kbuild: introduce utsrelease.h
[pandora-kernel.git] / arch / ia64 / kernel / mca.c
1 /*
2  * File:        mca.c
3  * Purpose:     Generic MCA handling layer
4  *
5  * Updated for latest kernel
6  * Copyright (C) 2003 Hewlett-Packard Co
7  *      David Mosberger-Tang <davidm@hpl.hp.com>
8  *
9  * Copyright (C) 2002 Dell Inc.
10  * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
11  *
12  * Copyright (C) 2002 Intel
13  * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
14  *
15  * Copyright (C) 2001 Intel
16  * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
17  *
18  * Copyright (C) 2000 Intel
19  * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
20  *
21  * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22  * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
23  *
24  * 03/04/15 D. Mosberger Added INIT backtrace support.
25  * 02/03/25 M. Domsch   GUID cleanups
26  *
27  * 02/01/04 J. Hall     Aligned MCA stack to 16 bytes, added platform vs. CPU
28  *                      error flag, set SAL default return values, changed
29  *                      error record structure to linked list, added init call
30  *                      to sal_get_state_info_size().
31  *
32  * 01/01/03 F. Lewis    Added setup of CMCI and CPEI IRQs, logging of corrected
33  *                      platform errors, completed code for logging of
34  *                      corrected & uncorrected machine check errors, and
35  *                      updated for conformance with Nov. 2000 revision of the
36  *                      SAL 3.0 spec.
37  * 00/03/29 C. Fleckenstein  Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38  *                           added min save state dump, added INIT handler.
39  *
40  * 2003-12-08 Keith Owens <kaos@sgi.com>
41  *            smp_call_function() must not be called from interrupt context (can
42  *            deadlock on tasklist_lock).  Use keventd to call smp_call_function().
43  *
44  * 2004-02-01 Keith Owens <kaos@sgi.com>
45  *            Avoid deadlock when using printk() for MCA and INIT records.
46  *            Delete all record printing code, moved to salinfo_decode in user space.
47  *            Mark variables and functions static where possible.
48  *            Delete dead variables and functions.
49  *            Reorder to remove the need for forward declarations and to consolidate
50  *            related code.
51  *
52  * 2005-08-12 Keith Owens <kaos@sgi.com>
53  *            Convert MCA/INIT handlers to use per event stacks and SAL/OS state.
54  *
55  * 2005-10-07 Keith Owens <kaos@sgi.com>
56  *            Add notify_die() hooks.
57  */
58 #include <linux/types.h>
59 #include <linux/init.h>
60 #include <linux/sched.h>
61 #include <linux/interrupt.h>
62 #include <linux/irq.h>
63 #include <linux/smp_lock.h>
64 #include <linux/bootmem.h>
65 #include <linux/acpi.h>
66 #include <linux/timer.h>
67 #include <linux/module.h>
68 #include <linux/kernel.h>
69 #include <linux/smp.h>
70 #include <linux/workqueue.h>
71 #include <linux/cpumask.h>
72
73 #include <asm/delay.h>
74 #include <asm/kdebug.h>
75 #include <asm/machvec.h>
76 #include <asm/meminit.h>
77 #include <asm/page.h>
78 #include <asm/ptrace.h>
79 #include <asm/system.h>
80 #include <asm/sal.h>
81 #include <asm/mca.h>
82
83 #include <asm/irq.h>
84 #include <asm/hw_irq.h>
85
86 #include "mca_drv.h"
87 #include "entry.h"
88
89 #if defined(IA64_MCA_DEBUG_INFO)
90 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
91 #else
92 # define IA64_MCA_DEBUG(fmt...)
93 #endif
94
95 /* Used by mca_asm.S */
96 u32                             ia64_mca_serialize;
97 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
98 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
99 DEFINE_PER_CPU(u64, ia64_mca_pal_pte);      /* PTE to map PAL code */
100 DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */
101
102 unsigned long __per_cpu_mca[NR_CPUS];
103
104 /* In mca_asm.S */
105 extern void                     ia64_os_init_dispatch_monarch (void);
106 extern void                     ia64_os_init_dispatch_slave (void);
107
108 static int monarch_cpu = -1;
109
110 static ia64_mc_info_t           ia64_mc_info;
111
112 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
113 #define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
114 #define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
115 #define CPE_HISTORY_LENGTH    5
116 #define CMC_HISTORY_LENGTH    5
117
118 static struct timer_list cpe_poll_timer;
119 static struct timer_list cmc_poll_timer;
120 /*
121  * This variable tells whether we are currently in polling mode.
122  * Start with this in the wrong state so we won't play w/ timers
123  * before the system is ready.
124  */
125 static int cmc_polling_enabled = 1;
126
127 /*
128  * Clearing this variable prevents CPE polling from getting activated
129  * in mca_late_init.  Use it if your system doesn't provide a CPEI,
130  * but encounters problems retrieving CPE logs.  This should only be
131  * necessary for debugging.
132  */
133 static int cpe_poll_enabled = 1;
134
135 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
136
137 static int mca_init __initdata;
138
139
140 static void inline
141 ia64_mca_spin(const char *func)
142 {
143         printk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
144         while (1)
145                 cpu_relax();
146 }
147 /*
148  * IA64_MCA log support
149  */
150 #define IA64_MAX_LOGS           2       /* Double-buffering for nested MCAs */
151 #define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
152
153 typedef struct ia64_state_log_s
154 {
155         spinlock_t      isl_lock;
156         int             isl_index;
157         unsigned long   isl_count;
158         ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
159 } ia64_state_log_t;
160
161 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
162
163 #define IA64_LOG_ALLOCATE(it, size) \
164         {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
165                 (ia64_err_rec_t *)alloc_bootmem(size); \
166         ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
167                 (ia64_err_rec_t *)alloc_bootmem(size);}
168 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
169 #define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
170 #define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
171 #define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
172 #define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
173 #define IA64_LOG_INDEX_INC(it) \
174     {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
175     ia64_state_log[it].isl_count++;}
176 #define IA64_LOG_INDEX_DEC(it) \
177     ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
178 #define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
179 #define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
180 #define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
181
182 /*
183  * ia64_log_init
184  *      Reset the OS ia64 log buffer
185  * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
186  * Outputs      :       None
187  */
188 static void __init
189 ia64_log_init(int sal_info_type)
190 {
191         u64     max_size = 0;
192
193         IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
194         IA64_LOG_LOCK_INIT(sal_info_type);
195
196         // SAL will tell us the maximum size of any error record of this type
197         max_size = ia64_sal_get_state_info_size(sal_info_type);
198         if (!max_size)
199                 /* alloc_bootmem() doesn't like zero-sized allocations! */
200                 return;
201
202         // set up OS data structures to hold error info
203         IA64_LOG_ALLOCATE(sal_info_type, max_size);
204         memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
205         memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
206 }
207
208 /*
209  * ia64_log_get
210  *
211  *      Get the current MCA log from SAL and copy it into the OS log buffer.
