Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[pandora-kernel.git] / arch / ia64 / kernel / ptrace.c
1 /*
2  * Kernel support for the ptrace() and syscall tracing interfaces.
3  *
4  * Copyright (C) 1999-2005 Hewlett-Packard Co
5  *      David Mosberger-Tang <davidm@hpl.hp.com>
6  * Copyright (C) 2006 Intel Co
7  *  2006-08-12  - IA64 Native Utrace implementation support added by
8  *      Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *
10  * Derived from the x86 and Alpha versions.
11  */
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
15 #include <linux/mm.h>
16 #include <linux/errno.h>
17 #include <linux/ptrace.h>
18 #include <linux/user.h>
19 #include <linux/security.h>
20 #include <linux/audit.h>
21 #include <linux/signal.h>
22 #include <linux/regset.h>
23 #include <linux/elf.h>
24 #include <linux/tracehook.h>
25
26 #include <asm/pgtable.h>
27 #include <asm/processor.h>
28 #include <asm/ptrace_offsets.h>
29 #include <asm/rse.h>
30 #include <asm/system.h>
31 #include <asm/uaccess.h>
32 #include <asm/unwind.h>
33 #ifdef CONFIG_PERFMON
34 #include <asm/perfmon.h>
35 #endif
36
37 #include "entry.h"
38
39 /*
40  * Bits in the PSR that we allow ptrace() to change:
41  *      be, up, ac, mfl, mfh (the user mask; five bits total)
42  *      db (debug breakpoint fault; one bit)
43  *      id (instruction debug fault disable; one bit)
44  *      dd (data debug fault disable; one bit)
45  *      ri (restart instruction; two bits)
46  *      is (instruction set; one bit)
47  */
48 #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS      \
49                    | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
50
51 #define MASK(nbits)     ((1UL << (nbits)) - 1)  /* mask with NBITS bits set */
52 #define PFM_MASK        MASK(38)
53
54 #define PTRACE_DEBUG    0
55
56 #if PTRACE_DEBUG
57 # define dprintk(format...)     printk(format)
58 # define inline
59 #else
60 # define dprintk(format...)
61 #endif
62
63 /* Return TRUE if PT was created due to kernel-entry via a system-call.  */
64
65 static inline int
66 in_syscall (struct pt_regs *pt)
67 {
68         return (long) pt->cr_ifs >= 0;
69 }
70
71 /*
72  * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
73  * bitset where bit i is set iff the NaT bit of register i is set.
74  */
75 unsigned long
76 ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
77 {
78 #       define GET_BITS(first, last, unat)                              \
79         ({                                                              \
80                 unsigned long bit = ia64_unat_pos(&pt->r##first);       \
81                 unsigned long nbits = (last - first + 1);               \
82                 unsigned long mask = MASK(nbits) << first;              \
83                 unsigned long dist;                                     \
84                 if (bit < first)                                        \
85                         dist = 64 + bit - first;                        \
86                 else                                                    \
87                         dist = bit - first;                             \
88                 ia64_rotr(unat, dist) & mask;                           \
89         })
90         unsigned long val;
91
92         /*
93          * Registers that are stored consecutively in struct pt_regs
94          * can be handled in parallel.  If the register order in
95          * struct_pt_regs changes, this code MUST be updated.
96          */
97         val  = GET_BITS( 1,  1, scratch_unat);
98         val |= GET_BITS( 2,  3, scratch_unat);
99         val |= GET_BITS(12, 13, scratch_unat);
100         val |= GET_BITS(14, 14, scratch_unat);
101         val |= GET_BITS(15, 15, scratch_unat);
102         val |= GET_BITS( 8, 11, scratch_unat);
103         val |= GET_BITS(16, 31, scratch_unat);
104         return val;
105
106 #       undef GET_BITS
107 }
108
109 /*
110  * Set the NaT bits for the scratch registers according to NAT and
111  * return the resulting unat (assuming the scratch registers are
112  * stored in PT).
113  */
114 unsigned long
115 ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
116 {
117 #       define PUT_BITS(first, last, nat)                               \
118         ({                                                              \
119                 unsigned long bit = ia64_unat_pos(&pt->r##first);       \
120                 unsigned long nbits = (last - first + 1);               \
121                 unsigned long mask = MASK(nbits) << first;              \
122                 long dist;                                              \
123                 if (bit < first)                                        \
124                         dist = 64 + bit - first;                        \
125                 else                                                    \
126                         dist = bit - first;                             \
127                 ia64_rotl(nat & mask, dist);                            \
128         })
129         unsigned long scratch_unat;
130
131         /*
132          * Registers that are stored consecutively in struct pt_regs
133          * can be handled in parallel.  If the register order in
134          * struct_pt_regs changes, this code MUST be updated.
135          */
136         scratch_unat  = PUT_BITS( 1,  1, nat);
137         scratch_unat |= PUT_BITS( 2,  3, nat);
138         scratch_unat |= PUT_BITS(12, 13, nat);
139         scratch_unat |= PUT_BITS(14, 14, nat);
140         scratch_unat |= PUT_BITS(15, 15, nat);
141         scratch_unat |= PUT_BITS( 8, 11, nat);
142         scratch_unat |= PUT_BITS(16, 31, nat);
143
144         return scratch_unat;
145
146 #       undef PUT_BITS
147 }
148
149 #define IA64_MLX_TEMPLATE       0x2
150 #define IA64_MOVL_OPCODE        6
151
152 void
153 ia64_increment_ip (struct pt_regs *regs)
154 {
155         unsigned long w0, ri = ia64_psr(regs)->ri + 1;
156
157         if (ri > 2) {
158                 ri = 0;
159                 regs->cr_iip += 16;
160         } else if (ri == 2) {
161                 get_user(w0, (char __user *) regs->cr_iip + 0);
162                 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
163                         /*
164                          * rfi'ing to slot 2 of an MLX bundle causes
165                          * an illegal operation fault.  We don't want
166                          * that to happen...
167                          */
168                         ri = 0;
169                         regs->cr_iip += 16;
170                 }
171         }
172         ia64_psr(regs)->ri = ri;
173 }
174
175 void
176 ia64_decrement_ip (struct pt_regs *regs)
177 {
178         unsigned long w0, ri = ia64_psr(regs)->ri - 1;
179
180         if (ia64_psr(regs)->ri == 0) {
181                 regs->cr_iip -= 16;
182                 ri = 2;
183                 get_user(w0, (char __user *) regs->cr_iip + 0);
184                 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
185                         /*
186                          * rfi'ing to slot 2 of an MLX bundle causes
187                          * an illegal operation fault.  We don't want
188                          * that to happen...
189                          */
190                         ri = 1;
191                 }
192         }
193         ia64_psr(regs)->ri = ri;
194 }
195
196 /*
197  * This routine is used to read an rnat bits that are stored on the
198  * kernel backing store.  Since, in general, the alignment of the user
199  * and kernel are different, this is not completely trivial.  In
200  * essence, we need to construct the user RNAT based on up to two
201  * kernel RNAT values and/or the RNAT value saved in the child's
202  * pt_regs.
203  *
204  * user rbs
205  *
206  * +--------+ <-- lowest address
207  * | slot62 |
208  * +--------+
209  * |  rnat  | 0x....1f8
210  * +--------+
211  * | slot00 | \
212  * +--------+ |
213  * | slot01 | > child_regs->ar_rnat
214  * +--------+ |
215  * | slot02 | /                         kernel rbs
216  * +--------+                           +--------+
217  *          <- child_regs->ar_bspstore  | slot61 | <-- krbs
218  * +- - - - +                           +--------+
219  *                                      | slot62 |
220  * +- - - - +                           +--------+
221  *                                      |  rnat  |
222  * +- - - - +                           +--------+
223  *   vrnat                              | slot00 |
224  * +- - - - +                           +--------+
225  *                                      =        =
226  *                                      +--------+
227  *                                      | slot00 | \
228  *                                      +--------+ |
229  *                                      | slot01 | > child_stack->ar_rnat
230  *                                      +--------+ |
231  *                                      | slot02 | /
232  *                                      +--------+
233  *                                                <--- child_stack->ar_bspstore
234  *
235  * The way to think of this code is as follows: bit 0 in the user rnat
236  * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
237  * value.  The kernel rnat value holding this bit is stored in
238  * variable rnat0.  rnat1 is loaded with the kernel rnat value that
239  * form the upper bits of the user rnat value.
240  *
241  * Boundary cases:
242  *
243  * o when reading the rnat "below" the first rnat slot on the kernel
244  *   backing store, rnat0/rnat1 are set to 0 and the low order bits are
245  *   merged in from pt->ar_rnat.
