Merge branch 'master' into for-linus
[pandora-kernel.git] / arch / cris / arch-v32 / kernel / irq.c
1 /*
2  * Copyright (C) 2003, Axis Communications AB.
3  */
4
5 #include <asm/irq.h>
6 #include <linux/irq.h>
7 #include <linux/interrupt.h>
8 #include <linux/smp.h>
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/init.h>
12 #include <linux/profile.h>
13 #include <linux/proc_fs.h>
14 #include <linux/seq_file.h>
15 #include <linux/threads.h>
16 #include <linux/spinlock.h>
17 #include <linux/kernel_stat.h>
18 #include <hwregs/reg_map.h>
19 #include <hwregs/reg_rdwr.h>
20 #include <hwregs/intr_vect.h>
21 #include <hwregs/intr_vect_defs.h>
22
23 #define CPU_FIXED -1
24
25 /* IRQ masks (refer to comment for crisv32_do_multiple) */
26 #if TIMER0_INTR_VECT - FIRST_IRQ < 32
27 #define TIMER_MASK (1 << (TIMER0_INTR_VECT - FIRST_IRQ))
28 #undef TIMER_VECT1
29 #else
30 #define TIMER_MASK (1 << (TIMER0_INTR_VECT - FIRST_IRQ - 32))
31 #define TIMER_VECT1
32 #endif
33 #ifdef CONFIG_ETRAX_KGDB
34 #if defined(CONFIG_ETRAX_KGDB_PORT0)
35 #define IGNOREMASK (1 << (SER0_INTR_VECT - FIRST_IRQ))
36 #elif defined(CONFIG_ETRAX_KGDB_PORT1)
37 #define IGNOREMASK (1 << (SER1_INTR_VECT - FIRST_IRQ))
38 #elif defined(CONFIG_ETRAX_KGB_PORT2)
39 #define IGNOREMASK (1 << (SER2_INTR_VECT - FIRST_IRQ))
40 #elif defined(CONFIG_ETRAX_KGDB_PORT3)
41 #define IGNOREMASK (1 << (SER3_INTR_VECT - FIRST_IRQ))
42 #endif
43 #endif
44
45 DEFINE_SPINLOCK(irq_lock);
46
47 struct cris_irq_allocation
48 {
49   int cpu; /* The CPU to which the IRQ is currently allocated. */
50   cpumask_t mask; /* The CPUs to which the IRQ may be allocated. */
51 };
52
53 struct cris_irq_allocation irq_allocations[NR_REAL_IRQS] =
54   { [0 ... NR_REAL_IRQS - 1] = {0, CPU_MASK_ALL} };
55
56 static unsigned long irq_regs[NR_CPUS] =
57 {
58   regi_irq,
59 #ifdef CONFIG_SMP
60   regi_irq2,
61 #endif
62 };
63
64 #if NR_REAL_IRQS > 32
65 #define NBR_REGS 2
66 #else
67 #define NBR_REGS 1
68 #endif
69
70 unsigned long cpu_irq_counters[NR_CPUS];
71 unsigned long irq_counters[NR_REAL_IRQS];
72
73 /* From irq.c. */
74 extern void weird_irq(void);
75
76 /* From entry.S. */
77 extern void system_call(void);
78 extern void nmi_interrupt(void);
79 extern void multiple_interrupt(void);
80 extern void gdb_handle_exception(void);
81 extern void i_mmu_refill(void);
82 extern void i_mmu_invalid(void);
83 extern void i_mmu_access(void);
84 extern void i_mmu_execute(void);
85 extern void d_mmu_refill(void);
86 extern void d_mmu_invalid(void);
87 extern void d_mmu_access(void);
88 extern void d_mmu_write(void);
89
90 /* From kgdb.c. */
91 extern void kgdb_init(void);
92 extern void breakpoint(void);
93
94 /* From traps.c.  */
95 extern void breakh_BUG(void);
96
97 /*
98  * Build the IRQ handler stubs using macros from irq.h.
