Pull asus into release branch
[pandora-kernel.git] / arch / ia64 / kernel / smpboot.c
1 /*
2  * SMP boot-related support
3  *
4  * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
5  *      David Mosberger-Tang <davidm@hpl.hp.com>
6  * Copyright (C) 2001, 2004-2005 Intel Corp
7  *      Rohit Seth <rohit.seth@intel.com>
8  *      Suresh Siddha <suresh.b.siddha@intel.com>
9  *      Gordon Jin <gordon.jin@intel.com>
10  *      Ashok Raj  <ashok.raj@intel.com>
11  *
12  * 01/05/16 Rohit Seth <rohit.seth@intel.com>   Moved SMP booting functions from smp.c to here.
13  * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code.
14  * 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence.
15  *                                              smp_boot_cpus()/smp_commence() is replaced by
16  *                                              smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
17  * 04/06/21 Ashok Raj           <ashok.raj@intel.com> Added CPU Hotplug Support
18  * 04/12/26 Jin Gordon <gordon.jin@intel.com>
19  * 04/12/26 Rohit Seth <rohit.seth@intel.com>
20  *                                              Add multi-threading and multi-core detection
21  * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
22  *                                              Setup cpu_sibling_map and cpu_core_map
23  */
24
25 #include <linux/module.h>
26 #include <linux/acpi.h>
27 #include <linux/bootmem.h>
28 #include <linux/cpu.h>
29 #include <linux/delay.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/irq.h>
33 #include <linux/kernel.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/mm.h>
36 #include <linux/notifier.h>
37 #include <linux/smp.h>
38 #include <linux/smp_lock.h>
39 #include <linux/spinlock.h>
40 #include <linux/efi.h>
41 #include <linux/percpu.h>
42 #include <linux/bitops.h>
43
44 #include <asm/atomic.h>
45 #include <asm/cache.h>
46 #include <asm/current.h>
47 #include <asm/delay.h>
48 #include <asm/ia32.h>
49 #include <asm/io.h>
50 #include <asm/irq.h>
51 #include <asm/machvec.h>
52 #include <asm/mca.h>
53 #include <asm/page.h>
54 #include <asm/pgalloc.h>
55 #include <asm/pgtable.h>
56 #include <asm/processor.h>
57 #include <asm/ptrace.h>
58 #include <asm/sal.h>
59 #include <asm/system.h>
60 #include <asm/tlbflush.h>
61 #include <asm/unistd.h>
62
63 #define SMP_DEBUG 0
64
65 #if SMP_DEBUG
66 #define Dprintk(x...)  printk(x)
67 #else
68 #define Dprintk(x...)
69 #endif
70
71 #ifdef CONFIG_HOTPLUG_CPU
72 #ifdef CONFIG_PERMIT_BSP_REMOVE
73 #define bsp_remove_ok   1
74 #else
75 #define bsp_remove_ok   0
76 #endif
77
78 /*
79  * Store all idle threads, this can be reused instead of creating
80  * a new thread. Also avoids complicated thread destroy functionality
81  * for idle threads.
82  */
83 struct task_struct *idle_thread_array[NR_CPUS];
84
85 /*
86  * Global array allocated for NR_CPUS at boot time
87  */
88 struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
89
90 /*
91  * start_ap in head.S uses this to store current booting cpu
92  * info.
