Merge git://git.linux-nfs.org/pub/linux/nfs-2.6
[pandora-kernel.git] / arch / i386 / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  arch/i386/kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *              Probes initial implementation ( includes contributions from
23  *              Rusty Russell).
24  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25  *              interface to access function arguments.
26  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
27  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
28  *              <prasanna@in.ibm.com> added function-return probes.
29  */
30
31 #include <linux/config.h>
32 #include <linux/kprobes.h>
33 #include <linux/ptrace.h>
34 #include <linux/preempt.h>
35 #include <asm/cacheflush.h>
36 #include <asm/kdebug.h>
37 #include <asm/desc.h>
38 #include <asm/uaccess.h>
39
40 void jprobe_return_end(void);
41
42 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
43 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
44
45 /* insert a jmp code */
46 static __always_inline void set_jmp_op(void *from, void *to)
47 {
48         struct __arch_jmp_op {
49                 char op;
50                 long raddr;
51         } __attribute__((packed)) *jop;
52         jop = (struct __arch_jmp_op *)from;
53         jop->raddr = (long)(to) - ((long)(from) + 5);
54         jop->op = RELATIVEJUMP_INSTRUCTION;
55 }
56
57 /*
58  * returns non-zero if opcodes can be boosted.
59  */
60 static __always_inline int can_boost(kprobe_opcode_t opcode)
61 {
62         switch (opcode & 0xf0 ) {
63         case 0x70:
64                 return 0; /* can't boost conditional jump */
65         case 0x90:
66                 /* can't boost call and pushf */
67                 return opcode != 0x9a && opcode != 0x9c;
68         case 0xc0:
69                 /* can't boost undefined opcodes and soft-interruptions */
70                 return (0xc1 < opcode && opcode < 0xc6) ||
71                         (0xc7 < opcode && opcode < 0xcc) || opcode == 0xcf;
72         case 0xd0:
73                 /* can boost AA* and XLAT */
74                 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
75         case 0xe0:
76                 /* can boost in/out and (may be) jmps */
77                 return (0xe3 < opcode && opcode != 0xe8);
78         case 0xf0:
79                 /* clear and set flags can be boost */
80                 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
81         default:
82                 /* currently, can't boost 2 bytes opcodes */
83                 return opcode != 0x0f;
84         }
85 }
86
87
88 /*
89  * returns non-zero if opcode modifies the interrupt flag.
90  */
91 static int __kprobes is_IF_modifier(kprobe_opcode_t opcode)
92 {
93         switch (opcode) {
94         case 0xfa:              /* cli */
95         case 0xfb:              /* sti */
96         case 0xcf:              /* iret/iretd */
97         case 0x9d:              /* popf/popfd */
98                 return 1;
99         }
100         return 0;
101 }
102
103 int __kprobes arch_prepare_kprobe(struct kprobe *p)
104 {
105         /* insn: must be on special executable page on i386. */
106         p->ainsn.insn = get_insn_slot();
107         if (!p->ainsn.insn)
108                 return -ENOMEM;
109
110         memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
111         p->opcode = *p->addr;
112         if (can_boost(p->opcode)) {
113                 p->ainsn.boostable = 0;
114         } else {
115                 p->ainsn.boostable = -1;
116         }
117         return 0;
118 }
119
120 void __kprobes arch_arm_kprobe(struct kprobe *p)
121 {
122         *p->addr = BREAKPOINT_INSTRUCTION;
123         flush_icache_range((unsigned long) p->addr,
124                            (unsigned long) p->addr + sizeof(kprobe_opcode_t));
125 }
126
127 void __kprobes arch_disarm_kprobe(struct kprobe *p)
128 {
129         *p->addr = p->opcode;
130         flush_icache_range((unsigned long) p->addr,
131                            (unsigned long) p->addr + sizeof(kprobe_opcode_t));