212  *
213  *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
214  *              irq_safe    whether you can use printk at this point
215  *  Outputs :   size        (total record length)
216  *              *buffer     (ptr to error record)
217  *
218  */
219 static u64
220 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
221 {
222         sal_log_record_header_t     *log_buffer;
223         u64                         total_len = 0;
224         int                         s;
225
226         IA64_LOG_LOCK(sal_info_type);
227
228         /* Get the process state information */
229         log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
230
231         total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
232
233         if (total_len) {
234                 IA64_LOG_INDEX_INC(sal_info_type);
235                 IA64_LOG_UNLOCK(sal_info_type);
236                 if (irq_safe) {
237                         IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
238                                        "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
239                 }
240                 *buffer = (u8 *) log_buffer;
241                 return total_len;
242         } else {
243                 IA64_LOG_UNLOCK(sal_info_type);
244                 return 0;
245         }
246 }
247
248 /*
249  *  ia64_mca_log_sal_error_record
250  *
251  *  This function retrieves a specified error record type from SAL
252  *  and wakes up any processes waiting for error records.
253  *
254  *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE)
255  *              FIXME: remove MCA and irq_safe.
256  */
257 static void
258 ia64_mca_log_sal_error_record(int sal_info_type)
259 {
260         u8 *buffer;
261         sal_log_record_header_t *rh;
262         u64 size;
263         int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
264 #ifdef IA64_MCA_DEBUG_INFO
265         static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
266 #endif
267
268         size = ia64_log_get(sal_info_type, &buffer, irq_safe);
269         if (!size)
270                 return;
271
272         salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
273
274         if (irq_safe)
275                 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
276                         smp_processor_id(),
277                         sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
278
279         /* Clear logs from corrected errors in case there's no user-level logger */
280         rh = (sal_log_record_header_t *)buffer;
281         if (rh->severity == sal_log_severity_corrected)
282                 ia64_sal_clear_state_info(sal_info_type);
283 }
284
285 /*
286  * search_mca_table
287  *  See if the MCA surfaced in an instruction range
288  *  that has been tagged as recoverable.
289  *
290  *  Inputs
291  *      first   First address range to check
292  *      last    Last address range to check
293  *      ip      Instruction pointer, address we are looking for
294  *
295  * Return value:
296  *      1 on Success (in the table)/ 0 on Failure (not in the  table)
297  */
298 int
299 search_mca_table (const struct mca_table_entry *first,
300                 const struct mca_table_entry *last,
301                 unsigned long ip)
302 {
303         const struct mca_table_entry *curr;
304         u64 curr_start, curr_end;
305
306         curr = first;
307         while (curr <= last) {
308                 curr_start = (u64) &curr->start_addr + curr->start_addr;
309                 curr_end = (u64) &curr->end_addr + curr->end_addr;
310
311                 if ((ip >= curr_start) && (ip <= curr_end)) {
312                         return 1;
313                 }
314                 curr++;
315         }
316         return 0;
317 }
318
319 /* Given an address, look for it in the mca tables. */
320 int mca_recover_range(unsigned long addr)
321 {
322         extern struct mca_table_entry __start___mca_table[];
323         extern struct mca_table_entry __stop___mca_table[];
324
325         return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
326 }
327 EXPORT_SYMBOL_GPL(mca_recover_range);
328
329 #ifdef CONFIG_ACPI
330
331 int cpe_vector = -1;
332 int ia64_cpe_irq = -1;
333
334 static irqreturn_t
335 ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs)
336 {
337         static unsigned long    cpe_history[CPE_HISTORY_LENGTH];
338         static int              index;
339         static DEFINE_SPINLOCK(cpe_history_lock);
340
341         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
342                        __FUNCTION__, cpe_irq, smp_processor_id());
343
344         /* SAL spec states this should run w/ interrupts enabled */
345         local_irq_enable();
346
347         /* Get the CPE error record and log it */
348         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
349
350         spin_lock(&cpe_history_lock);
351         if (!cpe_poll_enabled && cpe_vector >= 0) {
352
353                 int i, count = 1; /* we know 1 happened now */
354                 unsigned long now = jiffies;
355
356                 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
357                         if (now - cpe_history[i] <= HZ)
358                                 count++;
359                 }
360
361                 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
362                 if (count >= CPE_HISTORY_LENGTH) {
363
364                         cpe_poll_enabled = 1;
365                         spin_unlock(&cpe_history_lock);
366                         disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
367
368                         /*
369                          * Corrected errors will still be corrected, but
370                          * make sure there's a log somewhere that indicates
371                          * something is generating more than we can handle.
372                          */
373                         printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
374
375                         mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
376
377                         /* lock already released, get out now */
378                         return IRQ_HANDLED;
379                 } else {
380                         cpe_history[index++] = now;
381                         if (index == CPE_HISTORY_LENGTH)
382                                 index = 0;
383                 }
384         }
385         spin_unlock(&cpe_history_lock);
386         return IRQ_HANDLED;
387 }
388
389 #endif /* CONFIG_ACPI */
390
391 #ifdef CONFIG_ACPI
392 /*
393  * ia64_mca_register_cpev
394  *
395  *  Register the corrected platform error vector with SAL.
396  *
397  *  Inputs
398  *      cpev        Corrected Platform Error Vector number
399  *
400  *  Outputs
401  *      None
402  */
403 static void __init
404 ia64_mca_register_cpev (int cpev)
405 {
406         /* Register the CPE interrupt vector with SAL */
407         struct ia64_sal_retval isrv;
408
409         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
410         if (isrv.status) {
411                 printk(KERN_ERR "Failed to register Corrected Platform "
412                        "Error interrupt vector with SAL (status %ld)\n", isrv.status);
413                 return;
414         }
415
416         IA64_MCA_DEBUG("%s: corrected platform error "
417                        "vector %#x registered\n", __FUNCTION__, cpev);
418 }
419 #endif /* CONFIG_ACPI */
420
421 /*
422  * ia64_mca_cmc_vector_setup
423  *
424  *  Setup the corrected machine check vector register in the processor.
425  *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
426  *  This function is invoked on a per-processor basis.
427  *
428  * Inputs
429  *      None
430  *
431  * Outputs
432  *      None
433  */
434 void __cpuinit
435 ia64_mca_cmc_vector_setup (void)
436 {
437         cmcv_reg_t      cmcv;
438
439         cmcv.cmcv_regval        = 0;
440         cmcv.cmcv_mask          = 1;        /* Mask/disable interrupt at first */
441         cmcv.cmcv_vector        = IA64_CMC_VECTOR;
442         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
443
444         IA64_MCA_DEBUG("%s: CPU %d corrected "
445                        "machine check vector %#x registered.\n",
446                        __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
447
448         IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
449                        __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
450 }
451
452 /*
453  * ia64_mca_cmc_vector_disable
454  *
455  *  Mask the corrected machine check vector register in the processor.
456  *  This function is invoked on a per-processor basis.
457  *
458  * Inputs
459  *      dummy(unused)
460  *
461  * Outputs
462  *      None
463  */
464 static void
465 ia64_mca_cmc_vector_disable (void *dummy)
466 {
467         cmcv_reg_t      cmcv;
468
469         cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
470
471         cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
472         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
473
474         IA64_MCA_DEBUG("%s: CPU %d corrected "
475                        "machine check vector %#x disabled.\n",
476                        __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
477 }
478
479 /*
480  * ia64_mca_cmc_vector_enable
481  *
482  *  Unmask the corrected machine check vector register in the processor.
483  *  This function is invoked on a per-processor basis.
