm_next;
178
179         if (!time_after(ia64_get_itc(), new_itm))
180                 printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
181                        ia64_get_itc(), new_itm);
182
183         profile_tick(CPU_PROFILING);
184
185         if (paravirt_do_steal_accounting(&new_itm))
186                 goto skip_process_time_accounting;
187
188         while (1) {
189                 update_process_times(user_mode(get_irq_regs()));
190
191                 new_itm += local_cpu_data->itm_delta;
192
193                 if (smp_processor_id() == time_keeper_id)
194                         xtime_update(1);
195
196                 local_cpu_data->itm_next = new_itm;
197
198                 if (time_after(new_itm, ia64_get_itc()))
199                         break;
200
201                 /*
202                  * Allow IPIs to interrupt the timer loop.
203                  */
204                 local_irq_enable();
205                 local_irq_disable();
206         }
207
208 skip_process_time_accounting:
209
210         do {
211                 /*
212                  * If we're too close to the next clock tick for
213                  * comfort, we increase the safety margin by
214                  * intentionally dropping the next tick(s).  We do NOT
215                  * update itm.next because that would force us to call
216                  * xtime_update() which in turn would let our clock run
217                  * too fast (with the potentially devastating effect
218                  * of losing monotony of time).
219                  */
220                 while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
221                         new_itm += local_cpu_data->itm_delta;
222                 ia64_set_itm(new_itm);
223                 /* double check, in case we got hit by a (slow) PMI: */
224         } while (time_after_eq(ia64_get_itc(), new_itm));
225         return IRQ_HANDLED;
226 }
227
228 /*
229  * Encapsulate access to the itm structure for SMP.
230  */
231 void
232 ia64_cpu_local_tick (void)
233 {
234         int cpu = smp_processor_id();
235         unsigned long shift = 0, delta;
236
237         /* arrange for the cycle counter to generate a timer interrupt: */
238         ia64_set_itv(IA64_TIMER_VECTOR);
239
240         delta = local_cpu_data->itm_delta;
241         /*
242          * Stagger the timer tick for each CPU so they don't occur all at (almost) the
243          * same time:
244          */
245         if (cpu) {
246                 unsigned long hi = 1UL << ia64_fls(cpu);
247                 shift = (2*(cpu - hi) + 1) * delta/hi/2;
248         }
249         local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
250         ia64_set_itm(local_cpu_data->itm_next);
251 }
252
253 static int nojitter;
254
255 static int __init nojitter_setup(char *str)
256 {
257         nojitter = 1;
258         printk("Jitter checking for ITC timers disabled\n");
259         return 1;
260 }
261
262 __setup("nojitter", nojitter_setup);
263
264
265 void __devinit
266 ia64_init_itm (void)
267 {
268         unsigned long platform_base_freq, itc_freq;
269         struct pal_freq_ratio itc_ratio, proc_ratio;
270         long status, platform_base_drift, itc_drift;
271
272         /*
273          * According to SAL v2.6, we need to use a SAL call to determine the platform base
274          * frequency and then a PAL call to determine the frequency ratio between the ITC
275          * and the base frequency.
276          */
277         status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
278                                     &platform_base_freq, &platform_base_drift);
279         if (status != 0) {
280                 printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
281         } else {
282                 status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
283                 if (status != 0)
284                         printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
285         }
286         if (status != 0) {
287                 /* invent "random" values */
288                 printk(KERN_ERR
289                        "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
290                 platform_base_freq = 100000000;
291                 platform_base_drift = -1;       /* no drift info */
292                 itc_ratio.num = 3;
293                 itc_ratio.den = 1;
294         }
295         if (platform_base_freq < 40000000) {
296                 printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
297                        platform_base_freq);
298                 platform_base_freq = 75000000;
299                 platform_base_drift = -1;
300         }
301         if (!proc_ratio.den)
302                 proc_ratio.den = 1;     /* avoid division by zero */
303         if (!itc_ratio.den)
304                 itc_ratio.den = 1;      /* avoid division by zero */
305
306         itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
307
308         local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
309         printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
310                "ITC freq=%lu.%03luMHz", smp_processor_id(),
311                platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
312                itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
313
314         if (platform_base_drift != -1) {
315                 itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
316                 printk("+/-%ldppm\n", itc_drift);
317         } else {
318                 itc_drift = -1;
319                 printk("\n");
320         }
321
322         local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
323         local_cpu_data->itc_freq = itc_freq;
324         local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
325         local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
326                                         + itc_freq/2)/itc_freq;
327
328         if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
329 #ifdef CONFIG_SMP
330                 /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
331                  * Jitter compensation requires a cmpxchg which may limit
332                  * the scalability of the syscalls for retrieving time.
333                  * The ITC synchronization is usually successful to within a few
334                  * ITC ticks but this is not a sure thing. If you need to improve
335                  * timer performance in SMP situations then boot the kernel with the
336                  * "nojitter" option. However, doing so may result in time fluctuating (maybe
337                  * even going backward) if the ITC offsets between the individual CPUs
338                  * are too large.