246  *
247  * o when reading the rnat "above" the last rnat slot on the kernel
248  *   backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
249  */
250 static unsigned long
251 get_rnat (struct task_struct *task, struct switch_stack *sw,
252           unsigned long *krbs, unsigned long *urnat_addr,
253           unsigned long *urbs_end)
254 {
255         unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
256         unsigned long umask = 0, mask, m;
257         unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
258         long num_regs, nbits;
259         struct pt_regs *pt;
260
261         pt = task_pt_regs(task);
262         kbsp = (unsigned long *) sw->ar_bspstore;
263         ubspstore = (unsigned long *) pt->ar_bspstore;
264
265         if (urbs_end < urnat_addr)
266                 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
267         else
268                 nbits = 63;
269         mask = MASK(nbits);
270         /*
271          * First, figure out which bit number slot 0 in user-land maps
272          * to in the kernel rnat.  Do this by figuring out how many
273          * register slots we're beyond the user's backingstore and
274          * then computing the equivalent address in kernel space.
275          */
276         num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
277         slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
278         shift = ia64_rse_slot_num(slot0_kaddr);
279         rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
280         rnat0_kaddr = rnat1_kaddr - 64;
281
282         if (ubspstore + 63 > urnat_addr) {
283                 /* some bits need to be merged in from pt->ar_rnat */
284                 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
285                 urnat = (pt->ar_rnat & umask);
286                 mask &= ~umask;
287                 if (!mask)
288                         return urnat;
289         }
290
291         m = mask << shift;
292         if (rnat0_kaddr >= kbsp)
293                 rnat0 = sw->ar_rnat;
294         else if (rnat0_kaddr > krbs)
295                 rnat0 = *rnat0_kaddr;
296         urnat |= (rnat0 & m) >> shift;
297
298         m = mask >> (63 - shift);
299         if (rnat1_kaddr >= kbsp)
300                 rnat1 = sw->ar_rnat;
301         else if (rnat1_kaddr > krbs)
302                 rnat1 = *rnat1_kaddr;
303         urnat |= (rnat1 & m) << (63 - shift);
304         return urnat;
305 }
306
307 /*
308  * The reverse of get_rnat.
309  */
310 static void
311 put_rnat (struct task_struct *task, struct switch_stack *sw,
312           unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
313           unsigned long *urbs_end)
314 {
315         unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
316         unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
317         long num_regs, nbits;
318         struct pt_regs *pt;
319         unsigned long cfm, *urbs_kargs;
320
321         pt = task_pt_regs(task);
322         kbsp = (unsigned long *) sw->ar_bspstore;
323         ubspstore = (unsigned long *) pt->ar_bspstore;
324
325         urbs_kargs = urbs_end;
326         if (in_syscall(pt)) {
327                 /*
328                  * If entered via syscall, don't allow user to set rnat bits
329                  * for syscall args.
330                  */
331                 cfm = pt->cr_ifs;
332                 urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
333         }
334
335         if (urbs_kargs >= urnat_addr)
336                 nbits = 63;
337         else {
338                 if ((urnat_addr - 63) >= urbs_kargs)
339                         return;
340                 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
341         }
342         mask = MASK(nbits);
343
344         /*
345          * First, figure out which bit number slot 0 in user-land maps
346          * to in the kernel rnat.  Do this by figuring out how many
347          * register slots we're beyond the user's backingstore and
348          * then computing the equivalent address in kernel space.
349          */
350         num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
351         slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
352         shift = ia64_rse_slot_num(slot0_kaddr);
353         rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
354         rnat0_kaddr = rnat1_kaddr - 64;
355
356         if (ubspstore + 63 > urnat_addr) {
357                 /* some bits need to be place in pt->ar_rnat: */
358                 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
359                 pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
360                 mask &= ~umask;
361                 if (!mask)
362                         return;
363         }
364         /*
365          * Note: Section 11.1 of the EAS guarantees that bit 63 of an
366          * rnat slot is ignored. so we don't have to clear it here.
367          */
368         rnat0 = (urnat << shift);
369         m = mask << shift;
370         if (rnat0_kaddr >= kbsp)
371                 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
372         else if (rnat0_kaddr > krbs)
373                 *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
374
375         rnat1 = (urnat >> (63 - shift));
376         m = mask >> (63 - shift);
377         if (rnat1_kaddr >= kbsp)
378                 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
379         else if (rnat1_kaddr > krbs)
380                 *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
381 }
382
383 static inline int
384 on_kernel_rbs (unsigned long addr, unsigned long bspstore,
385                unsigned long urbs_end)
386 {
387         unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
388                                                       urbs_end);
389         return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
390 }
391
392 /*
393  * Read a word from the user-level backing store of task CHILD.  ADDR
394  * is the user-level address to read the word from, VAL a pointer to
395  * the return value, and USER_BSP gives the end of the user-level
396  * backing store (i.e., it's the address that would be in ar.bsp after
397  * the user executed a "cover" instruction).
398  *
399  * This routine takes care of accessing the kernel register backing
400  * store for those registers that got spilled there.  It also takes
401  * care of calculating the appropriate RNaT collection words.
402  */
403 long
404 ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
405            unsigned long user_rbs_end, unsigned long addr, long *val)
406 {
407         unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
408         struct pt_regs *child_regs;
409         size_t copied;
410         long ret;
411
412         urbs_end = (long *) user_rbs_end;
413         laddr = (unsigned long *) addr;
414         child_regs = task_pt_regs(child);
415         bspstore = (unsigned long *) child_regs->ar_bspstore;
416         krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
417         if (on_kernel_rbs(addr, (unsigned long) bspstore,
418                           (unsigned long) urbs_end))
419         {
420                 /*
421                  * Attempt to read the RBS in an area that's actually
422                  * on the kernel RBS => read the corresponding bits in
423                  * the kernel RBS.
424                  */
425                 rnat_addr = ia64_rse_rnat_addr(laddr);
426                 ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
427
428                 if (laddr == rnat_addr) {
429                         /* return NaT collection word itself */
430                         *val = ret;
431                         return 0;
432                 }
433
434                 if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
435                         /*
436                          * It is implementation dependent whether the
437                          * data portion of a NaT value gets saved on a
438                          * st8.spill or RSE spill (e.g., see EAS 2.6,
439                          * 4.4.4.6 Register Spill and Fill).  To get
440                          * consistent behavior across all possible
441                          * IA-64 implementations, we return zero in
442                          * this case.
443                          */
444                         *val = 0;
445                         return 0;
446                 }
447
448                 if (laddr < urbs_end) {
449                         /*
450                          * The desired word is on the kernel RBS and
451                          * is not a NaT.
452                          */
453                         regnum = ia64_rse_num_regs(bspstore, laddr);
454                         *val = *ia64_rse_skip_regs(krbs, regnum);
455                         return 0;
456                 }
457         }
458         copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
459         if (copied != sizeof(ret))
460                 return -EIO;
461         *val = ret;
462         return 0;
463 }
464
465 long
466 ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
467            unsigned long user_rbs_end, unsigned long addr, long val)
468 {
469         unsigned long *bspstore, *krbs, regnum, *laddr;
470         unsigned long *urbs_end = (long *) user_rbs_end;
471         struct pt_regs *child_regs;
472
473         laddr = (unsigned long *) addr;
474         child_regs = task_pt_regs(child);
475         bspstore = (unsigned long *) child_regs->ar_bspstore;
476         krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
477         if (on_kernel_rbs(addr, (unsigned long) bspstore,
478                           (unsigned long) urbs_end))
479         {
480                 /*
481                  * Attempt to write the RBS in an area that's actually
482                  * on the kernel RBS => write the corresponding bits
483                  * in the kernel RBS.
484                  */
485                 if (ia64_rse_is_rnat_slot(laddr))
486                         put_rnat(child, child_stack, krbs, laddr, val,
487                                  urbs_end);
488                 else {
489                         if (laddr < urbs_end) {
490                                 regnum = ia64_rse_num_regs(bspstore, laddr);
491                                 *ia64_rse_skip_regs(krbs, regnum) = val;
492                         }
493                 }
494         } else if (access_process_vm(child, addr, &val, sizeof(val), 1)
495                    != sizeof(val))
496                 return -EIO;
497         return 0;
498 }
499
500 /*
501  * Calculate the address of the end of the user-level register backing
502  * store.  This is the address that would have been stored in ar.bsp
503  * if the user had executed a "cover" instruction right before
504  * entering the kernel.  If CFMP is not NULL, it is used to return the
505  * "current frame mask" that was active at the time the kernel was
506  * entered.
507  */
508 unsigned long
509 ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
510                        unsigned long *cfmp)
511 {
512         unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
513         long ndirty;
514
515         krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
516         bspstore = (unsigned long *) pt->ar_bspstore;
517         ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
518
519         if (in_syscall(pt))
520                 ndirty += (cfm & 0x7f);
521         else
522                 cfm &= ~(1UL << 63);    /* clear valid bit */
523
524         if (cfmp)
525                 *cfmp = cfm;
526         return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
527 }
528
529 /*
530  * Synchronize (i.e, write) the RSE backing store living in kernel
531  * space to the VM of the CHILD task.  SW and PT are the pointers to
532  * the switch_stack and pt_regs structures, respectively.
533  * USER_RBS_END is the user-level address at which the backing store
534  * ends.