93  */
94 struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
95
96 #define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
97
98 #define get_idle_for_cpu(x)             (idle_thread_array[(x)])
99 #define set_idle_for_cpu(x,p)   (idle_thread_array[(x)] = (p))
100
101 #else
102
103 #define get_idle_for_cpu(x)             (NULL)
104 #define set_idle_for_cpu(x,p)
105 #define set_brendez_area(x)
106 #endif
107
108
109 /*
110  * ITC synchronization related stuff:
111  */
112 #define MASTER  (0)
113 #define SLAVE   (SMP_CACHE_BYTES/8)
114
115 #define NUM_ROUNDS      64      /* magic value */
116 #define NUM_ITERS       5       /* likewise */
117
118 static DEFINE_SPINLOCK(itc_sync_lock);
119 static volatile unsigned long go[SLAVE + 1];
120
121 #define DEBUG_ITC_SYNC  0
122
123 extern void __devinit calibrate_delay (void);
124 extern void start_ap (void);
125 extern unsigned long ia64_iobase;
126
127 struct task_struct *task_for_booting_cpu;
128
129 /*
130  * State for each CPU
131  */
132 DEFINE_PER_CPU(int, cpu_state);
133
134 /* Bitmasks of currently online, and possible CPUs */
135 cpumask_t cpu_online_map;
136 EXPORT_SYMBOL(cpu_online_map);
137 cpumask_t cpu_possible_map = CPU_MASK_NONE;
138 EXPORT_SYMBOL(cpu_possible_map);
139
140 cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
141 cpumask_t cpu_sibling_map[NR_CPUS] __cacheline_aligned;
142 int smp_num_siblings = 1;
143 int smp_num_cpucores = 1;
144
145 /* which logical CPU number maps to which CPU (physical APIC ID) */
146 volatile int ia64_cpu_to_sapicid[NR_CPUS];
147 EXPORT_SYMBOL(ia64_cpu_to_sapicid);
148
149 static volatile cpumask_t cpu_callin_map;
150
151 struct smp_boot_data smp_boot_data __initdata;
152
153 unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
154
155 char __initdata no_int_routing;
156
157 unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
158
159 #ifdef CONFIG_FORCE_CPEI_RETARGET
160 #define CPEI_OVERRIDE_DEFAULT   (1)
161 #else
162 #define CPEI_OVERRIDE_DEFAULT   (0)
163 #endif
164
165 unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
166
167 static int __init
168 cmdl_force_cpei(char *str)
169 {
170         int value=0;
171
172         get_option (&str, &value);
173         force_cpei_retarget = value;
174
175         return 1;
176 }
177
178 __setup("force_cpei=", cmdl_force_cpei);
179
180 static int __init
181 nointroute (char *str)
182 {
183         no_int_routing = 1;
184         printk ("no_int_routing on\n");
185         return 1;
186 }
187
188 __setup("nointroute", nointroute);
189
190 static void fix_b0_for_bsp(void)
191 {
192 #ifdef CONFIG_HOTPLUG_CPU
193         int cpuid;
194         static int fix_bsp_b0 = 1;
195
196         cpuid = smp_processor_id();
197
198         /*
199          * Cache the b0 value on the first AP that comes up
200          */
201         if (!(fix_bsp_b0 && cpuid))
202                 return;
203
204         sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
205         printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
206
207         fix_bsp_b0 = 0;
208 #endif
209 }
210
211 void
212 sync_master (void *arg)
213 {
214         unsigned long flags, i;
215
216         go[MASTER] = 0;
217
218         local_irq_save(flags);
219         {
220                 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
221                         while (!go[MASTER])
222                                 cpu_relax();
223                         go[MASTER] = 0;
224                         go[SLAVE] = ia64_get_itc();
225                 }
226         }
227         local_irq_restore(flags);
228 }
229
230 /*
231  * Return the number of cycles by which our itc differs from the itc on the master
232  * (time-keeper) CPU.  A positive number indicates our itc is ahead of the master,
233  * negative that it is behind.
234  */
235 static inline long
236 get_delta (long *rt, long *master)
237 {
238         unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
239         unsigned long tcenter, t0, t1, tm;
240         long i;
241
242         for (i = 0; i < NUM_ITERS; ++i) {
243                 t0 = ia64_get_itc();
244                 go[MASTER] = 1;
245                 while (!(tm = go[SLAVE]))
246                         cpu_relax();
247                 go[SLAVE] = 0;
248                 t1 = ia64_get_itc();
249
250                 if (t1 - t0 < best_t1 - best_t0)
251                         best_t0 = t0, best_t1 = t1, best_tm = tm;
252         }
253
254         *rt = best_t1 - best_t0;
255         *master = best_tm - best_t0;
256
257         /* average best_t0 and best_t1 without overflow: */
258         tcenter = (best_t0/2 + best_t1/2);
259         if (best_t0 % 2 + best_t1 % 2 == 2)
260                 ++tcenter;
261         return tcenter - best_tm;
262 }
263
264 /*
265  * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
266  * (normally the time-keeper CPU).  We use a closed loop to eliminate the possibility of
267  * unaccounted-for errors (such as getting a machine check in the middle of a calibration
268  * step).  The basic idea is for the slave to ask the master what itc value it has and to
269  * read its own itc before and after the master responds.  Each iteration gives us three
270  * timestamps:
271  *
272  *      slave           master
273  *
274  *      t0 ---\
275  *             ---\
276  *                 --->
277  *                      tm
278  *                 /---
279  *             /---
280  *      t1 <---
281  *
282  *
283  * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
284  * and t1.  If we achieve this, the clocks are synchronized provided the interconnect
285  * between the slave and the master is symmetric.  Even if the interconnect were
286  * asymmetric, we would still know that the synchronization error is smaller than the
287  * roundtrip latency (t0 - t1).
