Merge branch 'v4l_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[pandora-kernel.git] / arch / blackfin / kernel / time-ts.c
1 /*
2  * Based on arm clockevents implementation and old bfin time tick.
3  *
4  * Copyright 2008-2009 Analog Devics Inc.
5  *                2008 GeoTechnologies
6  *                     Vitja Makarov
7  *
8  * Licensed under the GPL-2
9  */
10
11 #include <linux/module.h>
12 #include <linux/profile.h>
13 #include <linux/interrupt.h>
14 #include <linux/time.h>
15 #include <linux/timex.h>
16 #include <linux/irq.h>
17 #include <linux/clocksource.h>
18 #include <linux/clockchips.h>
19 #include <linux/cpufreq.h>
20
21 #include <asm/blackfin.h>
22 #include <asm/time.h>
23 #include <asm/gptimers.h>
24 #include <asm/nmi.h>
25
26 /* Accelerators for sched_clock()
27  * convert from cycles(64bits) => nanoseconds (64bits)
28  *  basic equation:
29  *              ns = cycles / (freq / ns_per_sec)
30  *              ns = cycles * (ns_per_sec / freq)
31  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
32  *              ns = cycles * (10^6 / cpu_khz)
33  *
34  *      Then we use scaling math (suggested by george@mvista.com) to get:
35  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
36  *              ns = cycles * cyc2ns_scale / SC
37  *
38  *      And since SC is a constant power of two, we can convert the div
39  *  into a shift.
40  *
41  *  We can use khz divisor instead of mhz to keep a better precision, since
42  *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
43  *  (mathieu.desnoyers@polymtl.ca)
44  *
45  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
46  */
47
48 #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
49
50 #if defined(CONFIG_CYCLES_CLOCKSOURCE)
51
52 static notrace cycle_t bfin_read_cycles(struct clocksource *cs)
53 {
54 #ifdef CONFIG_CPU_FREQ
55         return __bfin_cycles_off + (get_cycles() << __bfin_cycles_mod);
56 #else
57         return get_cycles();
58 #endif
59 }
60
61 static struct clocksource bfin_cs_cycles = {
62         .name           = "bfin_cs_cycles",
63         .rating         = 400,
64         .read           = bfin_read_cycles,
65         .mask           = CLOCKSOURCE_MASK(64),
66         .shift          = CYC2NS_SCALE_FACTOR,
67         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
68 };
69
70 static inline unsigned long long bfin_cs_cycles_sched_clock(void)
71 {
72         return clocksource_cyc2ns(bfin_read_cycles(&bfin_cs_cycles),
73                 bfin_cs_cycles.mult, bfin_cs_cycles.shift);
74 }
75
76 static int __init bfin_cs_cycles_init(void)
77 {
78         bfin_cs_cycles.mult = \
79                 clocksource_hz2mult(get_cclk(), bfin_cs_cycles.shift);
80
81         if (clocksource_register(&bfin_cs_cycles))
82                 panic("failed to register clocksource");
83
84         return 0;
85 }
86 #else
87 # define bfin_cs_cycles_init()
88 #endif
89
90 #ifdef CONFIG_GPTMR0_CLOCKSOURCE
91
92 void __init setup_gptimer0(void)
93 {
94         disable_gptimers(TIMER0bit);
95
96         set_gptimer_config(TIMER0_id, \
97                 TIMER_OUT_DIS | TIMER_PERIOD_CNT | TIMER_MODE_PWM);
98         set_gptimer_period(TIMER0_id, -1);
99         set_gptimer_pwidth(TIMER0_id, -2);
100         SSYNC();
101         enable_gptimers(TIMER0bit);
102 }
103
104 static cycle_t bfin_read_gptimer0(struct clocksource *cs)
105 {
106         return bfin_read_TIMER0_COUNTER();
107 }
108
109 static struct clocksource bfin_cs_gptimer0 = {
110         .name           = "bfin_cs_gptimer0",
111         .rating         = 350,
112         .read           = bfin_read_gptimer0,