484  *
485  * Inputs
486  *      dummy(unused)
487  *
488  * Outputs
489  *      None
490  */
491 static void
492 ia64_mca_cmc_vector_enable (void *dummy)
493 {
494         cmcv_reg_t      cmcv;
495
496         cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
497
498         cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
499         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
500
501         IA64_MCA_DEBUG("%s: CPU %d corrected "
502                        "machine check vector %#x enabled.\n",
503                        __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
504 }
505
506 /*
507  * ia64_mca_cmc_vector_disable_keventd
508  *
509  * Called via keventd (smp_call_function() is not safe in interrupt context) to
510  * disable the cmc interrupt vector.
511  */
512 static void
513 ia64_mca_cmc_vector_disable_keventd(void *unused)
514 {
515         on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
516 }
517
518 /*
519  * ia64_mca_cmc_vector_enable_keventd
520  *
521  * Called via keventd (smp_call_function() is not safe in interrupt context) to
522  * enable the cmc interrupt vector.
523  */
524 static void
525 ia64_mca_cmc_vector_enable_keventd(void *unused)
526 {
527         on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
528 }
529
530 /*
531  * ia64_mca_wakeup
532  *
533  *      Send an inter-cpu interrupt to wake-up a particular cpu
534  *      and mark that cpu to be out of rendez.
535  *
536  *  Inputs  :   cpuid
537  *  Outputs :   None
538  */
539 static void
540 ia64_mca_wakeup(int cpu)
541 {
542         platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
543         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
544
545 }
546
547 /*
548  * ia64_mca_wakeup_all
549  *
550  *      Wakeup all the cpus which have rendez'ed previously.
551  *
552  *  Inputs  :   None
553  *  Outputs :   None
554  */
555 static void
556 ia64_mca_wakeup_all(void)
557 {
558         int cpu;
559
560         /* Clear the Rendez checkin flag for all cpus */
561         for_each_online_cpu(cpu) {
562                 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
563                         ia64_mca_wakeup(cpu);
564         }
565
566 }
567
568 /*
569  * ia64_mca_rendez_interrupt_handler
570  *
571  *      This is handler used to put slave processors into spinloop
572  *      while the monarch processor does the mca handling and later
573  *      wake each slave up once the monarch is done.
574  *
575  *  Inputs  :   None
576  *  Outputs :   None
577  */
578 static irqreturn_t
579 ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *regs)
580 {
581         unsigned long flags;
582         int cpu = smp_processor_id();
583         struct ia64_mca_notify_die nd =
584                 { .sos = NULL, .monarch_cpu = &monarch_cpu };
585
586         /* Mask all interrupts */
587         local_irq_save(flags);
588         if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", regs, (long)&nd, 0, 0)
589                         == NOTIFY_STOP)
590                 ia64_mca_spin(__FUNCTION__);
591
592         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
593         /* Register with the SAL monarch that the slave has
594          * reached SAL
595          */
596         ia64_sal_mc_rendez();
597
598         if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", regs, (long)&nd, 0, 0)
599                         == NOTIFY_STOP)
600                 ia64_mca_spin(__FUNCTION__);
601
602         /* Wait for the monarch cpu to exit. */
603         while (monarch_cpu != -1)
604                cpu_relax();     /* spin until monarch leaves */
605
606         if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", regs, (long)&nd, 0, 0)
607                         == NOTIFY_STOP)
608                 ia64_mca_spin(__FUNCTION__);
609
610         /* Enable all interrupts */
611         local_irq_restore(flags);
612         return IRQ_HANDLED;
613 }
614
615 /*
616  * ia64_mca_wakeup_int_handler
617  *
618  *      The interrupt handler for processing the inter-cpu interrupt to the
619  *      slave cpu which was spinning in the rendez loop.
620  *      Since this spinning is done by turning off the interrupts and
621  *      polling on the wakeup-interrupt bit in the IRR, there is
622  *      nothing useful to be done in the handler.
623  *
624  *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
625  *      arg             (Interrupt handler specific argument)
626  *      ptregs          (Exception frame at the time of the interrupt)
627  *  Outputs :   None
628  *
629  */
630 static irqreturn_t
631 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs)
632 {
633         return IRQ_HANDLED;
634 }
635
636 /* Function pointer for extra MCA recovery */
637 int (*ia64_mca_ucmc_extension)
638         (void*,struct ia64_sal_os_state*)
639         = NULL;
640
641 int
642 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
643 {
644         if (ia64_mca_ucmc_extension)
645                 return 1;
646
647         ia64_mca_ucmc_extension = fn;
648         return 0;
649 }
650
651 void
652 ia64_unreg_MCA_extension(void)
653 {
654         if (ia64_mca_ucmc_extension)
655                 ia64_mca_ucmc_extension = NULL;
656 }
657
658 EXPORT_SYMBOL(ia64_reg_MCA_extension);
659 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
660
661
662 static inline void
663 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
664 {
665         u64 fslot, tslot, nat;
666         *tr = *fr;
667         fslot = ((unsigned long)fr >> 3) & 63;
668         tslot = ((unsigned long)tr >> 3) & 63;
669         *tnat &= ~(1UL << tslot);
670         nat = (fnat >> fslot) & 1;
671         *tnat |= (nat << tslot);
672 }
673
674 /* Change the comm field on the MCA/INT task to include the pid that
675  * was interrupted, it makes for easier debugging.  If that pid was 0
676  * (swapper or nested MCA/INIT) then use the start of the previous comm
677  * field suffixed with its cpu.
678  */
679
680 static void
681 ia64_mca_modify_comm(const task_t *previous_current)
682 {
683         char *p, comm[sizeof(current->comm)];
684         if (previous_current->pid)
685                 snprintf(comm, sizeof(comm), "%s %d",
686                         current->comm, previous_current->pid);
687         else {
688                 int l;
689                 if ((p = strchr(previous_current->comm, ' ')))
690                         l = p - previous_current->comm;
691                 else
692                         l = strlen(previous_current->comm);
693                 snprintf(comm, sizeof(comm), "%s %*s %d",
694                         current->comm, l, previous_current->comm,
695                         task_thread_info(previous_current)->cpu);
696         }
697         memcpy(current->comm, comm, sizeof(current->comm));
698 }
699
700 /* On entry to this routine, we are running on the per cpu stack, see
701  * mca_asm.h.  The original stack has not been touched by this event.  Some of
702  * the original stack's registers will be in the RBS on this stack.  This stack
703  * also contains a partial pt_regs and switch_stack, the rest of the data is in
704  * PAL minstate.
705  *
706  * The first thing to do is modify the original stack to look like a blocked
707  * task so we can run backtrace on the original task.  Also mark the per cpu
708  * stack as current to ensure that we use the correct task state, it also means
709  * that we can do backtrace on the MCA/INIT handler code itself.
710  */
711
712 static task_t *
713 ia64_mca_modify_original_stack(struct pt_regs *regs,
714                 const struct switch_stack *sw,
715                 struct ia64_sal_os_state *sos,
716                 const char *type)
717 {
718         char *p;
719         ia64_va va;
720         extern char ia64_leave_kernel[];        /* Need asm address, not function descriptor */
721         const pal_min_state_area_t *ms = sos->pal_min_state;
722         task_t *previous_current;
723         struct pt_regs *old_regs;
724         struct switch_stack *old_sw;
725         unsigned size = sizeof(struct pt_regs) +
726                         sizeof(struct switch_stack) + 16;
727         u64 *old_bspstore, *old_bsp;
728         u64 *new_bspstore, *new_bsp;
729         u64 old_unat, old_rnat, new_rnat, nat;
730         u64 slots, loadrs = regs->loadrs;
731         u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
732         u64 ar_bspstore = regs->ar_bspstore;
733         u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
734         const u64 *bank;
735         const char *msg;
736         int cpu = smp_processor_id();
737
738         previous_current = curr_task(cpu);
739         set_curr_task(cpu, current);
740         if ((p = strchr(current->comm, ' ')))
741                 *p = '\0';
742
743         /* Best effort attempt to cope with MCA/INIT delivered while in
744          * physical mode.