99  */
100 BUILD_IRQ(0x31)
101 BUILD_IRQ(0x32)
102 BUILD_IRQ(0x33)
103 BUILD_IRQ(0x34)
104 BUILD_IRQ(0x35)
105 BUILD_IRQ(0x36)
106 BUILD_IRQ(0x37)
107 BUILD_IRQ(0x38)
108 BUILD_IRQ(0x39)
109 BUILD_IRQ(0x3a)
110 BUILD_IRQ(0x3b)
111 BUILD_IRQ(0x3c)
112 BUILD_IRQ(0x3d)
113 BUILD_IRQ(0x3e)
114 BUILD_IRQ(0x3f)
115 BUILD_IRQ(0x40)
116 BUILD_IRQ(0x41)
117 BUILD_IRQ(0x42)
118 BUILD_IRQ(0x43)
119 BUILD_IRQ(0x44)
120 BUILD_IRQ(0x45)
121 BUILD_IRQ(0x46)
122 BUILD_IRQ(0x47)
123 BUILD_IRQ(0x48)
124 BUILD_IRQ(0x49)
125 BUILD_IRQ(0x4a)
126 BUILD_IRQ(0x4b)
127 BUILD_IRQ(0x4c)
128 BUILD_IRQ(0x4d)
129 BUILD_IRQ(0x4e)
130 BUILD_IRQ(0x4f)
131 BUILD_IRQ(0x50)
132 #if MACH_IRQS > 32
133 BUILD_IRQ(0x51)
134 BUILD_IRQ(0x52)
135 BUILD_IRQ(0x53)
136 BUILD_IRQ(0x54)
137 BUILD_IRQ(0x55)
138 BUILD_IRQ(0x56)
139 BUILD_IRQ(0x57)
140 BUILD_IRQ(0x58)
141 BUILD_IRQ(0x59)
142 BUILD_IRQ(0x5a)
143 BUILD_IRQ(0x5b)
144 BUILD_IRQ(0x5c)
145 BUILD_IRQ(0x5d)
146 BUILD_IRQ(0x5e)
147 BUILD_IRQ(0x5f)
148 BUILD_IRQ(0x60)
149 BUILD_IRQ(0x61)
150 BUILD_IRQ(0x62)
151 BUILD_IRQ(0x63)
152 BUILD_IRQ(0x64)
153 BUILD_IRQ(0x65)
154 BUILD_IRQ(0x66)
155 BUILD_IRQ(0x67)
156 BUILD_IRQ(0x68)
157 BUILD_IRQ(0x69)
158 BUILD_IRQ(0x6a)
159 BUILD_IRQ(0x6b)
160 BUILD_IRQ(0x6c)
161 BUILD_IRQ(0x6d)
162 BUILD_IRQ(0x6e)
163 BUILD_IRQ(0x6f)
164 BUILD_IRQ(0x70)
165 #endif
166
167 /* Pointers to the low-level handlers. */
168 static void (*interrupt[MACH_IRQS])(void) = {
169         IRQ0x31_interrupt, IRQ0x32_interrupt, IRQ0x33_interrupt,
170         IRQ0x34_interrupt, IRQ0x35_interrupt, IRQ0x36_interrupt,
171         IRQ0x37_interrupt, IRQ0x38_interrupt, IRQ0x39_interrupt,
172         IRQ0x3a_interrupt, IRQ0x3b_interrupt, IRQ0x3c_interrupt,
173         IRQ0x3d_interrupt, IRQ0x3e_interrupt, IRQ0x3f_interrupt,
174         IRQ0x40_interrupt, IRQ0x41_interrupt, IRQ0x42_interrupt,
175         IRQ0x43_interrupt, IRQ0x44_interrupt, IRQ0x45_interrupt,
176         IRQ0x46_interrupt, IRQ0x47_interrupt, IRQ0x48_interrupt,
177         IRQ0x49_interrupt, IRQ0x4a_interrupt, IRQ0x4b_interrupt,
178         IRQ0x4c_interrupt, IRQ0x4d_interrupt, IRQ0x4e_interrupt,
179         IRQ0x4f_interrupt, IRQ0x50_interrupt,
180 #if MACH_IRQS > 32
181         IRQ0x51_interrupt, IRQ0x52_interrupt, IRQ0x53_interrupt,
182         IRQ0x54_interrupt, IRQ0x55_interrupt, IRQ0x56_interrupt,
183         IRQ0x57_interrupt, IRQ0x58_interrupt, IRQ0x59_interrupt,
184         IRQ0x5a_interrupt, IRQ0x5b_interrupt, IRQ0x5c_interrupt,
185         IRQ0x5d_interrupt, IRQ0x5e_interrupt, IRQ0x5f_interrupt,
186         IRQ0x60_interrupt, IRQ0x61_interrupt, IRQ0x62_interrupt,
187         IRQ0x63_interrupt, IRQ0x64_interrupt, IRQ0x65_interrupt,
188         IRQ0x66_interrupt, IRQ0x67_interrupt, IRQ0x68_interrupt,
189         IRQ0x69_interrupt, IRQ0x6a_interrupt, IRQ0x6b_interrupt,
190         IRQ0x6c_interrupt, IRQ0x6d_interrupt, IRQ0x6e_interrupt,
191         IRQ0x6f_interrupt, IRQ0x70_interrupt,
192 #endif
193 };
194
195 void
196 block_irq(int irq, int cpu)
197 {
198         int intr_mask;
199         unsigned long flags;
200
201         spin_lock_irqsave(&irq_lock, flags);