288  *
289  * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
290  * within one or two cycles.  However, we can only *guarantee* that the synchronization is
291  * accurate to within a round-trip time, which is typically in the range of several
292  * hundred cycles (e.g., ~500 cycles).  In practice, this means that the itc's are usually
293  * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
294  * than half a micro second or so.
295  */
296 void
297 ia64_sync_itc (unsigned int master)
298 {
299         long i, delta, adj, adjust_latency = 0, done = 0;
300         unsigned long flags, rt, master_time_stamp, bound;
301 #if DEBUG_ITC_SYNC
302         struct {
303                 long rt;        /* roundtrip time */
304                 long master;    /* master's timestamp */
305                 long diff;      /* difference between midpoint and master's timestamp */
306                 long lat;       /* estimate of itc adjustment latency */
307         } t[NUM_ROUNDS];
308 #endif
309
310         /*
311          * Make sure local timer ticks are disabled while we sync.  If
312          * they were enabled, we'd have to worry about nasty issues
313          * like setting the ITC ahead of (or a long time before) the
314          * next scheduled tick.
315          */
316         BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
317
318         go[MASTER] = 1;
319
320         if (smp_call_function_single(master, sync_master, NULL, 1, 0) < 0) {
321                 printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
322                 return;
323         }
324
325         while (go[MASTER])
326                 cpu_relax();    /* wait for master to be ready */
327
328         spin_lock_irqsave(&itc_sync_lock, flags);
329         {
330                 for (i = 0; i < NUM_ROUNDS; ++i) {
331                         delta = get_delta(&rt, &master_time_stamp);
332                         if (delta == 0) {
333                                 done = 1;       /* let's lock on to this... */
334                                 bound = rt;
335                         }
336
337                         if (!done) {
338                                 if (i > 0) {
339                                         adjust_latency += -delta;
340                                         adj = -delta + adjust_latency/4;
341                                 } else
342                                         adj = -delta;
343
344                                 ia64_set_itc(ia64_get_itc() + adj);
345                         }
346 #if DEBUG_ITC_SYNC
347                         t[i].rt = rt;
348                         t[i].master = master_time_stamp;
349                         t[i].diff = delta;
350                         t[i].lat = adjust_latency/4;
351 #endif
352                 }
353         }
354         spin_unlock_irqrestore(&itc_sync_lock, flags);
355
356 #if DEBUG_ITC_SYNC
357         for (i = 0; i < NUM_ROUNDS; ++i)
358                 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
359                        t[i].rt, t[i].master, t[i].diff, t[i].lat);
360 #endif
361
362         printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
363                "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
364 }
365
366 /*
367  * Ideally sets up per-cpu profiling hooks.  Doesn't do much now...