745          */
746         regs->cr_ipsr = ms->pmsa_ipsr;
747         if (ia64_psr(regs)->dt == 0) {
748                 va.l = r12;
749                 if (va.f.reg == 0) {
750                         va.f.reg = 7;
751                         r12 = va.l;
752                 }
753                 va.l = r13;
754                 if (va.f.reg == 0) {
755                         va.f.reg = 7;
756                         r13 = va.l;
757                 }
758         }
759         if (ia64_psr(regs)->rt == 0) {
760                 va.l = ar_bspstore;
761                 if (va.f.reg == 0) {
762                         va.f.reg = 7;
763                         ar_bspstore = va.l;
764                 }
765                 va.l = ar_bsp;
766                 if (va.f.reg == 0) {
767                         va.f.reg = 7;
768                         ar_bsp = va.l;
769                 }
770         }
771
772         /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
773          * have been copied to the old stack, the old stack may fail the
774          * validation tests below.  So ia64_old_stack() must restore the dirty
775          * registers from the new stack.  The old and new bspstore probably
776          * have different alignments, so loadrs calculated on the old bsp
777          * cannot be used to restore from the new bsp.  Calculate a suitable
778          * loadrs for the new stack and save it in the new pt_regs, where
779          * ia64_old_stack() can get it.
780          */
781         old_bspstore = (u64 *)ar_bspstore;
782         old_bsp = (u64 *)ar_bsp;
783         slots = ia64_rse_num_regs(old_bspstore, old_bsp);
784         new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
785         new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
786         regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
787
788         /* Verify the previous stack state before we change it */
789         if (user_mode(regs)) {
790                 msg = "occurred in user space";
791                 /* previous_current is guaranteed to be valid when the task was
792                  * in user space, so ...
793                  */
794                 ia64_mca_modify_comm(previous_current);
795                 goto no_mod;
796         }
797
798         if (!mca_recover_range(ms->pmsa_iip)) {
799                 if (r13 != sos->prev_IA64_KR_CURRENT) {
800                         msg = "inconsistent previous current and r13";
801                         goto no_mod;
802                 }
803                 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
804                         msg = "inconsistent r12 and r13";
805                         goto no_mod;
806                 }
807                 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
808                         msg = "inconsistent ar.bspstore and r13";
809                         goto no_mod;
810                 }
811                 va.p = old_bspstore;
812                 if (va.f.reg < 5) {
813                         msg = "old_bspstore is in the wrong region";
814                         goto no_mod;
815                 }
816                 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
817                         msg = "inconsistent ar.bsp and r13";
818                         goto no_mod;
819                 }
820                 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
821                 if (ar_bspstore + size > r12) {
822                         msg = "no room for blocked state";
823                         goto no_mod;
824                 }
825         }
826
827         ia64_mca_modify_comm(previous_current);
828
829         /* Make the original task look blocked.  First stack a struct pt_regs,
830          * describing the state at the time of interrupt.  mca_asm.S built a
831          * partial pt_regs, copy it and fill in the blanks using minstate.
832          */
833         p = (char *)r12 - sizeof(*regs);
834         old_regs = (struct pt_regs *)p;
835         memcpy(old_regs, regs, sizeof(*regs));
836         /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
837          * pmsa_{xip,xpsr,xfs}
838          */
839         if (ia64_psr(regs)->ic) {
840                 old_regs->cr_iip = ms->pmsa_iip;
841                 old_regs->cr_ipsr = ms->pmsa_ipsr;
842                 old_regs->cr_ifs = ms->pmsa_ifs;
843         } else {
844                 old_regs->cr_iip = ms->pmsa_xip;
845                 old_regs->cr_ipsr = ms->pmsa_xpsr;
846                 old_regs->cr_ifs = ms->pmsa_xfs;
847         }
848         old_regs->pr = ms->pmsa_pr;
849         old_regs->b0 = ms->pmsa_br0;
850         old_regs->loadrs = loadrs;
851         old_regs->ar_rsc = ms->pmsa_rsc;
852         old_unat = old_regs->ar_unat;
853         copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
854         copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
855         copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
856         copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
857         copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
858         copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
859         copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
860         copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
861         copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
862         copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
863         copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
864         if (ia64_psr(old_regs)->bn)
865                 bank = ms->pmsa_bank1_gr;
866         else
867                 bank = ms->pmsa_bank0_gr;
868         copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
869         copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
870         copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
871         copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
872         copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
873         copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
874         copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
875         copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
876         copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
877         copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
878         copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
879         copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
880         copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
881         copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
882         copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
883         copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
884
885         /* Next stack a struct switch_stack.  mca_asm.S built a partial
886          * switch_stack, copy it and fill in the blanks using pt_regs and
887          * minstate.
888          *
889          * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
890          * ar.pfs is set to 0.
891          *
892          * unwind.c::unw_unwind() does special processing for interrupt frames.
893          * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
894          * is clear then unw_unwind() does _not_ adjust bsp over pt_regs.  Not
895          * that this is documented, of course.  Set PRED_NON_SYSCALL in the
896          * switch_stack on the original stack so it will unwind correctly when
897          * unwind.c reads pt_regs.
898          *
899          * thread.ksp is updated to point to the synthesized switch_stack.
900          */
901         p -= sizeof(struct switch_stack);
902         old_sw = (struct switch_stack *)p;
903         memcpy(old_sw, sw, sizeof(*sw));
904         old_sw->caller_unat = old_unat;
905         old_sw->ar_fpsr = old_regs->ar_fpsr;
906         copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
907         copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
908         copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
909         copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
910         old_sw->b0 = (u64)ia64_leave_kernel;
911         old_sw->b1 = ms->pmsa_br1;
912         old_sw->ar_pfs = 0;
913         old_sw->ar_unat = old_unat;
914         old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
915         previous_current->thread.ksp = (u64)p - 16;
916
917         /* Finally copy the original stack's registers back to its RBS.
918          * Registers from ar.bspstore through ar.bsp at the time of the event
919          * are in the current RBS, copy them back to the original stack.  The
920          * copy must be done register by register because the original bspstore
921          * and the current one have different alignments, so the saved RNAT
922          * data occurs at different places.
923          *
924          * mca_asm does cover, so the old_bsp already includes all registers at
925          * the time of MCA/INIT.  It also does flushrs, so all registers before
926          * this function have been written to backing store on the MCA/INIT
927          * stack.
