Merge branch 'kbuild' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild-2.6
[pandora-kernel.git] / arch / blackfin / mach-common / smp.c
1 /*
2  * IPI management based on arch/arm/kernel/smp.c (Copyright 2002 ARM Limited)
3  *
4  * Copyright 2007-2009 Analog Devices Inc.
5  *                         Philippe Gerum <rpm@xenomai.org>
6  *
7  * Licensed under the GPL-2.
8  */
9
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/cpu.h>
21 #include <linux/smp.h>
22 #include <linux/cpumask.h>
23 #include <linux/seq_file.h>
24 #include <linux/irq.h>
25 #include <linux/slab.h>
26 #include <asm/atomic.h>
27 #include <asm/cacheflush.h>
28 #include <asm/mmu_context.h>
29 #include <asm/pgtable.h>
30 #include <asm/pgalloc.h>
31 #include <asm/processor.h>
32 #include <asm/ptrace.h>
33 #include <asm/cpu.h>
34 #include <asm/time.h>
35 #include <linux/err.h>
36
37 /*
38  * Anomaly notes:
39  * 05000120 - we always define corelock as 32-bit integer in L2
40  */
41 struct corelock_slot corelock __attribute__ ((__section__(".l2.bss")));
42
43 #ifdef CONFIG_ICACHE_FLUSH_L1
44 unsigned long blackfin_iflush_l1_entry[NR_CPUS];
45 #endif
46
47 void __cpuinitdata *init_retx_coreb, *init_saved_retx_coreb,
48         *init_saved_seqstat_coreb, *init_saved_icplb_fault_addr_coreb,
49         *init_saved_dcplb_fault_addr_coreb;
50
51 #define BFIN_IPI_RESCHEDULE   0
52 #define BFIN_IPI_CALL_FUNC    1
53 #define BFIN_IPI_CPU_STOP     2
54
55 struct blackfin_flush_data {
56         unsigned long start;
57         unsigned long end;
58 };
59
60 void *secondary_stack;
61
62
63 struct smp_call_struct {
64         void (*func)(void *info);
65         void *info;
66         int wait;
67         cpumask_t *waitmask;
68 };
69
70 static struct blackfin_flush_data smp_flush_data;
71
72 static DEFINE_SPINLOCK(stop_lock);
73
74 struct ipi_message {
75         unsigned long type;
76         struct smp_call_struct call_struct;
77 };
78
79 /* A magic number - stress test shows this is safe for common cases */
80 #define BFIN_IPI_MSGQ_LEN 5
81
82 /* Simple FIFO buffer, overflow leads to panic */
83 struct ipi_message_queue {
84         spinlock_t lock;
85         unsigned long count;
86         unsigned long head; /* head of the queue */
87         struct ipi_message ipi_message[BFIN_IPI_MSGQ_LEN];
88 };
89
90 static DEFINE_PER_CPU(struct ipi_message_queue, ipi_msg_queue);
91
92 static void ipi_cpu_stop(unsigned int cpu)
93 {
94         spin_lock(&stop_lock);
95         printk(KERN_CRIT "CPU%u: stopping\n", cpu);
96         dump_stack();
97         spin_unlock(&stop_lock);
98
99         cpu_clear(cpu, cpu_online_map);
100
101         local_irq_disable();
102
103         while (1)
104                 SSYNC();
105 }
106
107 static void ipi_flush_icache(void *info)
108 {
109         struct blackfin_flush_data *fdata = info;
110
111         /* Invalidate the memory holding the bounds of the flushed region. */
112         blackfin_dcache_invalidate_range((unsigned long)fdata,
113                                          (unsigned long)fdata + sizeof(*fdata));
114
115         /* Make sure all write buffers in the data side of the core
116          * are flushed before trying to invalidate the icache.  This
117          * needs to be after the data flush and before the icache
118          * flush so that the SSYNC does the right thing in preventing
119          * the instruction prefetcher from hitting things in cached
120          * memory at the wrong time -- it runs much further ahead than
121          * the pipeline.
122          */
123         SSYNC();
124
125         /* ipi_flaush_icache is invoked by generic flush_icache_range,
126          * so call blackfin arch icache flush directly here.