368  */
369 static inline void __devinit
370 smp_setup_percpu_timer (void)
371 {
372 }
373
374 static void __devinit
375 smp_callin (void)
376 {
377         int cpuid, phys_id, itc_master;
378         struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
379         extern void ia64_init_itm(void);
380         extern volatile int time_keeper_id;
381
382 #ifdef CONFIG_PERFMON
383         extern void pfm_init_percpu(void);
384 #endif
385
386         cpuid = smp_processor_id();
387         phys_id = hard_smp_processor_id();
388         itc_master = time_keeper_id;
389
390         if (cpu_online(cpuid)) {
391                 printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
392                        phys_id, cpuid);
393                 BUG();
394         }
395
396         fix_b0_for_bsp();
397
398         lock_ipi_calllock();
399         cpu_set(cpuid, cpu_online_map);
400         unlock_ipi_calllock();
401         per_cpu(cpu_state, cpuid) = CPU_ONLINE;
402
403         smp_setup_percpu_timer();
404
405         ia64_mca_cmc_vector_setup();    /* Setup vector on AP */
406
407 #ifdef CONFIG_PERFMON
408         pfm_init_percpu();
409 #endif
410
411         local_irq_enable();
412
413         if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
414                 /*
415                  * Synchronize the ITC with the BP.  Need to do this after irqs are
416                  * enabled because ia64_sync_itc() calls smp_call_function_single(), which
417                  * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
418                  * local_bh_enable(), which bugs out if irqs are not enabled...
419                  */
420                 Dprintk("Going to syncup ITC with ITC Master.\n");
421                 ia64_sync_itc(itc_master);
422         }
423
424         /*
425          * Get our bogomips.
426          */
427         ia64_init_itm();
428
429         /*
430          * Delay calibration can be skipped if new processor is identical to the
431          * previous processor.
432          */
433         last_cpuinfo = cpu_data(cpuid - 1);
434         this_cpuinfo = local_cpu_data;
435         if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
436             last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
437             last_cpuinfo->features != this_cpuinfo->features ||
438             last_cpuinfo->revision != this_cpuinfo->revision ||
439             last_cpuinfo->family != this_cpuinfo->family ||
440             last_cpuinfo->archrev != this_cpuinfo->archrev ||
441             last_cpuinfo->model != this_cpuinfo->model)
442                 calibrate_delay();
443         local_cpu_data->loops_per_jiffy = loops_per_jiffy;
444
445 #ifdef CONFIG_IA32_SUPPORT
446         ia32_gdt_init();
447 #endif
448
449         /*
450          * Allow the master to continue.
451          */
452         cpu_set(cpuid, cpu_callin_map);
453         Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
454 }
455
456
457 /*
458  * Activate a secondary processor.  head.S calls this.
459  */
460 int __devinit
461 start_secondary (void *unused)
462 {
463         /* Early console may use I/O ports */
464         ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
465         Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
466         efi_map_pal_code();
467         cpu_init();
468         preempt_disable();
469         smp_callin();
470
471         cpu_idle();
472         return 0;
473 }
474
475 struct pt_regs * __devinit idle_regs(struct pt_regs *regs)
476 {
477         return NULL;
478 }
479
480 struct create_idle {
481         struct work_struct work;
482         struct task_struct *idle;
483         struct completion done;
484         int cpu;
485 };
486
487 void
488 do_fork_idle(struct work_struct *work)
489 {
490         struct create_idle *c_idle =
491                 container_of(work, struct create_idle, work);
492
493         c_idle->idle = fork_idle(c_idle->cpu);
494         complete(&c_idle->done);
495 }
496
497 static int __devinit
498 do_boot_cpu (int sapicid, int cpu)
499 {
500         int timeout;
501         struct create_idle c_idle = {
502                 .work = __WORK_INITIALIZER(c_idle.work, do_fork_idle),
503                 .cpu    = cpu,
504                 .done   = COMPLETION_INITIALIZER(c_idle.done),
505         };
506
507         c_idle.idle = get_idle_for_cpu(cpu);
508         if (c_idle.idle) {
509                 init_idle(c_idle.idle, cpu);
510                 goto do_rest;
511         }
512
513         /*
514          * We can't use kernel_thread since we must avoid to reschedule the child.