928          */
929         new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
930         old_rnat = regs->ar_rnat;
931         while (slots--) {
932                 if (ia64_rse_is_rnat_slot(new_bspstore)) {
933                         new_rnat = ia64_get_rnat(new_bspstore++);
934                 }
935                 if (ia64_rse_is_rnat_slot(old_bspstore)) {
936                         *old_bspstore++ = old_rnat;
937                         old_rnat = 0;
938                 }
939                 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
940                 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
941                 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
942                 *old_bspstore++ = *new_bspstore++;
943         }
944         old_sw->ar_bspstore = (unsigned long)old_bspstore;
945         old_sw->ar_rnat = old_rnat;
946
947         sos->prev_task = previous_current;
948         return previous_current;
949
950 no_mod:
951         printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
952                         smp_processor_id(), type, msg);
953         return previous_current;
954 }
955
956 /* The monarch/slave interaction is based on monarch_cpu and requires that all
957  * slaves have entered rendezvous before the monarch leaves.  If any cpu has
958  * not entered rendezvous yet then wait a bit.  The assumption is that any
959  * slave that has not rendezvoused after a reasonable time is never going to do
960  * so.  In this context, slave includes cpus that respond to the MCA rendezvous
961  * interrupt, as well as cpus that receive the INIT slave event.
962  */
963
964 static void
965 ia64_wait_for_slaves(int monarch, const char *type)
966 {
967         int c, wait = 0, missing = 0;
968         for_each_online_cpu(c) {
969                 if (c == monarch)
970                         continue;
971                 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
972                         udelay(1000);           /* short wait first */
973                         wait = 1;
974                         break;
975                 }
976         }
977         if (!wait)
978                 goto all_in;
979         for_each_online_cpu(c) {
980                 if (c == monarch)
981                         continue;
982                 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
983                         udelay(5*1000000);      /* wait 5 seconds for slaves (arbitrary) */
984                         if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
985                                 missing = 1;
986                         break;
987                 }
988         }
989         if (!missing)
990                 goto all_in;
991         printk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
992         for_each_online_cpu(c) {
993                 if (c == monarch)
994                         continue;
995                 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
996                         printk(" %d", c);
997         }
998         printk("\n");
999         return;
1000
1001 all_in:
1002         printk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1003         return;
1004 }
1005
1006 /*
1007  * ia64_mca_handler
1008  *
1009  *      This is uncorrectable machine check handler called from OS_MCA
1010  *      dispatch code which is in turn called from SAL_CHECK().
1011  *      This is the place where the core of OS MCA handling is done.
1012  *      Right now the logs are extracted and displayed in a well-defined
1013  *      format. This handler code is supposed to be run only on the
1014  *      monarch processor. Once the monarch is done with MCA handling
1015  *      further MCA logging is enabled by clearing logs.
1016  *      Monarch also has the duty of sending wakeup-IPIs to pull the
1017  *      slave processors out of rendezvous spinloop.
1018  */
1019 void
1020 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1021                  struct ia64_sal_os_state *sos)
1022 {
1023         pal_processor_state_info_t *psp = (pal_processor_state_info_t *)
1024                 &sos->proc_state_param;
1025         int recover, cpu = smp_processor_id();
1026         task_t *previous_current;
1027         struct ia64_mca_notify_die nd =
1028                 { .sos = sos, .monarch_cpu = &monarch_cpu };
1029
1030         oops_in_progress = 1;   /* FIXME: make printk NMI/MCA/INIT safe */
1031         console_loglevel = 15;  /* make sure printks make it to console */
1032         printk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d monarch=%ld\n",
1033                 sos->proc_state_param, cpu, sos->monarch);
1034
1035         previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1036         monarch_cpu = cpu;
1037         if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, (long)&nd, 0, 0)
1038                         == NOTIFY_STOP)
1039                 ia64_mca_spin(__FUNCTION__);
1040         ia64_wait_for_slaves(cpu, "MCA");
1041
1042         /* Wakeup all the processors which are spinning in the rendezvous loop.
1043          * They will leave SAL, then spin in the OS with interrupts disabled
1044          * until this monarch cpu leaves the MCA handler.  That gets control
1045          * back to the OS so we can backtrace the other cpus, backtrace when
1046          * spinning in SAL does not work.
1047          */
1048         ia64_mca_wakeup_all();
1049         if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, (long)&nd, 0, 0)
1050                         == NOTIFY_STOP)
1051                 ia64_mca_spin(__FUNCTION__);
1052
1053         /* Get the MCA error record and log it */
1054         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1055
1056         /* TLB error is only exist in this SAL error record */
1057         recover = (psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc))
1058         /* other error recovery */
1059            || (ia64_mca_ucmc_extension
1060                 && ia64_mca_ucmc_extension(
1061                         IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1062                         sos));
1063
1064         if (recover) {
1065                 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1066                 rh->severity = sal_log_severity_corrected;
1067                 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1068                 sos->os_status = IA64_MCA_CORRECTED;
1069         }
1070         if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, (long)&nd, 0, recover)
1071                         == NOTIFY_STOP)
1072                 ia64_mca_spin(__FUNCTION__);
1073
1074         set_curr_task(cpu, previous_current);
1075         monarch_cpu = -1;
1076 }
1077
1078 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL);
1079 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd, NULL);
1080
1081 /*
1082  * ia64_mca_cmc_int_handler
1083  *
1084  *  This is corrected machine check interrupt handler.
1085  *      Right now the logs are extracted and displayed in a well-defined
1086  *      format.
1087  *
1088  * Inputs
1089  *      interrupt number
1090  *      client data arg ptr
1091  *      saved registers ptr
1092  *
1093  * Outputs
1094  *      None
1095  */
1096 static irqreturn_t
1097 ia64_mca_cmc_int_handler(int cmc_irq, void *arg, struct pt_regs *ptregs)
1098 {
1099         static unsigned long    cmc_history[CMC_HISTORY_LENGTH];
1100         static int              index;
1101         static DEFINE_SPINLOCK(cmc_history_lock);
1102
1103         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1104                        __FUNCTION__, cmc_irq, smp_processor_id());
1105
1106         /* SAL spec states this should run w/ interrupts enabled */
1107         local_irq_enable();
1108
1109         /* Get the CMC error record and log it */
1110         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1111
1112         spin_lock(&cmc_history_lock);
1113         if (!cmc_polling_enabled) {
1114                 int i, count = 1; /* we know 1 happened now */
1115                 unsigned long now = jiffies;
1116
1117                 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1118                         if (now - cmc_history[i] <= HZ)
1119                                 count++;
1120                 }
1121
1122                 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1123                 if (count >= CMC_HISTORY_LENGTH) {
1124
1125                         cmc_polling_enabled = 1;
1126                         spin_unlock(&cmc_history_lock);
1127                         /* If we're being hit with CMC interrupts, we won't
1128                          * ever execute the schedule_work() below.  Need to
1129                          * disable CMC interrupts on this processor now.
1130                          */
1131                         ia64_mca_cmc_vector_disable(NULL);
1132                         schedule_work(&cmc_disable_work);
1133
1134                         /*
1135                          * Corrected errors will still be corrected, but
1136                          * make sure there's a log somewhere that indicates
1137                          * something is generating more than we can handle.
1138                          */
1139                         printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1140
1141                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1142
1143                         /* lock already released, get out now */
1144                         return IRQ_HANDLED;
1145                 } else {
1146                         cmc_history[index++] = now;
1147                         if (index == CMC_HISTORY_LENGTH)
1148                                 index = 0;
1149                 }
1150         }
1151         spin_unlock(&cmc_history_lock);
1152         return IRQ_HANDLED;
1153 }
1154
1155 /*
1156  *  ia64_mca_cmc_int_caller
1157  *
1158  *      Triggered by sw interrupt from CMC polling routine.  Calls
1159  *      real interrupt handler and either triggers a sw interrupt
1160  *      on the next cpu or does cleanup at the end.