113         .mask           = CLOCKSOURCE_MASK(32),
114         .shift          = CYC2NS_SCALE_FACTOR,
115         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
116 };
117
118 static inline unsigned long long bfin_cs_gptimer0_sched_clock(void)
119 {
120         return clocksource_cyc2ns(bfin_read_TIMER0_COUNTER(),
121                 bfin_cs_gptimer0.mult, bfin_cs_gptimer0.shift);
122 }
123
124 static int __init bfin_cs_gptimer0_init(void)
125 {
126         setup_gptimer0();
127
128         bfin_cs_gptimer0.mult = \
129                 clocksource_hz2mult(get_sclk(), bfin_cs_gptimer0.shift);
130
131         if (clocksource_register(&bfin_cs_gptimer0))
132                 panic("failed to register clocksource");
133
134         return 0;
135 }
136 #else
137 # define bfin_cs_gptimer0_init()
138 #endif
139
140 #if defined(CONFIG_GPTMR0_CLOCKSOURCE) || defined(CONFIG_CYCLES_CLOCKSOURCE)
141 /* prefer to use cycles since it has higher rating */
142 notrace unsigned long long sched_clock(void)
143 {
144 #if defined(CONFIG_CYCLES_CLOCKSOURCE)
145         return bfin_cs_cycles_sched_clock();
146 #else
147         return bfin_cs_gptimer0_sched_clock();
148 #endif
149 }
150 #endif
151
152 #if defined(CONFIG_TICKSOURCE_GPTMR0)
153 static int bfin_gptmr0_set_next_event(unsigned long cycles,
154                                      struct clock_event_device *evt)
155 {
156         disable_gptimers(TIMER0bit);
157
158         /* it starts counting three SCLK cycles after the TIMENx bit is set */
159         set_gptimer_pwidth(TIMER0_id, cycles - 3);
160         enable_gptimers(TIMER0bit);
161         return 0;
162 }
163
164 static void bfin_gptmr0_set_mode(enum clock_event_mode mode,
165                                 struct clock_event_device *evt)
166 {
167         switch (mode) {
168         case CLOCK_EVT_MODE_PERIODIC: {
169                 set_gptimer_config(TIMER0_id, \
170                         TIMER_OUT_DIS | TIMER_IRQ_ENA | \
171                         TIMER_PERIOD_CNT | TIMER_MODE_PWM);
172                 set_gptimer_period(TIMER0_id, get_sclk() / HZ);
173                 set_gptimer_pwidth(TIMER0_id, get_sclk() / HZ - 1);
174                 enable_gptimers(TIMER0bit);
175                 break;
176         }
177         case CLOCK_EVT_MODE_ONESHOT:
178                 disable_gptimers(TIMER0bit);
179                 set_gptimer_config(TIMER0_id, \
180                         TIMER_OUT_DIS | TIMER_IRQ_ENA | TIMER_MODE_PWM);
181                 set_gptimer_period(TIMER0_id, 0);
182                 break;
183         case CLOCK_EVT_MODE_UNUSED:
184         case CLOCK_EVT_MODE_SHUTDOWN:
185                 disable_gptimers(TIMER0bit);
186                 break;
187         case CLOCK_EVT_MODE_RESUME:
188                 break;
189         }
190 }
191
192 static void bfin_gptmr0_ack(void)
193 {
194         set_gptimer_status(TIMER_GROUP1, TIMER_STATUS_TIMIL0);
195 }
196
197 static void __init bfin_gptmr0_init(void)
198 {
199         disable_gptimers(TIMER0bit);
200 }
201
202 #ifdef CONFIG_CORE_TIMER_IRQ_L1
203 __attribute__((l1_text))
204 #endif
205 irqreturn_t bfin_gptmr0_interrupt(int irq, void *dev_id)
206 {
207         struct clock_event_device *evt = dev_id;
208         smp_mb();
209         /*
210          * We want to ACK before we handle so that we can handle smaller timer
211          * intervals.  This way if the timer expires again while we're handling
212          * things, we're more likely to see that 2nd int rather than swallowing
213          * it by ACKing the int at the end of this handler.