515          */
516         if (!keventd_up() || current_is_keventd())
517                 c_idle.work.func(&c_idle.work);
518         else {
519                 schedule_work(&c_idle.work);
520                 wait_for_completion(&c_idle.done);
521         }
522
523         if (IS_ERR(c_idle.idle))
524                 panic("failed fork for CPU %d", cpu);
525
526         set_idle_for_cpu(cpu, c_idle.idle);
527
528 do_rest:
529         task_for_booting_cpu = c_idle.idle;
530
531         Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
532
533         set_brendez_area(cpu);
534         platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
535
536         /*
537          * Wait 10s total for the AP to start
538          */
539         Dprintk("Waiting on callin_map ...");
540         for (timeout = 0; timeout < 100000; timeout++) {
541                 if (cpu_isset(cpu, cpu_callin_map))
542                         break;  /* It has booted */
543                 udelay(100);
544         }
545         Dprintk("\n");
546
547         if (!cpu_isset(cpu, cpu_callin_map)) {
548                 printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
549                 ia64_cpu_to_sapicid[cpu] = -1;
550                 cpu_clear(cpu, cpu_online_map);  /* was set in smp_callin() */
551                 return -EINVAL;
552         }
553         return 0;
554 }
555
556 static int __init
557 decay (char *str)
558 {
559         int ticks;
560         get_option (&str, &ticks);
561         return 1;
562 }
563
564 __setup("decay=", decay);
565
566 /*
567  * Initialize the logical CPU number to SAPICID mapping
568  */
569 void __init
570 smp_build_cpu_map (void)
571 {
572         int sapicid, cpu, i;
573         int boot_cpu_id = hard_smp_processor_id();
574
575         for (cpu = 0; cpu < NR_CPUS; cpu++) {
576                 ia64_cpu_to_sapicid[cpu] = -1;
577         }
578
579         ia64_cpu_to_sapicid[0] = boot_cpu_id;
580         cpus_clear(cpu_present_map);
581         cpu_set(0, cpu_present_map);
582         cpu_set(0, cpu_possible_map);
583         for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
584                 sapicid = smp_boot_data.cpu_phys_id[i];
585                 if (sapicid == boot_cpu_id)
586                         continue;
587                 cpu_set(cpu, cpu_present_map);
588                 cpu_set(cpu, cpu_possible_map);
589                 ia64_cpu_to_sapicid[cpu] = sapicid;
590                 cpu++;
591         }
592 }
593
594 /*
595  * Cycle through the APs sending Wakeup IPIs to boot each.
596  */
597 void __init
598 smp_prepare_cpus (unsigned int max_cpus)
599 {
600         int boot_cpu_id = hard_smp_processor_id();
601
602         /*
603          * Initialize the per-CPU profiling counter/multiplier
604          */
605
606         smp_setup_percpu_timer();
607
608         /*
609          * We have the boot CPU online for sure.
610          */
611         cpu_set(0, cpu_online_map);
612         cpu_set(0, cpu_callin_map);
613
614         local_cpu_data->loops_per_jiffy = loops_per_jiffy;
615         ia64_cpu_to_sapicid[0] = boot_cpu_id;
616
617         printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
618
619         current_thread_info()->cpu = 0;
620
621         /*
622          * If SMP should be disabled, then really disable it!
623          */
624         if (!max_cpus) {
625                 printk(KERN_INFO "SMP mode deactivated.\n");
626                 cpus_clear(cpu_online_map);
627                 cpus_clear(cpu_present_map);
628                 cpus_clear(cpu_possible_map);
629                 cpu_set(0, cpu_online_map);
630                 cpu_set(0, cpu_present_map);
631                 cpu_set(0, cpu_possible_map);
632                 return;
633         }
634 }
635
636 void __devinit smp_prepare_boot_cpu(void)
637 {
638         cpu_set(smp_processor_id(), cpu_online_map);
639         cpu_set(smp_processor_id(), cpu_callin_map);
640         per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
641 }
642
643 #ifdef CONFIG_HOTPLUG_CPU
644 static inline void
645 clear_cpu_sibling_map(int cpu)
646 {
647         int i;
648
649         for_each_cpu_mask(i, cpu_sibling_map[cpu])
650                 cpu_clear(cpu, cpu_sibling_map[i]);
651         for_each_cpu_mask(i, cpu_core_map[cpu])
652                 cpu_clear(cpu, cpu_core_map[i]);
653
654         cpu_sibling_map[cpu] = cpu_core_map[cpu] = CPU_MASK_NONE;
655 }
656
657 static void
658 remove_siblinginfo(int cpu)
659 {
660         int last = 0;
661
662         if (cpu_data(cpu)->threads_per_core == 1 &&
663             cpu_data(cpu)->cores_per_socket == 1) {
664                 cpu_clear(cpu, cpu_core_map[cpu]);
665                 cpu_clear(cpu, cpu_sibling_map[cpu]);
666                 return;
667         }
668
669         last = (cpus_weight(cpu_core_map[cpu]) == 1 ? 1 : 0);
670
671         /* remove it from all sibling map's */
672         clear_cpu_sibling_map(cpu);
673 }
674
675 extern void fixup_irqs(void);
676
677 int migrate_platform_irqs(unsigned int cpu)
678 {
679         int new_cpei_cpu;
680         irq_desc_t *desc = NULL;
681         cpumask_t       mask;
682         int             retval = 0;
683
684         /*
685          * dont permit CPEI target to removed.