1161  *
1162  * Inputs
1163  *      interrupt number
1164  *      client data arg ptr
1165  *      saved registers ptr
1166  * Outputs
1167  *      handled
1168  */
1169 static irqreturn_t
1170 ia64_mca_cmc_int_caller(int cmc_irq, void *arg, struct pt_regs *ptregs)
1171 {
1172         static int start_count = -1;
1173         unsigned int cpuid;
1174
1175         cpuid = smp_processor_id();
1176
1177         /* If first cpu, update count */
1178         if (start_count == -1)
1179                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1180
1181         ia64_mca_cmc_int_handler(cmc_irq, arg, ptregs);
1182
1183         for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1184
1185         if (cpuid < NR_CPUS) {
1186                 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1187         } else {
1188                 /* If no log record, switch out of polling mode */
1189                 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1190
1191                         printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1192                         schedule_work(&cmc_enable_work);
1193                         cmc_polling_enabled = 0;
1194
1195                 } else {
1196
1197                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1198                 }
1199
1200                 start_count = -1;
1201         }
1202
1203         return IRQ_HANDLED;
1204 }
1205
1206 /*
1207  *  ia64_mca_cmc_poll
1208  *
1209  *      Poll for Corrected Machine Checks (CMCs)
1210  *
1211  * Inputs   :   dummy(unused)
1212  * Outputs  :   None
1213  *
1214  */
1215 static void
1216 ia64_mca_cmc_poll (unsigned long dummy)
1217 {
1218         /* Trigger a CMC interrupt cascade  */
1219         platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1220 }
1221
1222 /*
1223  *  ia64_mca_cpe_int_caller
1224  *
1225  *      Triggered by sw interrupt from CPE polling routine.  Calls
1226  *      real interrupt handler and either triggers a sw interrupt
1227  *      on the next cpu or does cleanup at the end.
1228  *
1229  * Inputs
1230  *      interrupt number
1231  *      client data arg ptr
1232  *      saved registers ptr
1233  * Outputs
1234  *      handled
1235  */
1236 #ifdef CONFIG_ACPI
1237
1238 static irqreturn_t
1239 ia64_mca_cpe_int_caller(int cpe_irq, void *arg, struct pt_regs *ptregs)
1240 {
1241         static int start_count = -1;
1242         static int poll_time = MIN_CPE_POLL_INTERVAL;
1243         unsigned int cpuid;
1244
1245         cpuid = smp_processor_id();
1246
1247         /* If first cpu, update count */
1248         if (start_count == -1)
1249                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1250
1251         ia64_mca_cpe_int_handler(cpe_irq, arg, ptregs);
1252
1253         for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1254
1255         if (cpuid < NR_CPUS) {
1256                 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1257         } else {
1258                 /*
1259                  * If a log was recorded, increase our polling frequency,
1260                  * otherwise, backoff or return to interrupt mode.
1261                  */
1262                 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1263                         poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1264                 } else if (cpe_vector < 0) {
1265                         poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1266                 } else {
1267                         poll_time = MIN_CPE_POLL_INTERVAL;
1268
1269                         printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1270                         enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1271                         cpe_poll_enabled = 0;
1272                 }
1273
1274                 if (cpe_poll_enabled)
1275                         mod_timer(&cpe_poll_timer, jiffies + poll_time);
1276                 start_count = -1;
1277         }
1278
1279         return IRQ_HANDLED;
1280 }
1281
1282 /*
1283  *  ia64_mca_cpe_poll
1284  *
1285  *      Poll for Corrected Platform Errors (CPEs), trigger interrupt
1286  *      on first cpu, from there it will trickle through all the cpus.
1287  *
1288  * Inputs   :   dummy(unused)
1289  * Outputs  :   None
1290  *
1291  */
1292 static void
1293 ia64_mca_cpe_poll (unsigned long dummy)
1294 {
1295         /* Trigger a CPE interrupt cascade  */
1296         platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1297 }
1298
1299 #endif /* CONFIG_ACPI */
1300
1301 static int
1302 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1303 {
1304         int c;
1305         struct task_struct *g, *t;
1306         if (val != DIE_INIT_MONARCH_PROCESS)
1307                 return NOTIFY_DONE;
1308         printk(KERN_ERR "Processes interrupted by INIT -");
1309         for_each_online_cpu(c) {
1310                 struct ia64_sal_os_state *s;
1311                 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1312                 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1313                 g = s->prev_task;
1314                 if (g) {
1315                         if (g->pid)
1316                                 printk(" %d", g->pid);
1317                         else
1318                                 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1319                 }
1320         }
1321         printk("\n\n");
1322         if (read_trylock(&tasklist_lock)) {
1323                 do_each_thread (g, t) {
1324                         printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1325                         show_stack(t, NULL);
1326                 } while_each_thread (g, t);
1327                 read_unlock(&tasklist_lock);
1328         }
1329         return NOTIFY_DONE;
1330 }
1331
1332 /*
1333  * C portion of the OS INIT handler
1334  *
1335  * Called from ia64_os_init_dispatch
1336  *
1337  * Inputs: pointer to pt_regs where processor info was saved.  SAL/OS state for
1338  * this event.  This code is used for both monarch and slave INIT events, see
1339  * sos->monarch.
1340  *
1341  * All INIT events switch to the INIT stack and change the previous process to
1342  * blocked status.  If one of the INIT events is the monarch then we are
1343  * probably processing the nmi button/command.  Use the monarch cpu to dump all
1344  * the processes.  The slave INIT events all spin until the monarch cpu
1345  * returns.  We can also get INIT slave events for MCA, in which case the MCA
1346  * process is the monarch.
1347  */
1348
1349 void
1350 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1351                   struct ia64_sal_os_state *sos)
1352 {
1353         static atomic_t slaves;
1354         static atomic_t monarchs;
1355         task_t *previous_current;
1356         int cpu = smp_processor_id();
1357         struct ia64_mca_notify_die nd =
1358                 { .sos = sos, .monarch_cpu = &monarch_cpu };
1359
1360         oops_in_progress = 1;   /* FIXME: make printk NMI/MCA/INIT safe */
1361         console_loglevel = 15;  /* make sure printks make it to console */
1362
1363         (void) notify_die(DIE_INIT_ENTER, "INIT", regs, (long)&nd, 0, 0);
1364
1365         printk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1366                 sos->proc_state_param, cpu, sos->monarch);
1367         salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1368
1369         previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1370         sos->os_status = IA64_INIT_RESUME;
1371
1372         /* FIXME: Workaround for broken proms that drive all INIT events as
1373          * slaves.  The last slave that enters is promoted to be a monarch.
1374          * Remove this code in September 2006, that gives platforms a year to
1375          * fix their proms and get their customers updated.
1376          */
1377         if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1378                 printk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1379                        __FUNCTION__, cpu);
1380                 atomic_dec(&slaves);
1381                 sos->monarch = 1;
1382         }
1383
1384         /* FIXME: Workaround for broken proms that drive all INIT events as
1385          * monarchs.  Second and subsequent monarchs are demoted to slaves.
1386          * Remove this code in September 2006, that gives platforms a year to
1387          * fix their proms and get their customers updated.