127          */
128         blackfin_icache_flush_range(fdata->start, fdata->end);
129 }
130
131 static void ipi_call_function(unsigned int cpu, struct ipi_message *msg)
132 {
133         int wait;
134         void (*func)(void *info);
135         void *info;
136         func = msg->call_struct.func;
137         info = msg->call_struct.info;
138         wait = msg->call_struct.wait;
139         func(info);
140         if (wait) {
141 #ifdef __ARCH_SYNC_CORE_DCACHE
142                 /*
143                  * 'wait' usually means synchronization between CPUs.
144                  * Invalidate D cache in case shared data was changed
145                  * by func() to ensure cache coherence.
146                  */
147                 resync_core_dcache();
148 #endif
149                 cpu_clear(cpu, *msg->call_struct.waitmask);
150         }
151 }
152
153 /* Use IRQ_SUPPLE_0 to request reschedule.
154  * When returning from interrupt to user space,
155  * there is chance to reschedule */
156 static irqreturn_t ipi_handler_int0(int irq, void *dev_instance)
157 {
158         unsigned int cpu = smp_processor_id();
159
160         platform_clear_ipi(cpu, IRQ_SUPPLE_0);
161         return IRQ_HANDLED;
162 }
163
164 static irqreturn_t ipi_handler_int1(int irq, void *dev_instance)
165 {
166         struct ipi_message *msg;
167         struct ipi_message_queue *msg_queue;
168         unsigned int cpu = smp_processor_id();
169         unsigned long flags;
170
171         platform_clear_ipi(cpu, IRQ_SUPPLE_1);
172
173         msg_queue = &__get_cpu_var(ipi_msg_queue);
174
175         spin_lock_irqsave(&msg_queue->lock, flags);
176
177         while (msg_queue->count) {
178                 msg = &msg_queue->ipi_message[msg_queue->head];
179                 switch (msg->type) {
180                 case BFIN_IPI_RESCHEDULE:
181                         scheduler_ipi();
182                         break;
183                 case BFIN_IPI_CALL_FUNC:
184                         spin_unlock_irqrestore(&msg_queue->lock, flags);
185                         ipi_call_function(cpu, msg);
186                         spin_lock_irqsave(&msg_queue->lock, flags);
187                         break;
188                 case BFIN_IPI_CPU_STOP:
189                         spin_unlock_irqrestore(&msg_queue->lock, flags);
190                         ipi_cpu_stop(cpu);
191                         spin_lock_irqsave(&msg_queue->lock, flags);
192                         break;
193                 default:
194                         printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%lx\n",
195                                cpu, msg->type);
196                         break;
197                 }
198                 msg_queue->head++;
199                 msg_queue->head %= BFIN_IPI_MSGQ_LEN;
200                 msg_queue->count--;
201         }
202         spin_unlock_irqrestore(&msg_queue->lock, flags);
203         return IRQ_HANDLED;
204 }
205
206 static void ipi_queue_init(void)
207 {
208         unsigned int cpu;
209         struct ipi_message_queue *msg_queue;
210         for_each_possible_cpu(cpu) {
211                 msg_queue = &per_cpu(ipi_msg_queue, cpu);
212                 spin_lock_init(&msg_queue->lock);
213                 msg_queue->count = 0;
214                 msg_queue->head = 0;
215         }
216 }
217
218 static inline void smp_send_message(cpumask_t callmap, unsigned long type,
219                                         void (*func) (void *info), void *info, int wait)
220 {
221         unsigned int cpu;
222         struct ipi_message_queue *msg_queue;
223         struct ipi_message *msg;
224         unsigned long flags, next_msg;
225         cpumask_t waitmask = callmap; /* waitmask is shared by all cpus */
226
227         for_each_cpu_mask(cpu, callmap) {
228                 msg_queue = &per_cpu(ipi_msg_queue, cpu);
229                 spin_lock_irqsave(&msg_queue->lock, flags);
230                 if (msg_queue->count < BFIN_IPI_MSGQ_LEN) {
231                         next_msg = (msg_queue->head + msg_queue->count)
232                                         % BFIN_IPI_MSGQ_LEN;
233                         msg = &msg_queue->ipi_message[next_msg];
234                         msg->type = type;
235                         if (type == BFIN_IPI_CALL_FUNC) {
236                                 msg->call_struct.func = func;
237                                 msg->call_struct.info = info;
238                                 msg->call_struct.wait = wait;
239                                 msg->call_struct.waitmask = &waitmask;
240                         }
241                         msg_queue->count++;
242                 } else
243                         panic("IPI message queue overflow\n");
244                 spin_unlock_irqrestore(&msg_queue->lock, flags);
245                 platform_send_ipi_cpu(cpu, IRQ_SUPPLE_1);
246         }
247
248         if (wait) {
249                 while (!cpus_empty(waitmask))
250                         blackfin_dcache_invalidate_range(
251                                 (unsigned long)(&waitmask),
252                                 (unsigned long)(&waitmask));
253 #ifdef __ARCH_SYNC_CORE_DCACHE
254                 /*
255                  * Invalidate D cache in case shared data was changed by
256                  * other processors to ensure cache coherence.