686          */
687         if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
688                 printk ("CPU (%d) is CPEI Target\n", cpu);
689                 if (can_cpei_retarget()) {
690                         /*
691                          * Now re-target the CPEI to a different processor
692                          */
693                         new_cpei_cpu = any_online_cpu(cpu_online_map);
694                         mask = cpumask_of_cpu(new_cpei_cpu);
695                         set_cpei_target_cpu(new_cpei_cpu);
696                         desc = irq_desc + ia64_cpe_irq;
697                         /*
698                          * Switch for now, immediatly, we need to do fake intr
699                          * as other interrupts, but need to study CPEI behaviour with
700                          * polling before making changes.
701                          */
702                         if (desc) {
703                                 desc->chip->disable(ia64_cpe_irq);
704                                 desc->chip->set_affinity(ia64_cpe_irq, mask);
705                                 desc->chip->enable(ia64_cpe_irq);
706                                 printk ("Re-targetting CPEI to cpu %d\n", new_cpei_cpu);
707                         }
708                 }
709                 if (!desc) {
710                         printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
711                         retval = -EBUSY;
712                 }
713         }
714         return retval;
715 }
716
717 /* must be called with cpucontrol mutex held */
718 int __cpu_disable(void)
719 {
720         int cpu = smp_processor_id();
721
722         /*
723          * dont permit boot processor for now
724          */
725         if (cpu == 0 && !bsp_remove_ok) {
726                 printk ("Your platform does not support removal of BSP\n");
727                 return (-EBUSY);
728         }
729
730         cpu_clear(cpu, cpu_online_map);
731
732         if (migrate_platform_irqs(cpu)) {
733                 cpu_set(cpu, cpu_online_map);
734                 return (-EBUSY);
735         }
736
737         remove_siblinginfo(cpu);
738         cpu_clear(cpu, cpu_online_map);
739         fixup_irqs();
740         local_flush_tlb_all();
741         cpu_clear(cpu, cpu_callin_map);
742         return 0;
743 }
744
745 void __cpu_die(unsigned int cpu)
746 {
747         unsigned int i;
748
749         for (i = 0; i < 100; i++) {
750                 /* They ack this in play_dead by setting CPU_DEAD */
751                 if (per_cpu(cpu_state, cpu) == CPU_DEAD)
752                 {
753                         printk ("CPU %d is now offline\n", cpu);
754                         return;
755                 }
756                 msleep(100);
757         }
758         printk(KERN_ERR "CPU %u didn't die...\n", cpu);
759 }
760 #else /* !CONFIG_HOTPLUG_CPU */
761 int __cpu_disable(void)
762 {
763         return -ENOSYS;
764 }
765
766 void __cpu_die(unsigned int cpu)
767 {
768         /* We said "no" in __cpu_disable */
769         BUG();
770 }
771 #endif /* CONFIG_HOTPLUG_CPU */
772
773 void
774 smp_cpus_done (unsigned int dummy)
775 {
776         int cpu;
777         unsigned long bogosum = 0;
778
779         /*
780          * Allow the user to impress friends.