339                  */
340                 if (!nojitter)
341                         itc_jitter_data.itc_jitter = 1;
342 #endif
343         } else
344                 /*
345                  * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
346                  * ITC values may fluctuate significantly between processors.
347                  * Clock should not be used for hrtimers. Mark itc as only
348                  * useful for boot and testing.
349                  *
350                  * Note that jitter compensation is off! There is no point of
351                  * synchronizing ITCs since they may be large differentials
352                  * that change over time.
353                  *
354                  * The only way to fix this would be to repeatedly sync the
355                  * ITCs. Until that time we have to avoid ITC.
356                  */
357                 clocksource_itc.rating = 50;
358
359         paravirt_init_missing_ticks_accounting(smp_processor_id());
360
361         /* avoid softlock up message when cpu is unplug and plugged again. */
362         touch_softlockup_watchdog();
363
364         /* Setup the CPU local timer tick */
365         ia64_cpu_local_tick();
366
367         if (!itc_clocksource) {
368                 /* Sort out mult/shift values: */
369                 clocksource_itc.mult =
370                         clocksource_hz2mult(local_cpu_data->itc_freq,
371                                                 clocksource_itc.shift);
372                 clocksource_register(&clocksource_itc);
373                 itc_clocksource = &clocksource_itc;
374         }
375 }
376
377 static cycle_t itc_get_cycles(struct clocksource *cs)
378 {
379         unsigned long lcycle, now, ret;
380
381         if (!itc_jitter_data.itc_jitter)
382                 return get_cycles();
383
384         lcycle = itc_jitter_data.itc_lastcycle;
385         now = get_cycles();
386         if (lcycle && time_after(lcycle, now))
387                 return lcycle;
388
389         /*
390          * Keep track of the last timer value returned.
391          * In an SMP environment, you could lose out in contention of
392          * cmpxchg. If so, your cmpxchg returns new value which the
393          * winner of contention updated to. Use the new value instead.
394          */
395         ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
396         if (unlikely(ret != lcycle))
397                 return ret;
398
399         return now;
400 }
401
402
403 static struct irqaction timer_irqaction = {
404         .handler =      timer_interrupt,
405         .flags =        IRQF_DISABLED | IRQF_IRQPOLL,
406         .name =         "timer"
407 };
408
409 static struct platform_device rtc_efi_dev = {
410         .name = "rtc-efi",
411         .id = -1,
412 };
413
414 static int __init rtc_init(void)
415 {
416         if (platform_device_register(&rtc_efi_dev) < 0)
417                 printk(KERN_ERR "unable to register rtc device...\n");
418
419         /* not necessarily an error */
420         return 0;
421 }
422 module_init(rtc_init);
423
424 void read_persistent_clock(struct timespec *ts)
425 {
426         efi_gettimeofday(ts);
427 }
428
429 void __init
430 time_init (void)
431 {
432         register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
433         ia64_init_itm();
434 }
435
436 /*
437  * Generic udelay assumes that if preemption is allowed and the thread
438  * migrates to another CPU, that the ITC values are synchronized across
439  * all CPUs.
440  */
441 static void
442 ia64_itc_udelay (unsigned long usecs)
443 {
444         unsigned long start = ia64_get_itc();
445         unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
446
447         while (time_before(ia64_get_itc(), end))
448                 cpu_relax();
449 }
450
451 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
452
453 void
454 udelay (unsigned long usecs)
455 {
456         (*ia64_udelay)(usecs);
457 }
458 EXPORT_SYMBOL(udelay);
459
460 /* IA64 doesn't cache the timezone */
461 void update_vsyscall_tz(void)
462 {
463 }
464
465 void update_vsyscall(struct timespec *wall, struct timespec *wtm,
466                         struct clocksource *c, u32 mult)
467 {
468         unsigned long flags;
469
470         write_seqlock_irqsave(&fsyscall_gtod_data.lock, flags);
471
472         /* copy fsyscall clock data */
473         fsyscall_gtod_data.clk_mask = c->mask;
474         fsyscall_gtod_data.clk_mult = mult;
475         fsyscall_gtod_data.clk_shift = c->shift;
476         fsyscall_gtod_data.clk_fsys_mmio = c->fsys_mmio;
477         fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
478
479         /* copy kernel time structures */
480         fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
481         fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
482         fsyscall_gtod_data.monotonic_time.tv_sec = wtm->tv_sec
483                                                         + wall->tv_sec;
484         fsyscall_gtod_data.monotonic_time.tv_nsec = wtm->tv_nsec
485                                                         + wall->tv_nsec;
486
487         /* normalize */
488         while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
489                 fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
490                 fsyscall_gtod_data.monotonic_time.tv_sec++;
491         }
492
493         write_sequnlock_irqrestore(&fsyscall_gtod_data.lock, flags);
494 }
495