257                  */
258                 resync_core_dcache();
259 #endif
260         }
261 }
262
263 int smp_call_function(void (*func)(void *info), void *info, int wait)
264 {
265         cpumask_t callmap;
266
267         preempt_disable();
268         callmap = cpu_online_map;
269         cpu_clear(smp_processor_id(), callmap);
270         if (!cpus_empty(callmap))
271                 smp_send_message(callmap, BFIN_IPI_CALL_FUNC, func, info, wait);
272
273         preempt_enable();
274
275         return 0;
276 }
277 EXPORT_SYMBOL_GPL(smp_call_function);
278
279 int smp_call_function_single(int cpuid, void (*func) (void *info), void *info,
280                                 int wait)
281 {
282         unsigned int cpu = cpuid;
283         cpumask_t callmap;
284
285         if (cpu_is_offline(cpu))
286                 return 0;
287         cpus_clear(callmap);
288         cpu_set(cpu, callmap);
289
290         smp_send_message(callmap, BFIN_IPI_CALL_FUNC, func, info, wait);
291
292         return 0;
293 }
294 EXPORT_SYMBOL_GPL(smp_call_function_single);
295
296 void smp_send_reschedule(int cpu)
297 {
298         /* simply trigger an ipi */
299         if (cpu_is_offline(cpu))
300                 return;
301         platform_send_ipi_cpu(cpu, IRQ_SUPPLE_0);
302
303         return;
304 }
305
306 void smp_send_stop(void)
307 {
308         cpumask_t callmap;
309
310         preempt_disable();
311         callmap = cpu_online_map;
312         cpu_clear(smp_processor_id(), callmap);
313         if (!cpus_empty(callmap))
314                 smp_send_message(callmap, BFIN_IPI_CPU_STOP, NULL, NULL, 0);
315
316         preempt_enable();
317
318         return;
319 }
320
321 int __cpuinit __cpu_up(unsigned int cpu)
322 {
323         int ret;
324         static struct task_struct *idle;
325
326         if (idle)
327                 free_task(idle);
328
329         idle = fork_idle(cpu);
330         if (IS_ERR(idle)) {
331                 printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
332                 return PTR_ERR(idle);
333         }
334
335         secondary_stack = task_stack_page(idle) + THREAD_SIZE;
336
337         ret = platform_boot_secondary(cpu, idle);
338
339         secondary_stack = NULL;
340
341         return ret;
342 }
343
344 static void __cpuinit setup_secondary(unsigned int cpu)
345 {
346         unsigned long ilat;
347
348         bfin_write_IMASK(0);
349         CSYNC();
350         ilat = bfin_read_ILAT();
351         CSYNC();
352         bfin_write_ILAT(ilat);
353         CSYNC();
354
355         /* Enable interrupt levels IVG7-15. IARs have been already
356          * programmed by the boot CPU.  */
357         bfin_irq_flags |= IMASK_IVG15 |
358             IMASK_IVG14 | IMASK_IVG13 | IMASK_IVG12 | IMASK_IVG11 |
359             IMASK_IVG10 | IMASK_IVG9 | IMASK_IVG8 | IMASK_IVG7 | IMASK_IVGHW;
360 }
361
362 void __cpuinit secondary_start_kernel(void)
363 {
364         unsigned int cpu = smp_processor_id();
365         struct mm_struct *mm = &init_mm;
366
367         if (_bfin_swrst & SWRST_DBL_FAULT_B) {
368                 printk(KERN_EMERG "CoreB Recovering from DOUBLE FAULT event\n");
369 #ifdef CONFIG_DEBUG_DOUBLEFAULT
370                 printk(KERN_EMERG " While handling exception (EXCAUSE = 0x%x) at %pF\n",
371                         (int)init_saved_seqstat_coreb & SEQSTAT_EXCAUSE, init_saved_retx_coreb);
372                 printk(KERN_NOTICE "   DCPLB_FAULT_ADDR: %pF\n", init_saved_dcplb_fault_addr_coreb);
373                 printk(KERN_NOTICE "   ICPLB_FAULT_ADDR: %pF\n", init_saved_icplb_fault_addr_coreb);
374 #endif
375                 printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
376                         init_retx_coreb);
377         }
378
379         /*
380          * We want the D-cache to be enabled early, in case the atomic
381          * support code emulates cache coherence (see
382          * __ARCH_SYNC_CORE_DCACHE).