535  */
536 long
537 ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
538                     unsigned long user_rbs_start, unsigned long user_rbs_end)
539 {
540         unsigned long addr, val;
541         long ret;
542
543         /* now copy word for word from kernel rbs to user rbs: */
544         for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
545                 ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
546                 if (ret < 0)
547                         return ret;
548                 if (access_process_vm(child, addr, &val, sizeof(val), 1)
549                     != sizeof(val))
550                         return -EIO;
551         }
552         return 0;
553 }
554
555 static long
556 ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
557                 unsigned long user_rbs_start, unsigned long user_rbs_end)
558 {
559         unsigned long addr, val;
560         long ret;
561
562         /* now copy word for word from user rbs to kernel rbs: */
563         for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
564                 if (access_process_vm(child, addr, &val, sizeof(val), 0)
565                                 != sizeof(val))
566                         return -EIO;
567
568                 ret = ia64_poke(child, sw, user_rbs_end, addr, val);
569                 if (ret < 0)
570                         return ret;
571         }
572         return 0;
573 }
574
575 typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
576                             unsigned long, unsigned long);
577
578 static void do_sync_rbs(struct unw_frame_info *info, void *arg)
579 {
580         struct pt_regs *pt;
581         unsigned long urbs_end;
582         syncfunc_t fn = arg;
583
584         if (unw_unwind_to_user(info) < 0)
585                 return;
586         pt = task_pt_regs(info->task);
587         urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
588
589         fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
590 }
591
592 /*
593  * when a thread is stopped (ptraced), debugger might change thread's user
594  * stack (change memory directly), and we must avoid the RSE stored in kernel
595  * to override user stack (user space's RSE is newer than kernel's in the
596  * case). To workaround the issue, we copy kernel RSE to user RSE before the
597  * task is stopped, so user RSE has updated data.  we then copy user RSE to
598  * kernel after the task is resummed from traced stop and kernel will use the
599  * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
600  * synchronize user RSE to kernel.
601  */
602 void ia64_ptrace_stop(void)
603 {
604         if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
605                 return;
606         set_notify_resume(current);
607         unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
608 }
609
610 /*
611  * This is called to read back the register backing store.
612  */
613 void ia64_sync_krbs(void)
614 {
615         clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
616
617         unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
618 }
619
620 /*
621  * After PTRACE_ATTACH, a thread's register backing store area in user
622  * space is assumed to contain correct data whenever the thread is
623  * stopped.  arch_ptrace_stop takes care of this on tracing stops.
624  * But if the child was already stopped for job control when we attach
625  * to it, then it might not ever get into ptrace_stop by the time we
626  * want to examine the user memory containing the RBS.
627  */
628 void
629 ptrace_attach_sync_user_rbs (struct task_struct *child)
630 {
631         int stopped = 0;
632         struct unw_frame_info info;
633
634         /*
635          * If the child is in TASK_STOPPED, we need to change that to
636          * TASK_TRACED momentarily while we operate on it.  This ensures
637          * that the child won't be woken up and return to user mode while
638          * we are doing the sync.  (It can only be woken up for SIGKILL.)
639          */
640
641         read_lock(&tasklist_lock);
642         if (child->signal) {
643                 spin_lock_irq(&child->sighand->siglock);
644                 if (child->state == TASK_STOPPED &&
645                     !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
646                         set_notify_resume(child);
647
648                         child->state = TASK_TRACED;
649                         stopped = 1;
650                 }
651                 spin_unlock_irq(&child->sighand->siglock);
652         }
653         read_unlock(&tasklist_lock);
654
655         if (!stopped)
656                 return;
657
658         unw_init_from_blocked_task(&info, child);
659         do_sync_rbs(&info, ia64_sync_user_rbs);
660
661         /*
662          * Now move the child back into TASK_STOPPED if it should be in a
663          * job control stop, so that SIGCONT can be used to wake it up.
664          */
665         read_lock(&tasklist_lock);
666         if (child->signal) {
667                 spin_lock_irq(&child->sighand->siglock);
668                 if (child->state == TASK_TRACED &&
669                     (child->signal->flags & SIGNAL_STOP_STOPPED)) {
670                         child->state = TASK_STOPPED;
671                 }
672                 spin_unlock_irq(&child->sighand->siglock);
673         }
674         read_unlock(&tasklist_lock);
675 }
676
677 static inline int
678 thread_matches (struct task_struct *thread, unsigned long addr)
679 {
680         unsigned long thread_rbs_end;
681         struct pt_regs *thread_regs;
682
683         if (ptrace_check_attach(thread, 0) < 0)
684                 /*
685                  * If the thread is not in an attachable state, we'll
686                  * ignore it.  The net effect is that if ADDR happens
687                  * to overlap with the portion of the thread's
688                  * register backing store that is currently residing
689                  * on the thread's kernel stack, then ptrace() may end
690                  * up accessing a stale value.  But if the thread
691                  * isn't stopped, that's a problem anyhow, so we're
692                  * doing as well as we can...
693                  */
694                 return 0;
695
696         thread_regs = task_pt_regs(thread);
697         thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL);
698         if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end))
699                 return 0;
700
701         return 1;       /* looks like we've got a winner */
702 }
703
704 /*
705  * Write f32-f127 back to task->thread.fph if it has been modified.
706  */
707 inline void
708 ia64_flush_fph (struct task_struct *task)
709 {
710         struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
711
712         /*
713          * Prevent migrating this task while
714          * we're fiddling with the FPU state
715          */
716         preempt_disable();
717         if (ia64_is_local_fpu_owner(task) && psr->mfh) {
718                 psr->mfh = 0;
719                 task->thread.flags |= IA64_THREAD_FPH_VALID;
720                 ia64_save_fpu(&task->thread.fph[0]);
721         }
722         preempt_enable();
723 }
724
725 /*
726  * Sync the fph state of the task so that it can be manipulated
727  * through thread.fph.  If necessary, f32-f127 are written back to
728  * thread.fph or, if the fph state hasn't been used before, thread.fph
729  * is cleared to zeroes.  Also, access to f32-f127 is disabled to
730  * ensure that the task picks up the state from thread.fph when it
731  * executes again.
732  */
733 void
734 ia64_sync_fph (struct task_struct *task)
735 {
736         struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
737
738         ia64_flush_fph(task);
739         if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
740                 task->thread.flags |= IA64_THREAD_FPH_VALID;
741                 memset(&task->thread.fph, 0, sizeof(task->thread.fph));
742         }
743         ia64_drop_fpu(task);
744         psr->dfh = 1;
745 }
746
747 /*
748  * Change the machine-state of CHILD such that it will return via the normal
749  * kernel exit-path, rather than the syscall-exit path.
750  */
751 static void
752 convert_to_non_syscall (struct task_struct *child, struct pt_regs  *pt,
753                         unsigned long cfm)
754 {
755         struct unw_frame_info info, prev_info;
756         unsigned long ip, sp, pr;
757
758         unw_init_from_blocked_task(&info, child);
759         while (1) {
760                 prev_info = info;
761                 if (unw_unwind(&info) < 0)
762                         return;
763
764                 unw_get_sp(&info, &sp);
765                 if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
766                     < IA64_PT_REGS_SIZE) {
767                         dprintk("ptrace.%s: ran off the top of the kernel "
768                                 "stack\n", __func__);
769                         return;
770                 }
771                 if (unw_get_pr (&prev_info, &pr) < 0) {
772                         unw_get_rp(&prev_info, &ip);
773                         dprintk("ptrace.%s: failed to read "
774                                 "predicate register (ip=0x%lx)\n",
775                                 __func__, ip);
776                         return;
777                 }
778                 if (unw_is_intr_frame(&info)
779                     && (pr & (1UL << PRED_USER_STACK)))
780                         break;
781         }
782
783         /*
784          * Note: at the time of this call, the target task is blocked
785          * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
786          * (aka, "pLvSys") we redirect execution from
787          * .work_pending_syscall_end to .work_processed_kernel.
788          */
789         unw_get_pr(&prev_info, &pr);
790         pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
791         pr |=  (1UL << PRED_NON_SYSCALL);
792         unw_set_pr(&prev_info, pr);
793
794         pt->cr_ifs = (1UL << 63) | cfm;
795         /*
796          * Clear the memory that is NOT written on syscall-entry to
797          * ensure we do not leak kernel-state to user when execution
798          * resumes.