1388          */
1389         if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1390                 printk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1391                                __FUNCTION__, cpu);
1392                 atomic_dec(&monarchs);
1393                 sos->monarch = 0;
1394         }
1395
1396         if (!sos->monarch) {
1397                 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1398                 while (monarch_cpu == -1)
1399                        cpu_relax();     /* spin until monarch enters */
1400                 if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, (long)&nd, 0, 0)
1401                                 == NOTIFY_STOP)
1402                         ia64_mca_spin(__FUNCTION__);
1403                 if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1404                                 == NOTIFY_STOP)
1405                         ia64_mca_spin(__FUNCTION__);
1406                 while (monarch_cpu != -1)
1407                        cpu_relax();     /* spin until monarch leaves */
1408                 if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1409                                 == NOTIFY_STOP)
1410                         ia64_mca_spin(__FUNCTION__);
1411                 printk("Slave on cpu %d returning to normal service.\n", cpu);
1412                 set_curr_task(cpu, previous_current);
1413                 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1414                 atomic_dec(&slaves);
1415                 return;
1416         }
1417
1418         monarch_cpu = cpu;
1419         if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, (long)&nd, 0, 0)
1420                         == NOTIFY_STOP)
1421                 ia64_mca_spin(__FUNCTION__);
1422
1423         /*
1424          * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1425          * generated via the BMC's command-line interface, but since the console is on the
1426          * same serial line, the user will need some time to switch out of the BMC before
1427          * the dump begins.
1428          */
1429         printk("Delaying for 5 seconds...\n");
1430         udelay(5*1000000);
1431         ia64_wait_for_slaves(cpu, "INIT");
1432         /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1433          * to default_monarch_init_process() above and just print all the
1434          * tasks.
1435          */
1436         if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1437                         == NOTIFY_STOP)
1438                 ia64_mca_spin(__FUNCTION__);
1439         if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1440                         == NOTIFY_STOP)
1441                 ia64_mca_spin(__FUNCTION__);
1442         printk("\nINIT dump complete.  Monarch on cpu %d returning to normal service.\n", cpu);
1443         atomic_dec(&monarchs);
1444         set_curr_task(cpu, previous_current);
1445         monarch_cpu = -1;
1446         return;
1447 }
1448
1449 static int __init
1450 ia64_mca_disable_cpe_polling(char *str)
1451 {
1452         cpe_poll_enabled = 0;
1453         return 1;
1454 }
1455
1456 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1457
1458 static struct irqaction cmci_irqaction = {
1459         .handler =      ia64_mca_cmc_int_handler,
1460         .flags =        IRQF_DISABLED,
1461         .name =         "cmc_hndlr"
1462 };
1463
1464 static struct irqaction cmcp_irqaction = {
1465         .handler =      ia64_mca_cmc_int_caller,
1466         .flags =        IRQF_DISABLED,
1467         .name =         "cmc_poll"
1468 };
1469
1470 static struct irqaction mca_rdzv_irqaction = {
1471         .handler =      ia64_mca_rendez_int_handler,
1472         .flags =        IRQF_DISABLED,
1473         .name =         "mca_rdzv"
1474 };
1475
1476 static struct irqaction mca_wkup_irqaction = {
1477         .handler =      ia64_mca_wakeup_int_handler,
1478         .flags =        IRQF_DISABLED,
1479         .name =         "mca_wkup"
1480 };
1481
1482 #ifdef CONFIG_ACPI
1483 static struct irqaction mca_cpe_irqaction = {
1484         .handler =      ia64_mca_cpe_int_handler,
1485         .flags =        IRQF_DISABLED,
1486         .name =         "cpe_hndlr"
1487 };
1488
1489 static struct irqaction mca_cpep_irqaction = {
1490         .handler =      ia64_mca_cpe_int_caller,
1491         .flags =        IRQF_DISABLED,
1492         .name =         "cpe_poll"
1493 };
1494 #endif /* CONFIG_ACPI */
1495
1496 /* Minimal format of the MCA/INIT stacks.  The pseudo processes that run on
1497  * these stacks can never sleep, they cannot return from the kernel to user
1498  * space, they do not appear in a normal ps listing.  So there is no need to
1499  * format most of the fields.
1500  */
1501
1502 static void __cpuinit
1503 format_mca_init_stack(void *mca_data, unsigned long offset,
1504                 const char *type, int cpu)
1505 {
1506         struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1507         struct thread_info *ti;
1508         memset(p, 0, KERNEL_STACK_SIZE);
1509         ti = task_thread_info(p);
1510         ti->flags = _TIF_MCA_INIT;
1511         ti->preempt_count = 1;
1512         ti->task = p;
1513         ti->cpu = cpu;
1514         p->thread_info = ti;
1515         p->state = TASK_UNINTERRUPTIBLE;
1516         cpu_set(cpu, p->cpus_allowed);
1517         INIT_LIST_HEAD(&p->tasks);
1518         p->parent = p->real_parent = p->group_leader = p;
1519         INIT_LIST_HEAD(&p->children);
1520         INIT_LIST_HEAD(&p->sibling);
1521         strncpy(p->comm, type, sizeof(p->comm)-1);
1522 }
1523
1524 /* Do per-CPU MCA-related initialization.  */
1525
1526 void __cpuinit
1527 ia64_mca_cpu_init(void *cpu_data)
1528 {
1529         void *pal_vaddr;
1530         static int first_time = 1;
1531
1532         if (first_time) {
1533                 void *mca_data;
1534                 int cpu;
1535
1536                 first_time = 0;
1537                 mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu)
1538                                          * NR_CPUS + KERNEL_STACK_SIZE);
1539                 mca_data = (void *)(((unsigned long)mca_data +
1540                                         KERNEL_STACK_SIZE - 1) &
1541                                 (-KERNEL_STACK_SIZE));
1542                 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1543                         format_mca_init_stack(mca_data,
1544                                         offsetof(struct ia64_mca_cpu, mca_stack),
1545                                         "MCA", cpu);
1546                         format_mca_init_stack(mca_data,
1547                                         offsetof(struct ia64_mca_cpu, init_stack),
1548                                         "INIT", cpu);
1549                         __per_cpu_mca[cpu] = __pa(mca_data);
1550                         mca_data += sizeof(struct ia64_mca_cpu);
1551                 }
1552         }
1553
1554         /*
1555          * The MCA info structure was allocated earlier and its
1556          * physical address saved in __per_cpu_mca[cpu].  Copy that
1557          * address * to ia64_mca_data so we can access it as a per-CPU
1558          * variable.
1559          */
1560         __get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
1561
1562         /*
1563          * Stash away a copy of the PTE needed to map the per-CPU page.
1564          * We may need it during MCA recovery.
1565          */
1566         __get_cpu_var(ia64_mca_per_cpu_pte) =
1567                 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1568
1569         /*
1570          * Also, stash away a copy of the PAL address and the PTE
1571          * needed to map it.
1572          */
1573         pal_vaddr = efi_get_pal_addr();
1574         if (!pal_vaddr)
1575                 return;
1576         __get_cpu_var(ia64_mca_pal_base) =
1577                 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1578         __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1579                                                               PAGE_KERNEL));
1580 }
1581
1582 /*
1583  * ia64_mca_init
1584  *
1585  *  Do all the system level mca specific initialization.
1586  *
1587  *      1. Register spinloop and wakeup request interrupt vectors
1588  *
1589  *      2. Register OS_MCA handler entry point
1590  *
1591  *      3. Register OS_INIT handler entry point
1592  *
1593  *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1594  *
1595  *  Note that this initialization is done very early before some kernel
1596  *  services are available.