202         if (irq - FIRST_IRQ < 32)
203                 intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu],
204                         rw_mask, 0);
205         else
206                 intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu],
207                         rw_mask, 1);
208
209         /* Remember; 1 let thru, 0 block. */
210         if (irq - FIRST_IRQ < 32)
211                 intr_mask &= ~(1 << (irq - FIRST_IRQ));
212         else
213                 intr_mask &= ~(1 << (irq - FIRST_IRQ - 32));
214
215         if (irq - FIRST_IRQ < 32)
216                 REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask,
217                         0, intr_mask);
218         else
219                 REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask,
220                         1, intr_mask);
221         spin_unlock_irqrestore(&irq_lock, flags);
222 }
223
224 void
225 unblock_irq(int irq, int cpu)
226 {
227         int intr_mask;
228         unsigned long flags;
229
230         spin_lock_irqsave(&irq_lock, flags);
231         if (irq - FIRST_IRQ < 32)
232                 intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu],
233                         rw_mask, 0);
234         else
235                 intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu],
236                         rw_mask, 1);
237
238         /* Remember; 1 let thru, 0 block. */
239         if (irq - FIRST_IRQ < 32)
240                 intr_mask |= (1 << (irq - FIRST_IRQ));
241         else
242                 intr_mask |= (1 << (irq - FIRST_IRQ - 32));
243
244         if (irq - FIRST_IRQ < 32)
245                 REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask,
246                         0, intr_mask);
247         else
248                 REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask,
249                         1, intr_mask);
250
251         spin_unlock_irqrestore(&irq_lock, flags);
252 }
253
254 /* Find out which CPU the irq should be allocated to. */
255 static int irq_cpu(int irq)
256 {
257         int cpu;
258         unsigned long flags;
259
260         spin_lock_irqsave(&irq_lock, flags);
261         cpu = irq_allocations[irq - FIRST_IRQ].cpu;
262
263         /* Fixed interrupts stay on the local CPU. */
264         if (cpu == CPU_FIXED)
265         {
266                 spin_unlock_irqrestore(&irq_lock, flags);
267                 return smp_processor_id();
268         }
269
270
271         /* Let the interrupt stay if possible */
272         if (cpu_isset(cpu, irq_allocations[irq - FIRST_IRQ].mask))
273                 goto out;
274
275         /* IRQ must be moved to another CPU. */
276         cpu = first_cpu(irq_allocations[irq - FIRST_IRQ].mask);
277         irq_allocations[irq - FIRST_IRQ].cpu = cpu;
278 out:
279         spin_unlock_irqrestore(&irq_lock, flags);
280         return cpu;
281 }
282
283 void crisv32_mask_irq(int irq)
284 {
285         int cpu;
286
287         for (cpu = 0; cpu < NR_CPUS; cpu++)
288                 block_irq(irq, cpu);
289 }
290
291 void crisv32_unmask_irq(int irq)
