Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[pandora-kernel.git] / arch / cris / arch-v10 / kernel / time.c
1 /*
2  *  linux/arch/cris/arch-v10/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
5  *  Copyright (C) 1999-2002 Axis Communications AB
6  *
7  */
8
9 #include <linux/timex.h>
10 #include <linux/time.h>
11 #include <linux/jiffies.h>
12 #include <linux/interrupt.h>
13 #include <linux/swap.h>
14 #include <linux/sched.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <arch/svinto.h>
18 #include <asm/types.h>
19 #include <asm/signal.h>
20 #include <asm/io.h>
21 #include <asm/delay.h>
22 #include <asm/rtc.h>
23 #include <asm/irq_regs.h>
24
25 /* define this if you need to use print_timestamp */
26 /* it will make jiffies at 96 hz instead of 100 hz though */
27 #undef USE_CASCADE_TIMERS
28
29 extern int set_rtc_mmss(unsigned long nowtime);
30 extern int have_rtc;
31
32 unsigned long get_ns_in_jiffie(void)
33 {
34         unsigned char timer_count, t1;
35         unsigned short presc_count;
36         unsigned long ns;
37         unsigned long flags;
38
39         local_irq_save(flags);
40         timer_count = *R_TIMER0_DATA;
41         presc_count = *R_TIM_PRESC_STATUS;  
42         /* presc_count might be wrapped */
43         t1 = *R_TIMER0_DATA;
44
45         if (timer_count != t1){
46                 /* it wrapped, read prescaler again...  */
47                 presc_count = *R_TIM_PRESC_STATUS;
48                 timer_count = t1;
49         }
50         local_irq_restore(flags);
51         if (presc_count >= PRESCALE_VALUE/2 ){
52                 presc_count =  PRESCALE_VALUE - presc_count + PRESCALE_VALUE/2;
53         } else {
54                 presc_count =  PRESCALE_VALUE - presc_count - PRESCALE_VALUE/2;
55         }
56
57         ns = ( (TIMER0_DIV - timer_count) * ((1000000000/HZ)/TIMER0_DIV )) + 
58              ( (presc_count) * (1000000000/PRESCALE_FREQ));
59         return ns;
60 }
61
62 unsigned long do_slow_gettimeoffset(void)
63 {
64         unsigned long count;
65
66         /* The timer interrupt comes from Etrax timer 0. In order to get
67          * better precision, we check the current value. It might have
68          * underflowed already though.
69          */
70         count = *R_TIMER0_DATA;
71
72         /* Convert timer value to usec */
73         return (TIMER0_DIV - count) * ((NSEC_PER_SEC/1000)/HZ)/TIMER0_DIV;
74 }
75
76 /* Excerpt from the Etrax100 HSDD about the built-in watchdog:
77  *
78  * 3.10.4 Watchdog timer
79
80  * When the watchdog timer is started, it generates an NMI if the watchdog
81  * isn't restarted or stopped within 0.1 s. If it still isn't restarted or
82  * stopped after an additional 3.3 ms, the watchdog resets the chip.
83  * The watchdog timer is stopped after reset. The watchdog timer is controlled
84  * by the R_WATCHDOG register. The R_WATCHDOG register contains an enable bit
85  * and a 3-bit key value. The effect of writing to the R_WATCHDOG register is
86  * described in the table below:
87  * 
88  *   Watchdog    Value written:
89  *   state:      To enable:  To key:      Operation:
90  *   --------    ----------  -------      ----------
91  *   stopped         0         X          No effect.
92  *   stopped         1       key_val      Start watchdog with key = key_val.
93  *   started         0       ~key         Stop watchdog
94  *   started         1       ~key         Restart watchdog with key = ~key.
95  *   started         X       new_key_val  Change key to new_key_val.
96  * 
97  * Note: '~' is the bitwise NOT operator.
98  * 
99  */
100
101 /* right now, starting the watchdog is the same as resetting it */
102 #define start_watchdog reset_watchdog
103
104 #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
105 static int watchdog_key = 0;  /* arbitrary number */
106 #endif
107
108 /* number of pages to consider "out of memory". it is normal that the memory
109  * is used though, so put this really low.