132 }
133
134 void __kprobes arch_remove_kprobe(struct kprobe *p)
135 {
136         mutex_lock(&kprobe_mutex);
137         free_insn_slot(p->ainsn.insn);
138         mutex_unlock(&kprobe_mutex);
139 }
140
141 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
142 {
143         kcb->prev_kprobe.kp = kprobe_running();
144         kcb->prev_kprobe.status = kcb->kprobe_status;
145         kcb->prev_kprobe.old_eflags = kcb->kprobe_old_eflags;
146         kcb->prev_kprobe.saved_eflags = kcb->kprobe_saved_eflags;
147 }
148
149 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
150 {
151         __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
152         kcb->kprobe_status = kcb->prev_kprobe.status;
153         kcb->kprobe_old_eflags = kcb->prev_kprobe.old_eflags;
154         kcb->kprobe_saved_eflags = kcb->prev_kprobe.saved_eflags;
155 }
156
157 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
158                                 struct kprobe_ctlblk *kcb)
159 {
160         __get_cpu_var(current_kprobe) = p;
161         kcb->kprobe_saved_eflags = kcb->kprobe_old_eflags
162                 = (regs->eflags & (TF_MASK | IF_MASK));
163         if (is_IF_modifier(p->opcode))
164                 kcb->kprobe_saved_eflags &= ~IF_MASK;
165 }
166
167 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
168 {
169         regs->eflags |= TF_MASK;
170         regs->eflags &= ~IF_MASK;
171         /*single step inline if the instruction is an int3*/
172         if (p->opcode == BREAKPOINT_INSTRUCTION)
173                 regs->eip = (unsigned long)p->addr;
174         else
175                 regs->eip = (unsigned long)p->ainsn.insn;
176 }
177
178 /* Called with kretprobe_lock held */
179 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
180                                       struct pt_regs *regs)
181 {
182         unsigned long *sara = (unsigned long *)&regs->esp;
183         struct kretprobe_instance *ri;
184
185         if ((ri = get_free_rp_inst(rp)) != NULL) {
186                 ri->rp = rp;
187                 ri->task = current;
188                 ri->ret_addr = (kprobe_opcode_t *) *sara;
189
190                 /* Replace the return addr with trampoline addr */
191                 *sara = (unsigned long) &kretprobe_trampoline;
192
193                 add_rp_inst(ri);
194         } else {
195                 rp->nmissed++;
196         }
197 }
198
199 /*
200  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
201  * remain disabled thorough out this function.
202  */
203 static int __kprobes kprobe_handler(struct pt_regs *regs)
204 {
205         struct kprobe *p;
206         int ret = 0;
207         kprobe_opcode_t *addr;
208         struct kprobe_ctlblk *kcb;
209 #ifdef CONFIG_PREEMPT
210         unsigned pre_preempt_count = preempt_count();
211 #endif /* CONFIG_PREEMPT */
212
213         addr = (kprobe_opcode_t *)(regs->eip - sizeof(kprobe_opcode_t));
214
215         /*
216          * We don't want to be preempted for the entire
217          * duration of kprobe processing
218          */
219         preempt_disable();
220         kcb = get_kprobe_ctlblk();
221
222         /* Check we're not actually recursing */
223         if (kprobe_running()) {
224                 p = get_kprobe(addr);
225                 if (p) {
226                         if (kcb->kprobe_status == KPROBE_HIT_SS &&
227                                 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
228                                 regs->eflags &= ~TF_MASK;
229                                 regs->eflags |= kcb->kprobe_saved_eflags;
230                                 goto no_kprobe;
231                         }
232                         /* We have reentered the kprobe_handler(), since
233                          * another probe was hit while within the handler.
234                          * We here save the original kprobes variables and
235                          * just single step on the instruction of the new probe
236                          * without calling any user handlers.