799          */
800         pt->r2 = 0;
801         pt->r3 = 0;
802         pt->r14 = 0;
803         memset(&pt->r16, 0, 16*8);      /* clear r16-r31 */
804         memset(&pt->f6, 0, 6*16);       /* clear f6-f11 */
805         pt->b7 = 0;
806         pt->ar_ccv = 0;
807         pt->ar_csd = 0;
808         pt->ar_ssd = 0;
809 }
810
811 static int
812 access_nat_bits (struct task_struct *child, struct pt_regs *pt,
813                  struct unw_frame_info *info,
814                  unsigned long *data, int write_access)
815 {
816         unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
817         char nat = 0;
818
819         if (write_access) {
820                 nat_bits = *data;
821                 scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
822                 if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
823                         dprintk("ptrace: failed to set ar.unat\n");
824                         return -1;
825                 }
826                 for (regnum = 4; regnum <= 7; ++regnum) {
827                         unw_get_gr(info, regnum, &dummy, &nat);
828                         unw_set_gr(info, regnum, dummy,
829                                    (nat_bits >> regnum) & 1);
830                 }
831         } else {
832                 if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
833                         dprintk("ptrace: failed to read ar.unat\n");
834                         return -1;
835                 }
836                 nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
837                 for (regnum = 4; regnum <= 7; ++regnum) {
838                         unw_get_gr(info, regnum, &dummy, &nat);
839                         nat_bits |= (nat != 0) << regnum;
840                 }
841                 *data = nat_bits;
842         }
843         return 0;
844 }
845
846 static int
847 access_uarea (struct task_struct *child, unsigned long addr,
848               unsigned long *data, int write_access);
849
850 static long
851 ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
852 {
853         unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
854         struct unw_frame_info info;
855         struct ia64_fpreg fpval;
856         struct switch_stack *sw;
857         struct pt_regs *pt;
858         long ret, retval = 0;
859         char nat = 0;
860         int i;
861
862         if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
863                 return -EIO;
864
865         pt = task_pt_regs(child);
866         sw = (struct switch_stack *) (child->thread.ksp + 16);
867         unw_init_from_blocked_task(&info, child);
868         if (unw_unwind_to_user(&info) < 0) {
869                 return -EIO;
870         }
871
872         if (((unsigned long) ppr & 0x7) != 0) {
873                 dprintk("ptrace:unaligned register address %p\n", ppr);
874                 return -EIO;
875         }
876
877         if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
878             || access_uarea(child, PT_AR_EC, &ec, 0) < 0
879             || access_uarea(child, PT_AR_LC, &lc, 0) < 0
880             || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
881             || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
882             || access_uarea(child, PT_CFM, &cfm, 0)
883             || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
884                 return -EIO;
885
886         /* control regs */
887
888         retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
889         retval |= __put_user(psr, &ppr->cr_ipsr);
890
891         /* app regs */
892
893         retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
894         retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
895         retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
896         retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
897         retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
898         retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
899
900         retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
901         retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
902         retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
903         retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
904         retval |= __put_user(cfm, &ppr->cfm);
905
906         /* gr1-gr3 */
907
908         retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
909         retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
910
911         /* gr4-gr7 */
912
913         for (i = 4; i < 8; i++) {
914                 if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
915                         return -EIO;
916                 retval |= __put_user(val, &ppr->gr[i]);
917         }
918
919         /* gr8-gr11 */
920
921         retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
922
923         /* gr12-gr15 */
924
925         retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
926         retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
927         retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
928
929         /* gr16-gr31 */
930
931         retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
932
933         /* b0 */
934
935         retval |= __put_user(pt->b0, &ppr->br[0]);
936
937         /* b1-b5 */
938
939         for (i = 1; i < 6; i++) {
940                 if (unw_access_br(&info, i, &val, 0) < 0)
941                         return -EIO;
942                 __put_user(val, &ppr->br[i]);
943         }
944
945         /* b6-b7 */
946
947         retval |= __put_user(pt->b6, &ppr->br[6]);
948         retval |= __put_user(pt->b7, &ppr->br[7]);
949
950         /* fr2-fr5 */
951
952         for (i = 2; i < 6; i++) {
953                 if (unw_get_fr(&info, i, &fpval) < 0)
954                         return -EIO;
955                 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
956         }
957
958         /* fr6-fr11 */
959
960         retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
961                                  sizeof(struct ia64_fpreg) * 6);
962
963         /* fp scratch regs(12-15) */
964
965         retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
966                                  sizeof(struct ia64_fpreg) * 4);
967
968         /* fr16-fr31 */
969
970         for (i = 16; i < 32; i++) {
971                 if (unw_get_fr(&info, i, &fpval) < 0)
972                         return -EIO;
973                 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
974         }
975
976         /* fph */
977
978         ia64_flush_fph(child);
979         retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
980                                  sizeof(ppr->fr[32]) * 96);
981
982         /*  preds */
983
984         retval |= __put_user(pt->pr, &ppr->pr);
985
986         /* nat bits */
987
988         retval |= __put_user(nat_bits, &ppr->nat);
989
990         ret = retval ? -EIO : 0;
991         return ret;
992 }
993
994 static long
995 ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
996 {
997         unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
998         struct unw_frame_info info;
999         struct switch_stack *sw;
1000         struct ia64_fpreg fpval;
1001         struct pt_regs *pt;
1002         long ret, retval = 0;
1003         int i;
1004
1005         memset(&fpval, 0, sizeof(fpval));
1006
1007         if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
1008                 return -EIO;
1009
1010         pt = task_pt_regs(child);
1011         sw = (struct switch_stack *) (child->thread.ksp + 16);
1012         unw_init_from_blocked_task(&info, child);
1013         if (unw_unwind_to_user(&info) < 0) {
1014                 return -EIO;
1015         }
1016
1017         if (((unsigned long) ppr & 0x7) != 0) {
1018                 dprintk("ptrace:unaligned register address %p\n", ppr);
1019                 return -EIO;
1020         }
1021
1022         /* control regs */
1023
1024         retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
1025         retval |= __get_user(psr, &ppr->cr_ipsr);
1026
1027         /* app regs */
1028
1029         retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1030         retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
1031         retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1032         retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1033         retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1034         retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1035
1036         retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1037         retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1038         retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1039         retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1040         retval |= __get_user(cfm, &ppr->cfm);
1041
1042         /* gr1-gr3 */
1043
1044         retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1045         retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1046
1047         /* gr4-gr7 */
1048
1049         for (i = 4; i < 8; i++) {
1050                 retval |= __get_user(val, &ppr->gr[i]);
1051                 /* NaT bit will be set via PT_NAT_BITS: */
1052                 if (unw_set_gr(&info, i, val, 0) < 0)
1053                         return -EIO;
1054         }
1055
1056         /* gr8-gr11 */
1057
1058         retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1059
1060         /* gr12-gr15 */
1061
1062         retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1063         retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1064         retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1065
1066         /* gr16-gr31 */
1067
1068         retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1069
1070         /* b0 */
1071
1072         retval |= __get_user(pt->b0, &ppr->br[0]);
1073
1074         /* b1-b5 */
1075
1076         for (i = 1; i < 6; i++) {
1077                 retval |= __get_user(val, &ppr->br[i]);
1078                 unw_set_br(&info, i, val);
1079         }
1080
1081         /* b6-b7 */
1082
1083         retval |= __get_user(pt->b6, &ppr->br[6]);
1084         retval |= __get_user(pt->b7, &ppr->br[7]);
1085
1086         /* fr2-fr5 */
1087
1088         for (i = 2; i < 6; i++) {
1089                 retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1090                 if (unw_set_fr(&info, i, fpval) < 0)
1091                         return -EIO;
1092         }
1093
1094         /* fr6-fr11 */
1095
1096         retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1097                                    sizeof(ppr->fr[6]) * 6);
1098
1099         /* fp scratch regs(12-15) */
1100
1101         retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1102                                    sizeof(ppr->fr[12]) * 4);
1103
1104         /* fr16-fr31 */
1105
1106         for (i = 16; i < 32; i++) {
1107                 retval |= __copy_from_user(&fpval, &ppr->fr[i],
1108                                            sizeof(fpval));
1109                 if (unw_set_fr(&info, i, fpval) < 0)
1110                         return -EIO;
1111         }
1112
1113         /* fph */
1114
1115         ia64_sync_fph(child);
1116         retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1117                                    sizeof(ppr->fr[32]) * 96);
1118
1119         /* preds */
1120
1121         retval |= __get_user(pt->pr, &ppr->pr);
1122
1123         /* nat bits */
1124
1125         retval |= __get_user(nat_bits, &ppr->nat);
1126
1127         retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
1128         retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
1129         retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1130         retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1131         retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1132         retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1133         retval |= access_uarea(child, PT_CFM, &cfm, 1);
1134         retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1135
1136         ret = retval ? -EIO : 0;
1137         return ret;
1138 }
1139
1140 void
1141 user_enable_single_step (struct task_struct *child)
1142 {
1143         struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1144
1145         set_tsk_thread_flag(child, TIF_SINGLESTEP);
1146         child_psr->ss = 1;
1147 }
1148
1149 void
1150 user_enable_block_step (struct task_struct *child)
1151 {
1152         struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1153
1154         set_tsk_thread_flag(child, TIF_SINGLESTEP);
1155         child_psr->tb = 1;
1156 }
1157
1158 void
1159 user_disable_single_step (struct task_struct *child)
1160 {
1161         struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1162
1163         /* make sure the single step/taken-branch trap bits are not set: */
1164         clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1165         child_psr->ss = 0;
1166         child_psr->tb = 0;
1167 }
1168
1169 /*
1170  * Called by kernel/ptrace.c when detaching..