292 {
293         unblock_irq(irq, irq_cpu(irq));
294 }
295
296
297 static unsigned int startup_crisv32_irq(unsigned int irq)
298 {
299         crisv32_unmask_irq(irq);
300         return 0;
301 }
302
303 static void shutdown_crisv32_irq(unsigned int irq)
304 {
305         crisv32_mask_irq(irq);
306 }
307
308 static void enable_crisv32_irq(unsigned int irq)
309 {
310         crisv32_unmask_irq(irq);
311 }
312
313 static void disable_crisv32_irq(unsigned int irq)
314 {
315         crisv32_mask_irq(irq);
316 }
317
318 static void ack_crisv32_irq(unsigned int irq)
319 {
320 }
321
322 static void end_crisv32_irq(unsigned int irq)
323 {
324 }
325
326 int set_affinity_crisv32_irq(unsigned int irq, const struct cpumask *dest)
327 {
328         unsigned long flags;
329         spin_lock_irqsave(&irq_lock, flags);
330         irq_allocations[irq - FIRST_IRQ].mask = *dest;
331         spin_unlock_irqrestore(&irq_lock, flags);
332
333         return 0;
334 }
335
336 static struct irq_chip crisv32_irq_type = {
337         .name =        "CRISv32",
338         .startup =     startup_crisv32_irq,
339         .shutdown =    shutdown_crisv32_irq,
340         .enable =      enable_crisv32_irq,
341         .disable =     disable_crisv32_irq,
342         .ack =         ack_crisv32_irq,
343         .end =         end_crisv32_irq,
344         .set_affinity = set_affinity_crisv32_irq
345 };
346
347 void
348 set_exception_vector(int n, irqvectptr addr)
349 {
350         etrax_irv->v[n] = (irqvectptr) addr;
351 }
352
353 extern void do_IRQ(int irq, struct pt_regs * regs);
354
355 void
356 crisv32_do_IRQ(int irq, int block, struct pt_regs* regs)
357 {
358         /* Interrupts that may not be moved to another CPU and
359          * are IRQF_DISABLED may skip blocking. This is currently
360          * only valid for the timer IRQ and the IPI and is used
361          * for the timer interrupt to avoid watchdog starvation.
362          */
363         if (!block) {
364                 do_IRQ(irq, regs);
365                 return;
366         }
367
368         block_irq(irq, smp_processor_id());
369         do_IRQ(irq, regs);
370
371         unblock_irq(irq, irq_cpu(irq));
372 }
373
374 /* If multiple interrupts occur simultaneously we get a multiple
375  * interrupt from the CPU and software has to sort out which
376  * interrupts that happened. There are two special cases here:
377  *
378  * 1. Timer interrupts may never be blocked because of the
379  *    watchdog (refer to comment in include/asr/arch/irq.h)
380  * 2. GDB serial port IRQs are unhandled here and will be handled
381  *    as a single IRQ when it strikes again because the GDB
382  *    stubb wants to save the registers in its own fashion.
383  */
384 void
385 crisv32_do_multiple(struct pt_regs* regs)
386 {
387         int cpu;
388         int mask;
389         int masked[NBR_REGS];
390         int bit;
391         int i;
392
393         cpu = smp_processor_id();
394
395         /* An extra irq_enter here to prevent softIRQs to run after
396          * each do_IRQ. This will decrease the interrupt latency.