214          */
215         bfin_gptmr0_ack();
216         evt->event_handler(evt);
217         return IRQ_HANDLED;
218 }
219
220 static struct irqaction gptmr0_irq = {
221         .name           = "Blackfin GPTimer0",
222         .flags          = IRQF_DISABLED | IRQF_TIMER | \
223                           IRQF_IRQPOLL | IRQF_PERCPU,
224         .handler        = bfin_gptmr0_interrupt,
225 };
226
227 static struct clock_event_device clockevent_gptmr0 = {
228         .name           = "bfin_gptimer0",
229         .rating         = 300,
230         .irq            = IRQ_TIMER0,
231         .shift          = 32,
232         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
233         .set_next_event = bfin_gptmr0_set_next_event,
234         .set_mode       = bfin_gptmr0_set_mode,
235 };
236
237 static void __init bfin_gptmr0_clockevent_init(struct clock_event_device *evt)
238 {
239         unsigned long clock_tick;
240
241         clock_tick = get_sclk();
242         evt->mult = div_sc(clock_tick, NSEC_PER_SEC, evt->shift);
243         evt->max_delta_ns = clockevent_delta2ns(-1, evt);
244         evt->min_delta_ns = clockevent_delta2ns(100, evt);
245
246         evt->cpumask = cpumask_of(0);
247
248         clockevents_register_device(evt);
249 }
250 #endif /* CONFIG_TICKSOURCE_GPTMR0 */
251
252 #if defined(CONFIG_TICKSOURCE_CORETMR)
253 /* per-cpu local core timer */
254 static DEFINE_PER_CPU(struct clock_event_device, coretmr_events);
255
256 static int bfin_coretmr_set_next_event(unsigned long cycles,
257                                 struct clock_event_device *evt)
258 {
259         bfin_write_TCNTL(TMPWR);
260         CSYNC();
261         bfin_write_TCOUNT(cycles);
262         CSYNC();
263         bfin_write_TCNTL(TMPWR | TMREN);
264         return 0;
265 }
266
267 static void bfin_coretmr_set_mode(enum clock_event_mode mode,
268                                 struct clock_event_device *evt)
269 {
270         switch (mode) {
271         case CLOCK_EVT_MODE_PERIODIC: {
272                 unsigned long tcount = ((get_cclk() / (HZ * TIME_SCALE)) - 1);
273                 bfin_write_TCNTL(TMPWR);
274                 CSYNC();
275                 bfin_write_TSCALE(TIME_SCALE - 1);
276                 bfin_write_TPERIOD(tcount);
277                 bfin_write_TCOUNT(tcount);
278                 CSYNC();
279                 bfin_write_TCNTL(TMPWR | TMREN | TAUTORLD);
280                 break;
281         }
282         case CLOCK_EVT_MODE_ONESHOT:
283                 bfin_write_TCNTL(TMPWR);
284                 CSYNC();
285                 bfin_write_TSCALE(TIME_SCALE - 1);
286                 bfin_write_TPERIOD(0);
287                 bfin_write_TCOUNT(0);
288                 break;
289         case CLOCK_EVT_MODE_UNUSED:
290         case CLOCK_EVT_MODE_SHUTDOWN:
291                 bfin_write_TCNTL(0);
292                 CSYNC();
293                 break;
294         case CLOCK_EVT_MODE_RESUME:
295                 break;
296         }
297 }
298
299 void bfin_coretmr_init(void)
300 {
301         /* power up the timer, but don't enable it just yet */
302         bfin_write_TCNTL(TMPWR);
303         CSYNC();
304
305         /* the TSCALE prescaler counter. */