781          */
782
783         for_each_online_cpu(cpu) {
784                 bogosum += cpu_data(cpu)->loops_per_jiffy;
785         }
786
787         printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
788                (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
789 }
790
791 static inline void __devinit
792 set_cpu_sibling_map(int cpu)
793 {
794         int i;
795
796         for_each_online_cpu(i) {
797                 if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
798                         cpu_set(i, cpu_core_map[cpu]);
799                         cpu_set(cpu, cpu_core_map[i]);
800                         if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
801                                 cpu_set(i, cpu_sibling_map[cpu]);
802                                 cpu_set(cpu, cpu_sibling_map[i]);
803                         }
804                 }
805         }
806 }
807
808 int __devinit
809 __cpu_up (unsigned int cpu)
810 {
811         int ret;
812         int sapicid;
813
814         sapicid = ia64_cpu_to_sapicid[cpu];
815         if (sapicid == -1)
816                 return -EINVAL;
817
818         /*
819          * Already booted cpu? not valid anymore since we dont
820          * do idle loop tightspin anymore.
821          */
822         if (cpu_isset(cpu, cpu_callin_map))
823                 return -EINVAL;
824
825         per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
826         /* Processor goes to start_secondary(), sets online flag */
827         ret = do_boot_cpu(sapicid, cpu);
828         if (ret < 0)
829                 return ret;
830
831         if (cpu_data(cpu)->threads_per_core == 1 &&
832             cpu_data(cpu)->cores_per_socket == 1) {
833                 cpu_set(cpu, cpu_sibling_map[cpu]);
834                 cpu_set(cpu, cpu_core_map[cpu]);
835                 return 0;
836         }
837
838         set_cpu_sibling_map(cpu);
839
840         return 0;
841 }
842
843 /*
844  * Assume that CPU's have been discovered by some platform-dependent interface.  For
845  * SoftSDV/Lion, that would be ACPI.
846  *
847  * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
848  */
849 void __init
850 init_smp_config(void)
851 {
852         struct fptr {
853                 unsigned long fp;
854                 unsigned long gp;
855         } *ap_startup;
856         long sal_ret;
857
858         /* Tell SAL where to drop the AP's.  */
859         ap_startup = (struct fptr *) start_ap;
860         sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
861                                        ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
862         if (sal_ret < 0)
863                 printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
864                        ia64_sal_strerror(sal_ret));
865 }
866
867 /*
868  * identify_siblings(cpu) gets called from identify_cpu. This populates the 
869  * information related to logical execution units in per_cpu_data structure.
870  */
871 void __devinit
872 identify_siblings(struct cpuinfo_ia64 *c)
873 {
874         s64 status;
875         u16 pltid;
876         pal_logical_to_physical_t info;
877
878         if (smp_num_cpucores == 1 && smp_num_siblings == 1)
879                 return;
880
881         if ((status = ia64_pal_logical_to_phys(-1, &info)) != PAL_STATUS_SUCCESS) {
882                 printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
883                        status);
884                 return;
885         }
886         if ((status = ia64_sal_physical_id_info(&pltid)) != PAL_STATUS_SUCCESS) {
887                 printk(KERN_ERR "ia64_sal_pltid failed with %ld\n", status);
888                 return;
889         }
890
891         c->socket_id =  (pltid << 8) | info.overview_ppid;
892         c->cores_per_socket = info.overview_cpp;
893         c->threads_per_core = info.overview_tpc;
894         c->num_log = info.overview_num_log;
895
896         c->core_id = info.log1_cid;
897         c->thread_id = info.log1_tid;
898 }
899
900 /*
901  * returns non zero, if multi-threading is enabled
902  * on at least one physical package. Due to hotplug cpu
903  * and (maxcpus=), all threads may not necessarily be enabled
904  * even though the processor supports multi-threading.
905  */
906 int is_multithreading_enabled(void)
907 {
908         int i, j;
909
910         for_each_present_cpu(i) {
911                 for_each_present_cpu(j) {
912                         if (j == i)
913                                 continue;
914                         if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
915                                 if (cpu_data(j)->core_id == cpu_data(i)->core_id)
916                                         return 1;
917                         }
918                 }
919         }
920         return 0;
921 }
922 EXPORT_SYMBOL_GPL(is_multithreading_enabled);