237                          */
238                         save_previous_kprobe(kcb);
239                         set_current_kprobe(p, regs, kcb);
240                         kprobes_inc_nmissed_count(p);
241                         prepare_singlestep(p, regs);
242                         kcb->kprobe_status = KPROBE_REENTER;
243                         return 1;
244                 } else {
245                         if (regs->eflags & VM_MASK) {
246                         /* We are in virtual-8086 mode. Return 0 */
247                                 goto no_kprobe;
248                         }
249                         if (*addr != BREAKPOINT_INSTRUCTION) {
250                         /* The breakpoint instruction was removed by
251                          * another cpu right after we hit, no further
252                          * handling of this interrupt is appropriate
253                          */
254                                 regs->eip -= sizeof(kprobe_opcode_t);
255                                 ret = 1;
256                                 goto no_kprobe;
257                         }
258                         p = __get_cpu_var(current_kprobe);
259                         if (p->break_handler && p->break_handler(p, regs)) {
260                                 goto ss_probe;
261                         }
262                 }
263                 goto no_kprobe;
264         }
265
266         p = get_kprobe(addr);
267         if (!p) {
268                 if (regs->eflags & VM_MASK) {
269                         /* We are in virtual-8086 mode. Return 0 */
270                         goto no_kprobe;
271                 }
272
273                 if (*addr != BREAKPOINT_INSTRUCTION) {
274                         /*
275                          * The breakpoint instruction was removed right
276                          * after we hit it.  Another cpu has removed
277                          * either a probepoint or a debugger breakpoint
278                          * at this address.  In either case, no further
279                          * handling of this interrupt is appropriate.
280                          * Back up over the (now missing) int3 and run
281                          * the original instruction.
282                          */
283                         regs->eip -= sizeof(kprobe_opcode_t);
284                         ret = 1;
285                 }
286                 /* Not one of ours: let kernel handle it */
287                 goto no_kprobe;
288         }
289
290         set_current_kprobe(p, regs, kcb);
291         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
292
293         if (p->pre_handler && p->pre_handler(p, regs))
294                 /* handler has already set things up, so skip ss setup */
295                 return 1;
296
297         if (p->ainsn.boostable == 1 &&
298 #ifdef CONFIG_PREEMPT
299             !(pre_preempt_count) && /*
300                                        * This enables booster when the direct
301                                        * execution path aren't preempted.
302                                        */
303 #endif /* CONFIG_PREEMPT */
304             !p->post_handler && !p->break_handler ) {
305                 /* Boost up -- we can execute copied instructions directly */
306                 reset_current_kprobe();
307                 regs->eip = (unsigned long)p->ainsn.insn;
308                 preempt_enable_no_resched();
309                 return 1;
310         }
311
312 ss_probe:
313         prepare_singlestep(p, regs);
314         kcb->kprobe_status = KPROBE_HIT_SS;
315         return 1;
316
317 no_kprobe:
318         preempt_enable_no_resched();
319         return ret;
320 }
321
322 /*
323  * For function-return probes, init_kprobes() establishes a probepoint
324  * here. When a retprobed function returns, this probe is hit and
325  * trampoline_probe_handler() runs, calling the kretprobe's handler.
326  */
327  void __kprobes kretprobe_trampoline_holder(void)
328  {
329         asm volatile ( ".global kretprobe_trampoline\n"
330                         "kretprobe_trampoline: \n"
331                         "       pushf\n"
332                         /* skip cs, eip, orig_eax, es, ds */
333                         "       subl $20, %esp\n"
334                         "       pushl %eax\n"
335                         "       pushl %ebp\n"
336                         "       pushl %edi\n"
337                         "       pushl %esi\n"
338                         "       pushl %edx\n"
339                         "       pushl %ecx\n"
340                         "       pushl %ebx\n"
341                         "       movl %esp, %eax\n"
342                         "       call trampoline_handler\n"
343                         /* move eflags to cs */
344                         "       movl 48(%esp), %edx\n"
345                         "       movl %edx, 44(%esp)\n"
346                         /* save true return address on eflags */
347                         "       movl %eax, 48(%esp)\n"
348                         "       popl %ebx\n"
349                         "       popl %ecx\n"
350                         "       popl %edx\n"
351                         "       popl %esi\n"
352                         "       popl %edi\n"
353                         "       popl %ebp\n"
354                         "       popl %eax\n"
355                         /* skip eip, orig_eax, es, ds */
356                         "       addl $16, %esp\n"
357                         "       popf\n"
358                         "       ret\n");
359 }
360
361 /*
362  * Called from kretprobe_trampoline
363  */
364 fastcall void *__kprobes trampoline_handler(struct pt_regs *regs)
365 {
366         struct kretprobe_instance *ri = NULL;
367         struct hlist_head *head;
368         struct hlist_node *node, *tmp;
369         unsigned long flags, orig_ret_address = 0;
370         unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
371
372         spin_lock_irqsave(&kretprobe_lock, flags);
373         head = kretprobe_inst_table_head(current);
374
375         /*
376          * It is possible to have multiple instances associated with a given
377          * task either because an multiple functions in the call path
378          * have a return probe installed on them, and/or more then one return
379          * return probe was registered for a target function.