110  */
111
112 #define WATCHDOG_MIN_FREE_PAGES 8
113
114 void
115 reset_watchdog(void)
116 {
117 #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
118         /* only keep watchdog happy as long as we have memory left! */
119         if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
120                 /* reset the watchdog with the inverse of the old key */
121                 watchdog_key ^= 0x7; /* invert key, which is 3 bits */
122                 *R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) |
123                         IO_STATE(R_WATCHDOG, enable, start);
124         }
125 #endif
126 }
127
128 /* stop the watchdog - we still need the correct key */
129
130 void 
131 stop_watchdog(void)
132 {
133 #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
134         watchdog_key ^= 0x7; /* invert key, which is 3 bits */
135         *R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) |
136                 IO_STATE(R_WATCHDOG, enable, stop);
137 #endif  
138 }
139
140
141 /*
142  * timer_interrupt() needs to keep up the real-time clock,
143  * as well as call the "do_timer()" routine every clocktick
144  */
145
146 //static unsigned short myjiff; /* used by our debug routine print_timestamp */
147
148 extern void cris_do_profile(struct pt_regs *regs);
149
150 static inline irqreturn_t
151 timer_interrupt(int irq, void *dev_id)
152 {
153         struct pt_regs *regs = get_irq_regs();
154         /* acknowledge the timer irq */
155
156 #ifdef USE_CASCADE_TIMERS
157         *R_TIMER_CTRL =
158                 IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
159                 IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
160                 IO_STATE( R_TIMER_CTRL, i1, clr) |
161                 IO_STATE( R_TIMER_CTRL, tm1, run) |
162                 IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
163                 IO_STATE( R_TIMER_CTRL, i0, clr) |
164                 IO_STATE( R_TIMER_CTRL, tm0, run) |
165                 IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
166 #else
167         *R_TIMER_CTRL = r_timer_ctrl_shadow | 
168                 IO_STATE(R_TIMER_CTRL, i0, clr);
169 #endif
170
171         /* reset watchdog otherwise it resets us! */
172         reset_watchdog();
173         
174         /* Update statistics. */
175         update_process_times(user_mode(regs));
176
177         /* call the real timer interrupt handler */
178
179         do_timer(1);
180         
181         cris_do_profile(regs); /* Save profiling information */
182         return IRQ_HANDLED;
183 }
184
185 /* timer is IRQF_SHARED so drivers can add stuff to the timer irq chain
186  * it needs to be IRQF_DISABLED to make the jiffies update work properly
187  */
188
189 static struct irqaction irq2  = {
190         .handler = timer_interrupt,
191         .flags = IRQF_SHARED | IRQF_DISABLED,
192         .name = "timer",
193 };
194
195 void __init
196 time_init(void)
197 {       
198         /* probe for the RTC and read it if it exists 
199          * Before the RTC can be probed the loops_per_usec variable needs 
200          * to be initialized to make usleep work. A better value for 
201          * loops_per_usec is calculated by the kernel later once the 
202          * clock has started.  
203          */
204         loops_per_usec = 50;
205
206         if(RTC_INIT() < 0)
207                 have_rtc = 0;
208         else
209                 have_rtc = 1;
210
211         /* Setup the etrax timers
212          * Base frequency is 25000 hz, divider 250 -> 100 HZ
213          * In normal mode, we use timer0, so timer1 is free. In cascade
214          * mode (which we sometimes use for debugging) both timers are used.
215          * Remember that linux/timex.h contains #defines that rely on the
216          * timer settings below (hz and divide factor) !!!
217          */
218         
219 #ifdef USE_CASCADE_TIMERS
220         *R_TIMER_CTRL =
221                 IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
222                 IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
223                 IO_STATE( R_TIMER_CTRL, i1, nop) |
224                 IO_STATE( R_TIMER_CTRL, tm1, stop_ld) |
225                 IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
226                 IO_STATE( R_TIMER_CTRL, i0, nop) |
227                 IO_STATE( R_TIMER_CTRL, tm0, stop_ld) |
228                 IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
229         
230         *R_TIMER_CTRL = r_timer_ctrl_shadow = 
231                 IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
232                 IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
233                 IO_STATE( R_TIMER_CTRL, i1, nop) |
234                 IO_STATE( R_TIMER_CTRL, tm1, run) |
235                 IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
236                 IO_STATE( R_TIMER_CTRL, i0, nop) |
237                 IO_STATE( R_TIMER_CTRL, tm0, run) |
238                 IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
239 #else
240         *R_TIMER_CTRL = 
241                 IO_FIELD(R_TIMER_CTRL, timerdiv1, 192)      | 
242                 IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV)      |
243                 IO_STATE(R_TIMER_CTRL, i1,        nop)      | 
244                 IO_STATE(R_TIMER_CTRL, tm1,       stop_ld)  |
245                 IO_STATE(R_TIMER_CTRL, clksel1,   c19k2Hz)  |
246                 IO_STATE(R_TIMER_CTRL, i0,        nop)      |
247                 IO_STATE(R_TIMER_CTRL, tm0,       stop_ld)  |
248                 IO_STATE(R_TIMER_CTRL, clksel0,   flexible);
249         
250         *R_TIMER_CTRL = r_timer_ctrl_shadow =
251                 IO_FIELD(R_TIMER_CTRL, timerdiv1, 192)      | 
252                 IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV)      |
253                 IO_STATE(R_TIMER_CTRL, i1,        nop)      |
254                 IO_STATE(R_TIMER_CTRL, tm1,       run)      |
255                 IO_STATE(R_TIMER_CTRL, clksel1,   c19k2Hz)  |
256                 IO_STATE(R_TIMER_CTRL, i0,        nop)      |
257                 IO_STATE(R_TIMER_CTRL, tm0,       run)      |
258                 IO_STATE(R_TIMER_CTRL, clksel0,   flexible);
259
260         *R_TIMER_PRESCALE = PRESCALE_VALUE;
261 #endif
262
263         *R_IRQ_MASK0_SET =
264                 IO_STATE(R_IRQ_MASK0_SET, timer0, set); /* unmask the timer irq */
265         
266         /* now actually register the timer irq handler that calls timer_interrupt() */
267         
268         setup_irq(2, &irq2); /* irq 2 is the timer0 irq in etrax */
269
270         /* enable watchdog if we should use one */
271
272 #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
273         printk("Enabling watchdog...\n");
274         start_watchdog();
275
276         /* If we use the hardware watchdog, we want to trap it as an NMI
277            and dump registers before it resets us.  For this to happen, we
278            must set the "m" NMI enable flag (which once set, is unset only
279            when an NMI is taken).
280
281            The same goes for the external NMI, but that doesn't have any
282            driver or infrastructure support yet.  */
283         asm ("setf m");
284
285         *R_IRQ_MASK0_SET =
286                 IO_STATE(R_IRQ_MASK0_SET, watchdog_nmi, set);
287         *R_VECT_MASK_SET =
288                 IO_STATE(R_VECT_MASK_SET, nmi, set);
289 #endif
290 }