1171  *
1172  * Make sure the single step bit is not set.
1173  */
1174 void
1175 ptrace_disable (struct task_struct *child)
1176 {
1177         user_disable_single_step(child);
1178 }
1179
1180 long
1181 arch_ptrace (struct task_struct *child, long request, long addr, long data)
1182 {
1183         switch (request) {
1184         case PTRACE_PEEKTEXT:
1185         case PTRACE_PEEKDATA:
1186                 /* read word at location addr */
1187                 if (access_process_vm(child, addr, &data, sizeof(data), 0)
1188                     != sizeof(data))
1189                         return -EIO;
1190                 /* ensure return value is not mistaken for error code */
1191                 force_successful_syscall_return();
1192                 return data;
1193
1194         /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1195          * by the generic ptrace_request().
1196          */
1197
1198         case PTRACE_PEEKUSR:
1199                 /* read the word at addr in the USER area */
1200                 if (access_uarea(child, addr, &data, 0) < 0)
1201                         return -EIO;
1202                 /* ensure return value is not mistaken for error code */
1203                 force_successful_syscall_return();
1204                 return data;
1205
1206         case PTRACE_POKEUSR:
1207                 /* write the word at addr in the USER area */
1208                 if (access_uarea(child, addr, &data, 1) < 0)
1209                         return -EIO;
1210                 return 0;
1211
1212         case PTRACE_OLD_GETSIGINFO:
1213                 /* for backwards-compatibility */
1214                 return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1215
1216         case PTRACE_OLD_SETSIGINFO:
1217                 /* for backwards-compatibility */
1218                 return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1219
1220         case PTRACE_GETREGS:
1221                 return ptrace_getregs(child,
1222                                       (struct pt_all_user_regs __user *) data);
1223
1224         case PTRACE_SETREGS:
1225                 return ptrace_setregs(child,
1226                                       (struct pt_all_user_regs __user *) data);
1227
1228         default:
1229                 return ptrace_request(child, request, addr, data);
1230         }
1231 }
1232
1233
1234 /* "asmlinkage" so the input arguments are preserved... */
1235
1236 asmlinkage long
1237 syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1238                      long arg4, long arg5, long arg6, long arg7,
1239                      struct pt_regs regs)
1240 {
1241         if (test_thread_flag(TIF_SYSCALL_TRACE))
1242                 if (tracehook_report_syscall_entry(&regs))
1243                         return -ENOSYS;
1244
1245         /* copy user rbs to kernel rbs */
1246         if (test_thread_flag(TIF_RESTORE_RSE))
1247                 ia64_sync_krbs();
1248
1249         if (unlikely(current->audit_context)) {
1250                 long syscall;
1251                 int arch;
1252
1253                 if (IS_IA32_PROCESS(&regs)) {
1254                         syscall = regs.r1;
1255                         arch = AUDIT_ARCH_I386;
1256                 } else {
1257                         syscall = regs.r15;
1258                         arch = AUDIT_ARCH_IA64;
1259                 }
1260
1261                 audit_syscall_entry(arch, syscall, arg0, arg1, arg2, arg3);
1262         }
1263
1264         return 0;
1265 }
1266
1267 /* "asmlinkage" so the input arguments are preserved... */
1268
1269 asmlinkage void
1270 syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1271                      long arg4, long arg5, long arg6, long arg7,
1272                      struct pt_regs regs)
1273 {
1274         int step;
1275
1276         if (unlikely(current->audit_context)) {
1277                 int success = AUDITSC_RESULT(regs.r10);
1278                 long result = regs.r8;
1279
1280                 if (success != AUDITSC_SUCCESS)
1281                         result = -result;
1282                 audit_syscall_exit(success, result);
1283         }
1284
1285         step = test_thread_flag(TIF_SINGLESTEP);
1286         if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1287                 tracehook_report_syscall_exit(&regs, step);
1288
1289         /* copy user rbs to kernel rbs */
1290         if (test_thread_flag(TIF_RESTORE_RSE))
1291                 ia64_sync_krbs();
1292 }
1293
1294 /* Utrace implementation starts here */
1295 struct regset_get {
1296         void *kbuf;
1297         void __user *ubuf;
1298 };
1299
1300 struct regset_set {
1301         const void *kbuf;
1302         const void __user *ubuf;
1303 };
1304
1305 struct regset_getset {
1306         struct task_struct *target;
1307         const struct user_regset *regset;
1308         union {
1309                 struct regset_get get;
1310                 struct regset_set set;
1311         } u;
1312         unsigned int pos;
1313         unsigned int count;
1314         int ret;
1315 };
1316
1317 static int
1318 access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
1319                 unsigned long addr, unsigned long *data, int write_access)
1320 {
1321         struct pt_regs *pt;
1322         unsigned long *ptr = NULL;
1323         int ret;
1324         char nat = 0;
1325
1326         pt = task_pt_regs(target);
1327         switch (addr) {
1328         case ELF_GR_OFFSET(1):
1329                 ptr = &pt->r1;
1330                 break;
1331         case ELF_GR_OFFSET(2):
1332         case ELF_GR_OFFSET(3):
1333                 ptr = (void *)&pt->r2 + (addr - ELF_GR_OFFSET(2));
1334                 break;
1335         case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7):
1336                 if (write_access) {
1337                         /* read NaT bit first: */
1338                         unsigned long dummy;
1339
1340                         ret = unw_get_gr(info, addr/8, &dummy, &nat);
1341                         if (ret < 0)
1342                                 return ret;
1343                 }
1344                 return unw_access_gr(info, addr/8, data, &nat, write_access);
1345         case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11):
1346                 ptr = (void *)&pt->r8 + addr - ELF_GR_OFFSET(8);
1347                 break;
1348         case ELF_GR_OFFSET(12):
1349         case ELF_GR_OFFSET(13):
1350                 ptr = (void *)&pt->r12 + addr - ELF_GR_OFFSET(12);
1351                 break;
1352         case ELF_GR_OFFSET(14):
1353                 ptr = &pt->r14;
1354                 break;
1355         case ELF_GR_OFFSET(15):
1356                 ptr = &pt->r15;
1357         }
1358         if (write_access)
1359                 *ptr = *data;
1360         else
1361                 *data = *ptr;
1362         return 0;
1363 }
1364
1365 static int
1366 access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
1367                 unsigned long addr, unsigned long *data, int write_access)
1368 {
1369         struct pt_regs *pt;
1370         unsigned long *ptr = NULL;
1371
1372         pt = task_pt_regs(target);
1373         switch (addr) {
1374         case ELF_BR_OFFSET(0):
1375                 ptr = &pt->b0;
1376                 break;
1377         case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1378                 return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
1379                                      data, write_access);
1380         case ELF_BR_OFFSET(6):
1381                 ptr = &pt->b6;
1382                 break;
1383         case ELF_BR_OFFSET(7):
1384                 ptr = &pt->b7;
1385         }
1386         if (write_access)
1387                 *ptr = *data;
1388         else
1389                 *data = *ptr;
1390         return 0;
1391 }
1392
1393 static int
1394 access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
1395                 unsigned long addr, unsigned long *data, int write_access)
1396 {
1397         struct pt_regs *pt;
1398         unsigned long cfm, urbs_end;
1399         unsigned long *ptr = NULL;
1400
1401         pt = task_pt_regs(target);
1402         if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
1403                 switch (addr) {
1404                 case ELF_AR_RSC_OFFSET:
1405                         /* force PL3 */
1406                         if (write_access)
1407                                 pt->ar_rsc = *data | (3 << 2);
1408                         else
1409                                 *data = pt->ar_rsc;
1410                         return 0;
1411                 case ELF_AR_BSP_OFFSET:
1412                         /*
1413                          * By convention, we use PT_AR_BSP to refer to
1414                          * the end of the user-level backing store.
1415                          * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1416                          * to get the real value of ar.bsp at the time
1417                          * the kernel was entered.
1418                          *
1419                          * Furthermore, when changing the contents of
1420                          * PT_AR_BSP (or PT_CFM) while the task is
1421                          * blocked in a system call, convert the state
1422                          * so that the non-system-call exit
1423                          * path is used.  This ensures that the proper
1424                          * state will be picked up when resuming
1425                          * execution.  However, it *also* means that
1426                          * once we write PT_AR_BSP/PT_CFM, it won't be
1427                          * possible to modify the syscall arguments of
1428                          * the pending system call any longer.  This
1429                          * shouldn't be an issue because modifying
1430                          * PT_AR_BSP/PT_CFM generally implies that
1431                          * we're either abandoning the pending system
1432                          * call or that we defer it's re-execution
1433                          * (e.g., due to GDB doing an inferior
1434                          * function call).