380          *
381          * We can handle this because:
382          *     - instances are always inserted at the head of the list
383          *     - when multiple return probes are registered for the same
384          *       function, the first instance's ret_addr will point to the
385          *       real return address, and all the rest will point to
386          *       kretprobe_trampoline
387          */
388         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
389                 if (ri->task != current)
390                         /* another task is sharing our hash bucket */
391                         continue;
392
393                 if (ri->rp && ri->rp->handler){
394                         __get_cpu_var(current_kprobe) = &ri->rp->kp;
395                         ri->rp->handler(ri, regs);
396                         __get_cpu_var(current_kprobe) = NULL;
397                 }
398
399                 orig_ret_address = (unsigned long)ri->ret_addr;
400                 recycle_rp_inst(ri);
401
402                 if (orig_ret_address != trampoline_address)
403                         /*
404                          * This is the real return address. Any other
405                          * instances associated with this task are for
406                          * other calls deeper on the call stack
407                          */
408                         break;
409         }
410
411         BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
412
413         spin_unlock_irqrestore(&kretprobe_lock, flags);
414
415         return (void*)orig_ret_address;
416 }
417
418 /*
419  * Called after single-stepping.  p->addr is the address of the
420  * instruction whose first byte has been replaced by the "int 3"
421  * instruction.  To avoid the SMP problems that can occur when we
422  * temporarily put back the original opcode to single-step, we
423  * single-stepped a copy of the instruction.  The address of this
424  * copy is p->ainsn.insn.
425  *
426  * This function prepares to return from the post-single-step
427  * interrupt.  We have to fix up the stack as follows:
428  *
429  * 0) Except in the case of absolute or indirect jump or call instructions,
430  * the new eip is relative to the copied instruction.  We need to make
431  * it relative to the original instruction.
432  *
433  * 1) If the single-stepped instruction was pushfl, then the TF and IF
434  * flags are set in the just-pushed eflags, and may need to be cleared.
435  *
436  * 2) If the single-stepped instruction was a call, the return address
437  * that is atop the stack is the address following the copied instruction.
438  * We need to make it the address following the original instruction.
439  *
440  * This function also checks instruction size for preparing direct execution.
441  */
442 static void __kprobes resume_execution(struct kprobe *p,
443                 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
444 {
445         unsigned long *tos = (unsigned long *)&regs->esp;
446         unsigned long copy_eip = (unsigned long)p->ainsn.insn;
447         unsigned long orig_eip = (unsigned long)p->addr;
448
449         regs->eflags &= ~TF_MASK;
450         switch (p->ainsn.insn[0]) {
451         case 0x9c:              /* pushfl */
452                 *tos &= ~(TF_MASK | IF_MASK);
453                 *tos |= kcb->kprobe_old_eflags;
454                 break;
455         case 0xc3:              /* ret/lret */
456         case 0xcb:
457         case 0xc2:
458         case 0xca:
459         case 0xea:              /* jmp absolute -- eip is correct */
460                 /* eip is already adjusted, no more changes required */
461                 p->ainsn.boostable = 1;
462                 goto no_change;
463         case 0xe8:              /* call relative - Fix return addr */
464                 *tos = orig_eip + (*tos - copy_eip);
465                 break;
466         case 0xff:
467                 if ((p->ainsn.insn[1] & 0x30) == 0x10) {
468                         /* call absolute, indirect */
469                         /*
470                          * Fix return addr; eip is correct.