306         bfin_write_TSCALE(TIME_SCALE - 1);
307         bfin_write_TPERIOD(0);
308         bfin_write_TCOUNT(0);
309
310         CSYNC();
311 }
312
313 #ifdef CONFIG_CORE_TIMER_IRQ_L1
314 __attribute__((l1_text))
315 #endif
316 irqreturn_t bfin_coretmr_interrupt(int irq, void *dev_id)
317 {
318         int cpu = smp_processor_id();
319         struct clock_event_device *evt = &per_cpu(coretmr_events, cpu);
320
321         smp_mb();
322         evt->event_handler(evt);
323
324         touch_nmi_watchdog();
325
326         return IRQ_HANDLED;
327 }
328
329 static struct irqaction coretmr_irq = {
330         .name           = "Blackfin CoreTimer",
331         .flags          = IRQF_DISABLED | IRQF_TIMER | \
332                           IRQF_IRQPOLL | IRQF_PERCPU,
333         .handler        = bfin_coretmr_interrupt,
334 };
335
336 void bfin_coretmr_clockevent_init(void)
337 {
338         unsigned long clock_tick;
339         unsigned int cpu = smp_processor_id();
340         struct clock_event_device *evt = &per_cpu(coretmr_events, cpu);
341
342         evt->name = "bfin_core_timer";
343         evt->rating = 350;
344         evt->irq = -1;
345         evt->shift = 32;
346         evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
347         evt->set_next_event = bfin_coretmr_set_next_event;
348         evt->set_mode = bfin_coretmr_set_mode;
349
350         clock_tick = get_cclk() / TIME_SCALE;
351         evt->mult = div_sc(clock_tick, NSEC_PER_SEC, evt->shift);
352         evt->max_delta_ns = clockevent_delta2ns(-1, evt);
353         evt->min_delta_ns = clockevent_delta2ns(100, evt);
354
355         evt->cpumask = cpumask_of(cpu);
356
357         clockevents_register_device(evt);
358 }
359 #endif /* CONFIG_TICKSOURCE_CORETMR */
360
361
362 void read_persistent_clock(struct timespec *ts)
363 {
364         time_t secs_since_1970 = (365 * 37 + 9) * 24 * 60 * 60; /* 1 Jan 2007 */
365         ts->tv_sec = secs_since_1970;
366         ts->tv_nsec = 0;
367 }
368
369 void __init time_init(void)
370 {
371
372 #ifdef CONFIG_RTC_DRV_BFIN
373         /* [#2663] hack to filter junk RTC values that would cause
374          * userspace to have to deal with time values greater than
375          * 2^31 seconds (which uClibc cannot cope with yet)
376          */
377         if ((bfin_read_RTC_STAT() & 0xC0000000) == 0xC0000000) {
378                 printk(KERN_NOTICE "bfin-rtc: invalid date; resetting\n");
379                 bfin_write_RTC_STAT(0);
380         }
381 #endif
382
383         bfin_cs_cycles_init();
384         bfin_cs_gptimer0_init();
385
386 #if defined(CONFIG_TICKSOURCE_CORETMR)
387         bfin_coretmr_init();
388         setup_irq(IRQ_CORETMR, &coretmr_irq);
389         bfin_coretmr_clockevent_init();
390 #endif
391
392 #if defined(CONFIG_TICKSOURCE_GPTMR0)
393         bfin_gptmr0_init();
394         setup_irq(IRQ_TIMER0, &gptmr0_irq);
395         gptmr0_irq.dev_id = &clockevent_gptmr0;
396         bfin_gptmr0_clockevent_init(&clockevent_gptmr0);
397 #endif
398
399 #if !defined(CONFIG_TICKSOURCE_CORETMR) && !defined(CONFIG_TICKSOURCE_GPTMR0)
400 # error at least one clock event device is required
401 #endif
402 }