1435                          */
1436                         urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1437                         if (write_access) {
1438                                 if (*data != urbs_end) {
1439                                         if (in_syscall(pt))
1440                                                 convert_to_non_syscall(target,
1441                                                                        pt,
1442                                                                        cfm);
1443                                         /*
1444                                          * Simulate user-level write
1445                                          * of ar.bsp:
1446                                          */
1447                                         pt->loadrs = 0;
1448                                         pt->ar_bspstore = *data;
1449                                 }
1450                         } else
1451                                 *data = urbs_end;
1452                         return 0;
1453                 case ELF_AR_BSPSTORE_OFFSET:
1454                         ptr = &pt->ar_bspstore;
1455                         break;
1456                 case ELF_AR_RNAT_OFFSET:
1457                         ptr = &pt->ar_rnat;
1458                         break;
1459                 case ELF_AR_CCV_OFFSET:
1460                         ptr = &pt->ar_ccv;
1461                         break;
1462                 case ELF_AR_UNAT_OFFSET:
1463                         ptr = &pt->ar_unat;
1464                         break;
1465                 case ELF_AR_FPSR_OFFSET:
1466                         ptr = &pt->ar_fpsr;
1467                         break;
1468                 case ELF_AR_PFS_OFFSET:
1469                         ptr = &pt->ar_pfs;
1470                         break;
1471                 case ELF_AR_LC_OFFSET:
1472                         return unw_access_ar(info, UNW_AR_LC, data,
1473                                              write_access);
1474                 case ELF_AR_EC_OFFSET:
1475                         return unw_access_ar(info, UNW_AR_EC, data,
1476                                              write_access);
1477                 case ELF_AR_CSD_OFFSET:
1478                         ptr = &pt->ar_csd;
1479                         break;
1480                 case ELF_AR_SSD_OFFSET:
1481                         ptr = &pt->ar_ssd;
1482                 }
1483         } else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
1484                 switch (addr) {
1485                 case ELF_CR_IIP_OFFSET:
1486                         ptr = &pt->cr_iip;
1487                         break;
1488                 case ELF_CFM_OFFSET:
1489                         urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1490                         if (write_access) {
1491                                 if (((cfm ^ *data) & PFM_MASK) != 0) {
1492                                         if (in_syscall(pt))
1493                                                 convert_to_non_syscall(target,
1494                                                                        pt,
1495                                                                        cfm);
1496                                         pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1497                                                       | (*data & PFM_MASK));
1498                                 }
1499                         } else
1500                                 *data = cfm;
1501                         return 0;
1502                 case ELF_CR_IPSR_OFFSET:
1503                         if (write_access) {
1504                                 unsigned long tmp = *data;
1505                                 /* psr.ri==3 is a reserved value: SDM 2:25 */
1506                                 if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1507                                         tmp &= ~IA64_PSR_RI;
1508                                 pt->cr_ipsr = ((tmp & IPSR_MASK)
1509                                                | (pt->cr_ipsr & ~IPSR_MASK));
1510                         } else
1511                                 *data = (pt->cr_ipsr & IPSR_MASK);
1512                         return 0;
1513                 }
1514         } else if (addr == ELF_NAT_OFFSET)
1515                 return access_nat_bits(target, pt, info,
1516                                        data, write_access);
1517         else if (addr == ELF_PR_OFFSET)
1518                 ptr = &pt->pr;
1519         else
1520                 return -1;
1521
1522         if (write_access)
1523                 *ptr = *data;
1524         else
1525                 *data = *ptr;
1526
1527         return 0;
1528 }
1529
1530 static int
1531 access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
1532                 unsigned long addr, unsigned long *data, int write_access)
1533 {
1534         if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(15))
1535                 return access_elf_gpreg(target, info, addr, data, write_access);
1536         else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
1537                 return access_elf_breg(target, info, addr, data, write_access);
1538         else
1539                 return access_elf_areg(target, info, addr, data, write_access);
1540 }
1541
1542 void do_gpregs_get(struct unw_frame_info *info, void *arg)
1543 {
1544         struct pt_regs *pt;
1545         struct regset_getset *dst = arg;
1546         elf_greg_t tmp[16];
1547         unsigned int i, index, min_copy;
1548
1549         if (unw_unwind_to_user(info) < 0)
1550                 return;
1551
1552         /*
1553          * coredump format:
1554          *      r0-r31
1555          *      NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1556          *      predicate registers (p0-p63)
1557          *      b0-b7
1558          *      ip cfm user-mask
1559          *      ar.rsc ar.bsp ar.bspstore ar.rnat
1560          *      ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1561          */
1562
1563
1564         /* Skip r0 */
1565         if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1566                 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1567                                                       &dst->u.get.kbuf,
1568                                                       &dst->u.get.ubuf,
1569                                                       0, ELF_GR_OFFSET(1));
1570                 if (dst->ret || dst->count == 0)
1571                         return;
1572         }
1573
1574         /* gr1 - gr15 */
1575         if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1576                 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1577                 min_copy = ELF_GR_OFFSET(16) > (dst->pos + dst->count) ?
1578                          (dst->pos + dst->count) : ELF_GR_OFFSET(16);
1579                 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1580                                 index++)
1581                         if (access_elf_reg(dst->target, info, i,
1582                                                 &tmp[index], 0) < 0) {
1583                                 dst->ret = -EIO;
1584                                 return;
1585                         }
1586                 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1587                                 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1588                                 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1589                 if (dst->ret || dst->count == 0)
1590                         return;
1591         }
1592
1593         /* r16-r31 */
1594         if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1595                 pt = task_pt_regs(dst->target);
1596                 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1597                                 &dst->u.get.kbuf, &dst->u.get.ubuf, &pt->r16,
1598                                 ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1599                 if (dst->ret || dst->count == 0)
1600                         return;
1601         }
1602
1603         /* nat, pr, b0 - b7 */
1604         if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1605                 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1606                 min_copy = ELF_CR_IIP_OFFSET > (dst->pos + dst->count) ?
1607                          (dst->pos + dst->count) : ELF_CR_IIP_OFFSET;
1608                 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1609                                 index++)
1610                         if (access_elf_reg(dst->target, info, i,
1611                                                 &tmp[index], 0) < 0) {
1612                                 dst->ret = -EIO;
1613                                 return;
1614                         }
1615                 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1616                                 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1617                                 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1618                 if (dst->ret || dst->count == 0)
1619                         return;
1620         }
1621
1622         /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1623          * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1624          */
1625         if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1626                 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1627                 min_copy = ELF_AR_END_OFFSET > (dst->pos + dst->count) ?
1628                          (dst->pos + dst->count) : ELF_AR_END_OFFSET;
1629                 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1630                                 index++)
1631                         if (access_elf_reg(dst->target, info, i,
1632                                                 &tmp[index], 0) < 0) {
1633                                 dst->ret = -EIO;
1634                                 return;
1635                         }
1636                 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1637                                 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1638                                 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1639         }
1640 }
1641
1642 void do_gpregs_set(struct unw_frame_info *info, void *arg)
1643 {
1644         struct pt_regs *pt;
1645         struct regset_getset *dst = arg;
1646         elf_greg_t tmp[16];
1647         unsigned int i, index;
1648
1649         if (unw_unwind_to_user(info) < 0)
1650                 return;
1651
1652         /* Skip r0 */
1653         if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1654                 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1655                                                        &dst->u.set.kbuf,
1656                                                        &dst->u.set.ubuf,
1657                                                        0, ELF_GR_OFFSET(1));
1658                 if (dst->ret || dst->count == 0)
1659                         return;
1660         }
1661
1662         /* gr1-gr15 */
1663         if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1664                 i = dst->pos;
1665                 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1666                 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1667                                 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1668                                 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1669                 if (dst->ret)