471                          * But this is not boostable
472                          */
473                         *tos = orig_eip + (*tos - copy_eip);
474                         goto no_change;
475                 } else if (((p->ainsn.insn[1] & 0x31) == 0x20) ||       /* jmp near, absolute indirect */
476                            ((p->ainsn.insn[1] & 0x31) == 0x21)) {       /* jmp far, absolute indirect */
477                         /* eip is correct. And this is boostable */
478                         p->ainsn.boostable = 1;
479                         goto no_change;
480                 }
481         default:
482                 break;
483         }
484
485         if (p->ainsn.boostable == 0) {
486                 if ((regs->eip > copy_eip) &&
487                     (regs->eip - copy_eip) + 5 < MAX_INSN_SIZE) {
488                         /*
489                          * These instructions can be executed directly if it
490                          * jumps back to correct address.
491                          */
492                         set_jmp_op((void *)regs->eip,
493                                    (void *)orig_eip + (regs->eip - copy_eip));
494                         p->ainsn.boostable = 1;
495                 } else {
496                         p->ainsn.boostable = -1;
497                 }
498         }
499
500         regs->eip = orig_eip + (regs->eip - copy_eip);
501
502 no_change:
503         return;
504 }
505
506 /*
507  * Interrupts are disabled on entry as trap1 is an interrupt gate and they
508  * remain disabled thoroughout this function.
509  */
510 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
511 {
512         struct kprobe *cur = kprobe_running();
513         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
514
515         if (!cur)
516                 return 0;
517
518         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
519                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
520                 cur->post_handler(cur, regs, 0);
521         }
522
523         resume_execution(cur, regs, kcb);
524         regs->eflags |= kcb->kprobe_saved_eflags;
525
526         /*Restore back the original saved kprobes variables and continue. */
527         if (kcb->kprobe_status == KPROBE_REENTER) {
528                 restore_previous_kprobe(kcb);
529                 goto out;
530         }
531         reset_current_kprobe();
532 out:
533         preempt_enable_no_resched();
534
535         /*
536          * if somebody else is singlestepping across a probe point, eflags
537          * will have TF set, in which case, continue the remaining processing
538          * of do_debug, as if this is not a probe hit.
539          */
540         if (regs->eflags & TF_MASK)
541                 return 0;
542
543         return 1;
544 }
545
546 static int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
547 {
548         struct kprobe *cur = kprobe_running();
549         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
550
551         switch(kcb->kprobe_status) {
552         case KPROBE_HIT_SS:
553         case KPROBE_REENTER:
554                 /*
555                  * We are here because the instruction being single
556                  * stepped caused a page fault. We reset the current
557                  * kprobe and the eip points back to the probe address
558                  * and allow the page fault handler to continue as a
559                  * normal page fault.
560                  */
561                 regs->eip = (unsigned long)cur->addr;
562                 regs->eflags |= kcb->kprobe_old_eflags;
563                 if (kcb->kprobe_status == KPROBE_REENTER)
564                         restore_previous_kprobe(kcb);
565                 else
566                         reset_current_kprobe();
567                 preempt_enable_no_resched();
568                 break;
569         case KPROBE_HIT_ACTIVE:
570         case KPROBE_HIT_SSDONE:
571                 /*
572                  * We increment the nmissed count for accounting,
573                  * we can also use npre/npostfault count for accouting
574                  * these specific fault cases.