397          */
398         irq_enter();
399
400         for (i = 0; i < NBR_REGS; i++) {
401                 /* Get which IRQs that happend. */
402                 masked[i] = REG_RD_INT_VECT(intr_vect, irq_regs[cpu],
403                         r_masked_vect, i);
404
405                 /* Calculate new IRQ mask with these IRQs disabled. */
406                 mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i);
407                 mask &= ~masked[i];
408
409         /* Timer IRQ is never masked */
410 #ifdef TIMER_VECT1
411                 if ((i == 1) && (masked[0] & TIMER_MASK))
412                         mask |= TIMER_MASK;
413 #else
414                 if ((i == 0) && (masked[0] & TIMER_MASK))
415                         mask |= TIMER_MASK;
416 #endif
417                 /* Block all the IRQs */
418                 REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i, mask);
419
420         /* Check for timer IRQ and handle it special. */
421 #ifdef TIMER_VECT1
422                 if ((i == 1) && (masked[i] & TIMER_MASK)) {
423                         masked[i] &= ~TIMER_MASK;
424                         do_IRQ(TIMER0_INTR_VECT, regs);
425                 }
426 #else
427                 if ((i == 0) && (masked[i] & TIMER_MASK)) {
428                          masked[i] &= ~TIMER_MASK;
429                          do_IRQ(TIMER0_INTR_VECT, regs);
430                 }
431 #endif
432         }
433
434 #ifdef IGNORE_MASK
435         /* Remove IRQs that can't be handled as multiple. */
436         masked[0] &= ~IGNORE_MASK;
437 #endif
438
439         /* Handle the rest of the IRQs. */
440         for (i = 0; i < NBR_REGS; i++) {
441                 for (bit = 0; bit < 32; bit++) {
442                         if (masked[i] & (1 << bit))
443                                 do_IRQ(bit + FIRST_IRQ + i*32, regs);
444                 }
445         }
446
447         /* Unblock all the IRQs. */
448         for (i = 0; i < NBR_REGS; i++) {
449                 mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i);
450                 mask |= masked[i];
451                 REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i, mask);
452         }
453
454         /* This irq_exit() will trigger the soft IRQs. */
455         irq_exit();
456 }
457
458 /*
459  * This is called by start_kernel. It fixes the IRQ masks and setup the
460  * interrupt vector table to point to bad_interrupt pointers.
461  */
462 void __init
463 init_IRQ(void)
464 {
465         int i;
466         int j;
467         reg_intr_vect_rw_mask vect_mask = {0};
468
469         /* Clear all interrupts masks. */
470         for (i = 0; i < NBR_REGS; i++)
471                 REG_WR_VECT(intr_vect, regi_irq, rw_mask, i, vect_mask);
472
473         for (i = 0; i < 256; i++)
474                 etrax_irv->v[i] = weird_irq;
475
476         /* Point all IRQ's to bad handlers. */
477         for (i = FIRST_IRQ, j = 0; j < NR_IRQS; i++, j++) {
478                 irq_desc[j].chip = &crisv32_irq_type;
479                 set_exception_vector(i, interrupt[j]);
480         }
481
482         /* Mark Timer and IPI IRQs as CPU local */
483         irq_allocations[TIMER0_INTR_VECT - FIRST_IRQ].cpu = CPU_FIXED;
484         irq_desc[TIMER0_INTR_VECT].status |= IRQ_PER_CPU;
485         irq_allocations[IPI_INTR_VECT - FIRST_IRQ].cpu = CPU_FIXED;
486         irq_desc[IPI_INTR_VECT].status |= IRQ_PER_CPU;
487
488         set_exception_vector(0x00, nmi_interrupt);
489         set_exception_vector(0x30, multiple_interrupt);
490
491         /* Set up handler for various MMU bus faults. */
492         set_exception_vector(0x04, i_mmu_refill);
493         set_exception_vector(0x05, i_mmu_invalid);
494         set_exception_vector(0x06, i_mmu_access);
495         set_exception_vector(0x07, i_mmu_execute);
496         set_exception_vector(0x08, d_mmu_refill);
497         set_exception_vector(0x09, d_mmu_invalid);
498         set_exception_vector(0x0a, d_mmu_access);
499         set_exception_vector(0x0b, d_mmu_write);
500
501 #ifdef CONFIG_BUG
502         /* Break 14 handler, used to implement cheap BUG().  */
503         set_exception_vector(0x1e, breakh_BUG);
504 #endif
505
506         /* The system-call trap is reached by "break 13". */
507         set_exception_vector(0x1d, system_call);
508
509         /* Exception handlers for debugging, both user-mode and kernel-mode. */
510
511         /* Break 8. */
512         set_exception_vector(0x18, gdb_handle_exception);
513         /* Hardware single step. */
514         set_exception_vector(0x3, gdb_handle_exception);
515         /* Hardware breakpoint. */
516         set_exception_vector(0xc, gdb_handle_exception);
517
518 #ifdef CONFIG_ETRAX_KGDB
519         kgdb_init();
520         /* Everything is set up; now trap the kernel. */
521         breakpoint();
522 #endif
523 }
524