1670                         return;
1671                 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1672                         if (access_elf_reg(dst->target, info, i,
1673                                                 &tmp[index], 1) < 0) {
1674                                 dst->ret = -EIO;
1675                                 return;
1676                         }
1677                 if (dst->count == 0)
1678                         return;
1679         }
1680
1681         /* gr16-gr31 */
1682         if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1683                 pt = task_pt_regs(dst->target);
1684                 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1685                                 &dst->u.set.kbuf, &dst->u.set.ubuf, &pt->r16,
1686                                 ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1687                 if (dst->ret || dst->count == 0)
1688                         return;
1689         }
1690
1691         /* nat, pr, b0 - b7 */
1692         if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1693                 i = dst->pos;
1694                 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1695                 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1696                                 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1697                                 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1698                 if (dst->ret)
1699                         return;
1700                 for (; i < dst->pos; i += sizeof(elf_greg_t), index++)
1701                         if (access_elf_reg(dst->target, info, i,
1702                                                 &tmp[index], 1) < 0) {
1703                                 dst->ret = -EIO;
1704                                 return;
1705                         }
1706                 if (dst->count == 0)
1707                         return;
1708         }
1709
1710         /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1711          * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1712          */
1713         if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1714                 i = dst->pos;
1715                 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1716                 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1717                                 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1718                                 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1719                 if (dst->ret)
1720                         return;
1721                 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1722                         if (access_elf_reg(dst->target, info, i,
1723                                                 &tmp[index], 1) < 0) {
1724                                 dst->ret = -EIO;
1725                                 return;
1726                         }
1727         }
1728 }
1729
1730 #define ELF_FP_OFFSET(i)        (i * sizeof(elf_fpreg_t))
1731
1732 void do_fpregs_get(struct unw_frame_info *info, void *arg)
1733 {
1734         struct regset_getset *dst = arg;
1735         struct task_struct *task = dst->target;
1736         elf_fpreg_t tmp[30];
1737         int index, min_copy, i;
1738
1739         if (unw_unwind_to_user(info) < 0)
1740                 return;
1741
1742         /* Skip pos 0 and 1 */
1743         if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1744                 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1745                                                       &dst->u.get.kbuf,
1746                                                       &dst->u.get.ubuf,
1747                                                       0, ELF_FP_OFFSET(2));
1748                 if (dst->count == 0 || dst->ret)
1749                         return;
1750         }
1751
1752         /* fr2-fr31 */
1753         if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1754                 index = (dst->pos - ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t);
1755
1756                 min_copy = min(((unsigned int)ELF_FP_OFFSET(32)),
1757                                 dst->pos + dst->count);
1758                 for (i = dst->pos; i < min_copy; i += sizeof(elf_fpreg_t),
1759                                 index++)
1760                         if (unw_get_fr(info, i / sizeof(elf_fpreg_t),
1761                                          &tmp[index])) {
1762                                 dst->ret = -EIO;
1763                                 return;
1764                         }
1765                 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1766                                 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1767                                 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1768                 if (dst->count == 0 || dst->ret)
1769                         return;
1770         }
1771
1772         /* fph */
1773         if (dst->count > 0) {
1774                 ia64_flush_fph(dst->target);
1775                 if (task->thread.flags & IA64_THREAD_FPH_VALID)
1776                         dst->ret = user_regset_copyout(
1777                                 &dst->pos, &dst->count,
1778                                 &dst->u.get.kbuf, &dst->u.get.ubuf,
1779                                 &dst->target->thread.fph,
1780                                 ELF_FP_OFFSET(32), -1);
1781                 else
1782                         /* Zero fill instead.  */
1783                         dst->ret = user_regset_copyout_zero(
1784                                 &dst->pos, &dst->count,
1785                                 &dst->u.get.kbuf, &dst->u.get.ubuf,
1786                                 ELF_FP_OFFSET(32), -1);
1787         }
1788 }
1789
1790 void do_fpregs_set(struct unw_frame_info *info, void *arg)
1791 {
1792         struct regset_getset *dst = arg;
1793         elf_fpreg_t fpreg, tmp[30];
1794         int index, start, end;
1795
1796         if (unw_unwind_to_user(info) < 0)
1797                 return;
1798
1799         /* Skip pos 0 and 1 */
1800         if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1801                 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1802                                                        &dst->u.set.kbuf,
1803                                                        &dst->u.set.ubuf,
1804                                                        0, ELF_FP_OFFSET(2));
1805                 if (dst->count == 0 || dst->ret)
1806                         return;
1807         }
1808
1809         /* fr2-fr31 */
1810         if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1811                 start = dst->pos;
1812                 end = min(((unsigned int)ELF_FP_OFFSET(32)),
1813                          dst->pos + dst->count);
1814                 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1815                                 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1816                                 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1817                 if (dst->ret)
1818                         return;
1819
1820                 if (start & 0xF) { /* only write high part */
1821                         if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
1822                                          &fpreg)) {
1823                                 dst->ret = -EIO;
1824                                 return;
1825                         }
1826                         tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
1827                                 = fpreg.u.bits[0];
1828                         start &= ~0xFUL;
1829                 }
1830                 if (end & 0xF) { /* only write low part */
1831                         if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
1832                                         &fpreg)) {
1833                                 dst->ret = -EIO;
1834                                 return;
1835                         }
1836                         tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
1837                                 = fpreg.u.bits[1];
1838                         end = (end + 0xF) & ~0xFUL;
1839                 }
1840
1841                 for ( ; start < end ; start += sizeof(elf_fpreg_t)) {
1842                         index = start / sizeof(elf_fpreg_t);
1843                         if (unw_set_fr(info, index, tmp[index - 2])) {
1844                                 dst->ret = -EIO;
1845                                 return;
1846                         }
1847                 }
1848                 if (dst->ret || dst->count == 0)
1849                         return;
1850         }
1851
1852         /* fph */
1853         if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
1854                 ia64_sync_fph(dst->target);
1855                 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1856                                                 &dst->u.set.kbuf,
1857                                                 &dst->u.set.ubuf,
1858                                                 &dst->target->thread.fph,
1859                                                 ELF_FP_OFFSET(32), -1);
1860         }
1861 }
1862
1863 static int
1864 do_regset_call(void (*call)(struct unw_frame_info *, void *),
1865                struct task_struct *target,
1866                const struct user_regset *regset,
1867                unsigned int pos, unsigned int count,
1868                const void *kbuf, const void __user *ubuf)
1869 {
1870         struct regset_getset info = { .target = target, .regset = regset,
1871                                  .pos = pos, .count = count,
1872                                  .u.set = { .kbuf = kbuf, .ubuf = ubuf },
1873                                  .ret = 0 };
1874
1875         if (target == current)
1876                 unw_init_running(call, &info);
1877         else {
1878                 struct unw_frame_info ufi;
1879                 memset(&ufi, 0, sizeof(ufi));
1880                 unw_init_from_blocked_task(&ufi, target);
1881                 (*call)(&ufi, &info);
1882         }
1883
1884         return info.ret;
1885 }
1886
1887 static int
1888 gpregs_get(struct task_struct *target,
1889            const struct user_regset *regset,
1890            unsigned int pos, unsigned int count,
1891            void *kbuf, void __user *ubuf)
1892 {
1893         return do_regset_call(do_gpregs_get, target, regset, pos, count,
1894                 kbuf, ubuf);
1895 }
1896
1897 static int gpregs_set(struct task_struct *target,
1898                 const struct user_regset *regset,
1899                 unsigned int pos, unsigned int count,
1900                 const void *kbuf, const void __user *ubuf)
1901 {
1902         return do_regset_call(do_gpregs_set, target, regset, pos, count,
1903                 kbuf, ubuf);
1904 }
1905
1906 static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
1907 {
1908         do_sync_rbs(info, ia64_sync_user_rbs);
1909 }
1910
1911 /*
1912  * This is called to write back the register backing store.
1913  * ptrace does this before it stops, so that a tracer reading the user
1914  * memory after the thread stops will get the current register data.