1597  *
1598  *  Inputs  :   None
1599  *
1600  *  Outputs :   None
1601  */
1602 void __init
1603 ia64_mca_init(void)
1604 {
1605         ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1606         ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1607         ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1608         int i;
1609         s64 rc;
1610         struct ia64_sal_retval isrv;
1611         u64 timeout = IA64_MCA_RENDEZ_TIMEOUT;  /* platform specific */
1612         static struct notifier_block default_init_monarch_nb = {
1613                 .notifier_call = default_monarch_init_process,
1614                 .priority = 0/* we need to notified last */
1615         };
1616
1617         IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1618
1619         /* Clear the Rendez checkin flag for all cpus */
1620         for(i = 0 ; i < NR_CPUS; i++)
1621                 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1622
1623         /*
1624          * Register the rendezvous spinloop and wakeup mechanism with SAL
1625          */
1626
1627         /* Register the rendezvous interrupt vector with SAL */
1628         while (1) {
1629                 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1630                                               SAL_MC_PARAM_MECHANISM_INT,
1631                                               IA64_MCA_RENDEZ_VECTOR,
1632                                               timeout,
1633                                               SAL_MC_PARAM_RZ_ALWAYS);
1634                 rc = isrv.status;
1635                 if (rc == 0)
1636                         break;
1637                 if (rc == -2) {
1638                         printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1639                                 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1640                         timeout = isrv.v0;
1641                         (void) notify_die(DIE_MCA_NEW_TIMEOUT, "MCA", NULL, timeout, 0, 0);
1642                         continue;
1643                 }
1644                 printk(KERN_ERR "Failed to register rendezvous interrupt "
1645                        "with SAL (status %ld)\n", rc);
1646                 return;
1647         }
1648
1649         /* Register the wakeup interrupt vector with SAL */
1650         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1651                                       SAL_MC_PARAM_MECHANISM_INT,
1652                                       IA64_MCA_WAKEUP_VECTOR,
1653                                       0, 0);
1654         rc = isrv.status;
1655         if (rc) {
1656                 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1657                        "(status %ld)\n", rc);
1658                 return;
1659         }
1660
1661         IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1662
1663         ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
1664         /*
1665          * XXX - disable SAL checksum by setting size to 0; should be
1666          *      ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1667          */
1668         ia64_mc_info.imi_mca_handler_size       = 0;
1669
1670         /* Register the os mca handler with SAL */
1671         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1672                                        ia64_mc_info.imi_mca_handler,
1673                                        ia64_tpa(mca_hldlr_ptr->gp),
1674                                        ia64_mc_info.imi_mca_handler_size,
1675                                        0, 0, 0)))
1676         {
1677                 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1678                        "(status %ld)\n", rc);
1679                 return;
1680         }
1681
1682         IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1683                        ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1684
1685         /*
1686          * XXX - disable SAL checksum by setting size to 0, should be
1687          * size of the actual init handler in mca_asm.S.
1688          */
1689         ia64_mc_info.imi_monarch_init_handler           = ia64_tpa(init_hldlr_ptr_monarch->fp);
1690         ia64_mc_info.imi_monarch_init_handler_size      = 0;
1691         ia64_mc_info.imi_slave_init_handler             = ia64_tpa(init_hldlr_ptr_slave->fp);
1692         ia64_mc_info.imi_slave_init_handler_size        = 0;
1693
1694         IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1695                        ia64_mc_info.imi_monarch_init_handler);
1696
1697         /* Register the os init handler with SAL */
1698         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1699                                        ia64_mc_info.imi_monarch_init_handler,
1700                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1701                                        ia64_mc_info.imi_monarch_init_handler_size,
1702                                        ia64_mc_info.imi_slave_init_handler,
1703                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1704                                        ia64_mc_info.imi_slave_init_handler_size)))
1705         {
1706                 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1707                        "(status %ld)\n", rc);
1708                 return;
1709         }
1710         if (register_die_notifier(&default_init_monarch_nb)) {
1711                 printk(KERN_ERR "Failed to register default monarch INIT process\n");
1712                 return;
1713         }
1714
1715         IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1716
1717         /*
1718          *  Configure the CMCI/P vector and handler. Interrupts for CMC are
1719          *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1720          */
1721         register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1722         register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1723         ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */
1724
1725         /* Setup the MCA rendezvous interrupt vector */
1726         register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1727
1728         /* Setup the MCA wakeup interrupt vector */
1729         register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1730
1731 #ifdef CONFIG_ACPI
1732         /* Setup the CPEI/P handler */
1733         register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1734 #endif
1735
1736         /* Initialize the areas set aside by the OS to buffer the
1737          * platform/processor error states for MCA/INIT/CMC
1738          * handling.
1739          */
1740         ia64_log_init(SAL_INFO_TYPE_MCA);
1741         ia64_log_init(SAL_INFO_TYPE_INIT);
1742         ia64_log_init(SAL_INFO_TYPE_CMC);
1743         ia64_log_init(SAL_INFO_TYPE_CPE);
1744
1745         mca_init = 1;
1746         printk(KERN_INFO "MCA related initialization done\n");
1747 }
1748
1749 /*
1750  * ia64_mca_late_init
1751  *
1752  *      Opportunity to setup things that require initialization later
1753  *      than ia64_mca_init.  Setup a timer to poll for CPEs if the
1754  *      platform doesn't support an interrupt driven mechanism.
1755  *
1756  *  Inputs  :   None
1757  *  Outputs :   Status
1758  */
1759 static int __init
1760 ia64_mca_late_init(void)
1761 {
1762         if (!mca_init)
1763                 return 0;
1764
1765         /* Setup the CMCI/P vector and handler */
1766         init_timer(&cmc_poll_timer);
1767         cmc_poll_timer.function = ia64_mca_cmc_poll;
1768
1769         /* Unmask/enable the vector */
1770         cmc_polling_enabled = 0;
1771         schedule_work(&cmc_enable_work);
1772
1773         IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
1774
1775 #ifdef CONFIG_ACPI
1776         /* Setup the CPEI/P vector and handler */
1777         cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
1778         init_timer(&cpe_poll_timer);
1779         cpe_poll_timer.function = ia64_mca_cpe_poll;
1780
1781         {
1782                 irq_desc_t *desc;
1783                 unsigned int irq;
1784
1785                 if (cpe_vector >= 0) {
1786                         /* If platform supports CPEI, enable the irq. */
1787                         cpe_poll_enabled = 0;
1788                         for (irq = 0; irq < NR_IRQS; ++irq)
1789                                 if (irq_to_vector(irq) == cpe_vector) {
1790                                         desc = irq_desc + irq;
1791                                         desc->status |= IRQ_PER_CPU;
1792                                         setup_irq(irq, &mca_cpe_irqaction);
1793                                         ia64_cpe_irq = irq;
1794                                 }
1795                         ia64_mca_register_cpev(cpe_vector);
1796                         IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__);
1797                 } else {
1798                         /* If platform doesn't support CPEI, get the timer going. */
1799                         if (cpe_poll_enabled) {
1800                                 ia64_mca_cpe_poll(0UL);
1801                                 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
1802                         }
1803                 }
1804         }
1805 #endif
1806
1807         return 0;
1808 }
1809
1810 device_initcall(ia64_mca_late_init);