575                  */
576                 kprobes_inc_nmissed_count(cur);
577
578                 /*
579                  * We come here because instructions in the pre/post
580                  * handler caused the page_fault, this could happen
581                  * if handler tries to access user space by
582                  * copy_from_user(), get_user() etc. Let the
583                  * user-specified handler try to fix it first.
584                  */
585                 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
586                         return 1;
587
588                 /*
589                  * In case the user-specified fault handler returned
590                  * zero, try to fix up.
591                  */
592                 if (fixup_exception(regs))
593                         return 1;
594
595                 /*
596                  * fixup_exception() could not handle it,
597                  * Let do_page_fault() fix it.
598                  */
599                 break;
600         default:
601                 break;
602         }
603         return 0;
604 }
605
606 /*
607  * Wrapper routine to for handling exceptions.
608  */
609 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
610                                        unsigned long val, void *data)
611 {
612         struct die_args *args = (struct die_args *)data;
613         int ret = NOTIFY_DONE;
614
615         if (args->regs && user_mode(args->regs))
616                 return ret;
617
618         switch (val) {
619         case DIE_INT3:
620                 if (kprobe_handler(args->regs))
621                         ret = NOTIFY_STOP;
622                 break;
623         case DIE_DEBUG:
624                 if (post_kprobe_handler(args->regs))
625                         ret = NOTIFY_STOP;
626                 break;
627         case DIE_GPF:
628         case DIE_PAGE_FAULT:
629                 /* kprobe_running() needs smp_processor_id() */
630                 preempt_disable();
631                 if (kprobe_running() &&
632                     kprobe_fault_handler(args->regs, args->trapnr))
633                         ret = NOTIFY_STOP;
634                 preempt_enable();
635                 break;
636         default:
637                 break;
638         }
639         return ret;
640 }
641
642 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
643 {
644         struct jprobe *jp = container_of(p, struct jprobe, kp);
645         unsigned long addr;
646         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
647
648         kcb->jprobe_saved_regs = *regs;
649         kcb->jprobe_saved_esp = &regs->esp;
650         addr = (unsigned long)(kcb->jprobe_saved_esp);
651
652         /*
653          * TBD: As Linus pointed out, gcc assumes that the callee
654          * owns the argument space and could overwrite it, e.g.
655          * tailcall optimization. So, to be absolutely safe
656          * we also save and restore enough stack bytes to cover
657          * the argument area.
658          */
659         memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
660                         MIN_STACK_SIZE(addr));
661         regs->eflags &= ~IF_MASK;
662         regs->eip = (unsigned long)(jp->entry);
663         return 1;
664 }
665
666 void __kprobes jprobe_return(void)
667 {
668         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
669
670         asm volatile ("       xchgl   %%ebx,%%esp     \n"
671                       "       int3                      \n"
672                       "       .globl jprobe_return_end  \n"
673                       "       jprobe_return_end:        \n"
674                       "       nop                       \n"::"b"
675                       (kcb->jprobe_saved_esp):"memory");
676 }
677
678 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
679 {
680         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
681         u8 *addr = (u8 *) (regs->eip - 1);
682         unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_esp);
683         struct jprobe *jp = container_of(p, struct jprobe, kp);
684
685         if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
686                 if (&regs->esp != kcb->jprobe_saved_esp) {
687                         struct pt_regs *saved_regs =
688                             container_of(kcb->jprobe_saved_esp,
689                                             struct pt_regs, esp);
690                         printk("current esp %p does not match saved esp %p\n",
691                                &regs->esp, kcb->jprobe_saved_esp);
692                         printk("Saved registers for jprobe %p\n", jp);
693                         show_registers(saved_regs);
694                         printk("Current registers\n");
695                         show_registers(regs);
696                         BUG();
697                 }
698                 *regs = kcb->jprobe_saved_regs;
699                 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
700                        MIN_STACK_SIZE(stack_addr));
701                 preempt_enable_no_resched();
702                 return 1;
703         }
704         return 0;
705 }
706
707 int __init arch_init_kprobes(void)
708 {
709         return 0;
710 }