1915  */
1916 static int
1917 gpregs_writeback(struct task_struct *target,
1918                  const struct user_regset *regset,
1919                  int now)
1920 {
1921         if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
1922                 return 0;
1923         set_notify_resume(target);
1924         return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
1925                 NULL, NULL);
1926 }
1927
1928 static int
1929 fpregs_active(struct task_struct *target, const struct user_regset *regset)
1930 {
1931         return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
1932 }
1933
1934 static int fpregs_get(struct task_struct *target,
1935                 const struct user_regset *regset,
1936                 unsigned int pos, unsigned int count,
1937                 void *kbuf, void __user *ubuf)
1938 {
1939         return do_regset_call(do_fpregs_get, target, regset, pos, count,
1940                 kbuf, ubuf);
1941 }
1942
1943 static int fpregs_set(struct task_struct *target,
1944                 const struct user_regset *regset,
1945                 unsigned int pos, unsigned int count,
1946                 const void *kbuf, const void __user *ubuf)
1947 {
1948         return do_regset_call(do_fpregs_set, target, regset, pos, count,
1949                 kbuf, ubuf);
1950 }
1951
1952 static int
1953 access_uarea(struct task_struct *child, unsigned long addr,
1954               unsigned long *data, int write_access)
1955 {
1956         unsigned int pos = -1; /* an invalid value */
1957         int ret;
1958         unsigned long *ptr, regnum;
1959
1960         if ((addr & 0x7) != 0) {
1961                 dprintk("ptrace: unaligned register address 0x%lx\n", addr);
1962                 return -1;
1963         }
1964         if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
1965                 (addr >= PT_R7 + 8 && addr < PT_B1) ||
1966                 (addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
1967                 (addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
1968                 dprintk("ptrace: rejecting access to register "
1969                                         "address 0x%lx\n", addr);
1970                 return -1;
1971         }
1972
1973         switch (addr) {
1974         case PT_F32 ... (PT_F127 + 15):
1975                 pos = addr - PT_F32 + ELF_FP_OFFSET(32);
1976                 break;
1977         case PT_F2 ... (PT_F5 + 15):
1978                 pos = addr - PT_F2 + ELF_FP_OFFSET(2);
1979                 break;
1980         case PT_F10 ... (PT_F31 + 15):
1981                 pos = addr - PT_F10 + ELF_FP_OFFSET(10);
1982                 break;
1983         case PT_F6 ... (PT_F9 + 15):
1984                 pos = addr - PT_F6 + ELF_FP_OFFSET(6);
1985                 break;
1986         }
1987
1988         if (pos != -1) {
1989                 if (write_access)
1990                         ret = fpregs_set(child, NULL, pos,
1991                                 sizeof(unsigned long), data, NULL);
1992                 else
1993                         ret = fpregs_get(child, NULL, pos,
1994                                 sizeof(unsigned long), data, NULL);
1995                 if (ret != 0)
1996                         return -1;
1997                 return 0;
1998         }
1999
2000         switch (addr) {
2001         case PT_NAT_BITS:
2002                 pos = ELF_NAT_OFFSET;
2003                 break;
2004         case PT_R4 ... PT_R7:
2005                 pos = addr - PT_R4 + ELF_GR_OFFSET(4);
2006                 break;
2007         case PT_B1 ... PT_B5:
2008                 pos = addr - PT_B1 + ELF_BR_OFFSET(1);
2009                 break;
2010         case PT_AR_EC:
2011                 pos = ELF_AR_EC_OFFSET;
2012                 break;
2013         case PT_AR_LC:
2014                 pos = ELF_AR_LC_OFFSET;
2015                 break;
2016         case PT_CR_IPSR:
2017                 pos = ELF_CR_IPSR_OFFSET;
2018                 break;
2019         case PT_CR_IIP:
2020                 pos = ELF_CR_IIP_OFFSET;
2021                 break;
2022         case PT_CFM:
2023                 pos = ELF_CFM_OFFSET;
2024                 break;
2025         case PT_AR_UNAT:
2026                 pos = ELF_AR_UNAT_OFFSET;
2027                 break;
2028         case PT_AR_PFS:
2029                 pos = ELF_AR_PFS_OFFSET;
2030                 break;
2031         case PT_AR_RSC:
2032                 pos = ELF_AR_RSC_OFFSET;
2033                 break;
2034         case PT_AR_RNAT:
2035                 pos = ELF_AR_RNAT_OFFSET;
2036                 break;
2037         case PT_AR_BSPSTORE:
2038                 pos = ELF_AR_BSPSTORE_OFFSET;
2039                 break;
2040         case PT_PR:
2041                 pos = ELF_PR_OFFSET;
2042                 break;
2043         case PT_B6:
2044                 pos = ELF_BR_OFFSET(6);
2045                 break;
2046         case PT_AR_BSP:
2047                 pos = ELF_AR_BSP_OFFSET;
2048                 break;
2049         case PT_R1 ... PT_R3:
2050                 pos = addr - PT_R1 + ELF_GR_OFFSET(1);
2051                 break;
2052         case PT_R12 ... PT_R15:
2053                 pos = addr - PT_R12 + ELF_GR_OFFSET(12);
2054                 break;
2055         case PT_R8 ... PT_R11:
2056                 pos = addr - PT_R8 + ELF_GR_OFFSET(8);
2057                 break;
2058         case PT_R16 ... PT_R31:
2059                 pos = addr - PT_R16 + ELF_GR_OFFSET(16);
2060                 break;
2061         case PT_AR_CCV:
2062                 pos = ELF_AR_CCV_OFFSET;
2063                 break;
2064         case PT_AR_FPSR:
2065                 pos = ELF_AR_FPSR_OFFSET;
2066                 break;
2067         case PT_B0:
2068                 pos = ELF_BR_OFFSET(0);
2069                 break;
2070         case PT_B7:
2071                 pos = ELF_BR_OFFSET(7);
2072                 break;
2073         case PT_AR_CSD:
2074                 pos = ELF_AR_CSD_OFFSET;
2075                 break;
2076         case PT_AR_SSD:
2077                 pos = ELF_AR_SSD_OFFSET;
2078                 break;
2079         }
2080
2081         if (pos != -1) {
2082                 if (write_access)
2083                         ret = gpregs_set(child, NULL, pos,
2084                                 sizeof(unsigned long), data, NULL);
2085                 else
2086                         ret = gpregs_get(child, NULL, pos,
2087                                 sizeof(unsigned long), data, NULL);
2088                 if (ret != 0)
2089                         return -1;
2090                 return 0;
2091         }
2092
2093         /* access debug registers */
2094         if (addr >= PT_IBR) {
2095                 regnum = (addr - PT_IBR) >> 3;
2096                 ptr = &child->thread.ibr[0];
2097         } else {
2098                 regnum = (addr - PT_DBR) >> 3;
2099                 ptr = &child->thread.dbr[0];
2100         }
2101
2102         if (regnum >= 8) {
2103                 dprintk("ptrace: rejecting access to register "
2104                                 "address 0x%lx\n", addr);
2105                 return -1;
2106         }
2107 #ifdef CONFIG_PERFMON
2108         /*
2109          * Check if debug registers are used by perfmon. This
2110          * test must be done once we know that we can do the
2111          * operation, i.e. the arguments are all valid, but
2112          * before we start modifying the state.
2113          *
2114          * Perfmon needs to keep a count of how many processes
2115          * are trying to modify the debug registers for system
2116          * wide monitoring sessions.
2117          *
2118          * We also include read access here, because they may
2119          * cause the PMU-installed debug register state
2120          * (dbr[], ibr[]) to be reset. The two arrays are also
2121          * used by perfmon, but we do not use
2122          * IA64_THREAD_DBG_VALID. The registers are restored
2123          * by the PMU context switch code.
2124          */
2125         if (pfm_use_debug_registers(child))
2126                 return -1;
2127 #endif
2128
2129         if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
2130                 child->thread.flags |= IA64_THREAD_DBG_VALID;
2131                 memset(child->thread.dbr, 0,
2132                                 sizeof(child->thread.dbr));
2133                 memset(child->thread.ibr, 0,
2134                                 sizeof(child->thread.ibr));
2135         }
2136
2137         ptr += regnum;
2138
2139         if ((regnum & 1) && write_access) {
2140                 /* don't let the user set kernel-level breakpoints: */
2141                 *ptr = *data & ~(7UL << 56);
2142                 return 0;
2143         }
2144         if (write_access)
2145                 *ptr = *data;
2146         else
2147                 *data = *ptr;
2148         return 0;
2149 }
2150
2151 static const struct user_regset native_regsets[] = {
2152         {
2153                 .core_note_type = NT_PRSTATUS,
2154                 .n = ELF_NGREG,
2155                 .size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
2156                 .get = gpregs_get, .set = gpregs_set,
2157                 .writeback = gpregs_writeback
2158         },
2159         {
2160                 .core_note_type = NT_PRFPREG,
2161                 .n = ELF_NFPREG,
2162                 .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
2163                 .get = fpregs_get, .set = fpregs_set, .active = fpregs_active
2164         },
2165 };
2166
2167 static const struct user_regset_view user_ia64_view = {
2168         .name = "ia64",
2169         .e_machine = EM_IA_64,
2170         .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
2171 };
2172
2173 const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
2174 {
2175 #ifdef CONFIG_IA32_SUPPORT
2176         extern const struct user_regset_view user_ia32_view;
2177         if (IS_IA32_PROCESS(task_pt_regs(tsk)))
2178                 return &user_ia32_view;
2179 #endif
2180         return &user_ia64_view;
2181 }
2182
2183 struct syscall_get_set_args {
2184         unsigned int i;
2185         unsigned int n;
2186         unsigned long *args;
2187         struct pt_regs *regs;
2188         int rw;
2189 };
2190
2191 static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data)
2192 {
2193         struct syscall_get_set_args *args = data;
2194         struct pt_regs *pt = args->regs;
2195         unsigned long *krbs, cfm, ndirty;
2196         int i, count;
2197
2198         if (unw_unwind_to_user(info) < 0)
2199                 return;
2200
2201         cfm = pt->cr_ifs;
2202         krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
2203         ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
2204
2205         count = 0;
2206         if (in_syscall(pt))
2207                 count = min_t(int, args->n, cfm & 0x7f);
2208
2209         for (i = 0; i < count; i++) {
2210                 if (args->rw)
2211                         *ia64_rse_skip_regs(krbs, ndirty + i + args->i) =
2212                                 args->args[i];
2213                 else
2214                         args->args[i] = *ia64_rse_skip_regs(krbs,
2215                                 ndirty + i + args->i);
2216         }
2217
2218         if (!args->rw) {
2219                 while (i < args->n) {
2220                         args->args[i] = 0;
2221                         i++;
2222                 }
2223         }
2224 }
2225
2226 void ia64_syscall_get_set_arguments(struct task_struct *task,
2227         struct pt_regs *regs, unsigned int i, unsigned int n,
2228         unsigned long *args, int rw)
2229 {
2230         struct syscall_get_set_args data = {
2231                 .i = i,
2232                 .n = n,
2233                 .args = args,
2234                 .regs = regs,
2235                 .rw = rw,
2236         };
2237
2238         if (task == current)
2239                 unw_init_running(syscall_get_set_args_cb, &data);
2240         else {
2241                 struct unw_frame_info ufi;
2242                 memset(&ufi, 0, sizeof(ufi));
2243                 unw_init_from_blocked_task(&ufi, task);
2244                 syscall_get_set_args_cb(&ufi, &data);
2245         }
2246 }