383          */
384         init_exception_vectors();
385
386         local_irq_disable();
387
388         /* Attach the new idle task to the global mm. */
389         atomic_inc(&mm->mm_users);
390         atomic_inc(&mm->mm_count);
391         current->active_mm = mm;
392
393         preempt_disable();
394
395         setup_secondary(cpu);
396
397         platform_secondary_init(cpu);
398
399         /* setup local core timer */
400         bfin_local_timer_setup();
401
402         local_irq_enable();
403
404         bfin_setup_caches(cpu);
405
406         /*
407          * Calibrate loops per jiffy value.
408          * IRQs need to be enabled here - D-cache can be invalidated
409          * in timer irq handler, so core B can read correct jiffies.
410          */
411         calibrate_delay();
412
413         cpu_idle();
414 }
415
416 void __init smp_prepare_boot_cpu(void)
417 {
418 }
419
420 void __init smp_prepare_cpus(unsigned int max_cpus)
421 {
422         platform_prepare_cpus(max_cpus);
423         ipi_queue_init();
424         platform_request_ipi(IRQ_SUPPLE_0, ipi_handler_int0);
425         platform_request_ipi(IRQ_SUPPLE_1, ipi_handler_int1);
426 }
427
428 void __init smp_cpus_done(unsigned int max_cpus)
429 {
430         unsigned long bogosum = 0;
431         unsigned int cpu;
432
433         for_each_online_cpu(cpu)
434                 bogosum += loops_per_jiffy;
435
436         printk(KERN_INFO "SMP: Total of %d processors activated "
437                "(%lu.%02lu BogoMIPS).\n",
438                num_online_cpus(),
439                bogosum / (500000/HZ),
440                (bogosum / (5000/HZ)) % 100);
441 }
442
443 void smp_icache_flush_range_others(unsigned long start, unsigned long end)
444 {
445         smp_flush_data.start = start;
446         smp_flush_data.end = end;
447
448         if (smp_call_function(&ipi_flush_icache, &smp_flush_data, 0))
449                 printk(KERN_WARNING "SMP: failed to run I-cache flush request on other CPUs\n");
450 }
451 EXPORT_SYMBOL_GPL(smp_icache_flush_range_others);
452
453 #ifdef __ARCH_SYNC_CORE_ICACHE
454 unsigned long icache_invld_count[NR_CPUS];
455 void resync_core_icache(void)
456 {
457         unsigned int cpu = get_cpu();
458         blackfin_invalidate_entire_icache();
459         icache_invld_count[cpu]++;
460         put_cpu();
461 }
462 EXPORT_SYMBOL(resync_core_icache);
463 #endif
464
465 #ifdef __ARCH_SYNC_CORE_DCACHE
466 unsigned long dcache_invld_count[NR_CPUS];
467 unsigned long barrier_mask __attribute__ ((__section__(".l2.bss")));
468
469 void resync_core_dcache(void)
470 {
471         unsigned int cpu = get_cpu();
472         blackfin_invalidate_entire_dcache();
473         dcache_invld_count[cpu]++;
474         put_cpu();
475 }
476 EXPORT_SYMBOL(resync_core_dcache);
477 #endif
478
479 #ifdef CONFIG_HOTPLUG_CPU
480 int __cpuexit __cpu_disable(void)
481 {
482         unsigned int cpu = smp_processor_id();
483
484         if (cpu == 0)
485                 return -EPERM;
486
487         set_cpu_online(cpu, false);
488         return 0;
489 }
490
491 static DECLARE_COMPLETION(cpu_killed);
492
493 int __cpuexit __cpu_die(unsigned int cpu)
494 {
495         return wait_for_completion_timeout(&cpu_killed, 5000);
496 }
497
498 void cpu_die(void)
499 {
500         complete(&cpu_killed);
501
502         atomic_dec(&init_mm.mm_users);
503         atomic_dec(&init_mm.mm_count);
504
505         local_irq_disable();
506         platform_cpu_die();
507 }
508 #endif