Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[pandora-kernel.git] / arch / blackfin / kernel / setup.c
1 /*
2  * Copyright 2004-2010 Analog Devices Inc.
3  *
4  * Licensed under the GPL-2 or later.
5  */
6
7 #include <linux/delay.h>
8 #include <linux/console.h>
9 #include <linux/bootmem.h>
10 #include <linux/seq_file.h>
11 #include <linux/cpu.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/tty.h>
15 #include <linux/pfn.h>
16
17 #ifdef CONFIG_MTD_UCLINUX
18 #include <linux/mtd/map.h>
19 #include <linux/ext2_fs.h>
20 #include <linux/cramfs_fs.h>
21 #include <linux/romfs_fs.h>
22 #endif
23
24 #include <asm/cplb.h>
25 #include <asm/cacheflush.h>
26 #include <asm/blackfin.h>
27 #include <asm/cplbinit.h>
28 #include <asm/div64.h>
29 #include <asm/cpu.h>
30 #include <asm/fixed_code.h>
31 #include <asm/early_printk.h>
32 #include <asm/irq_handler.h>
33
34 u16 _bfin_swrst;
35 EXPORT_SYMBOL(_bfin_swrst);
36
37 unsigned long memory_start, memory_end, physical_mem_end;
38 unsigned long _rambase, _ramstart, _ramend;
39 unsigned long reserved_mem_dcache_on;
40 unsigned long reserved_mem_icache_on;
41 EXPORT_SYMBOL(memory_start);
42 EXPORT_SYMBOL(memory_end);
43 EXPORT_SYMBOL(physical_mem_end);
44 EXPORT_SYMBOL(_ramend);
45 EXPORT_SYMBOL(reserved_mem_dcache_on);
46
47 #ifdef CONFIG_MTD_UCLINUX
48 extern struct map_info uclinux_ram_map;
49 unsigned long memory_mtd_end, memory_mtd_start, mtd_size;
50 unsigned long _ebss;
51 EXPORT_SYMBOL(memory_mtd_end);
52 EXPORT_SYMBOL(memory_mtd_start);
53 EXPORT_SYMBOL(mtd_size);
54 #endif
55
56 char __initdata command_line[COMMAND_LINE_SIZE];
57 struct blackfin_initial_pda __initdata initial_pda;
58
59 /* boot memmap, for parsing "memmap=" */
60 #define BFIN_MEMMAP_MAX         128 /* number of entries in bfin_memmap */
61 #define BFIN_MEMMAP_RAM         1
62 #define BFIN_MEMMAP_RESERVED    2
63 static struct bfin_memmap {
64         int nr_map;
65         struct bfin_memmap_entry {
66                 unsigned long long addr; /* start of memory segment */
67                 unsigned long long size;
68                 unsigned long type;
69         } map[BFIN_MEMMAP_MAX];
70 } bfin_memmap __initdata;
71
72 /* for memmap sanitization */
73 struct change_member {
74         struct bfin_memmap_entry *pentry; /* pointer to original entry */
75         unsigned long long addr; /* address for this change point */
76 };
77 static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata;
78 static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
79 static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
80 static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
81
82 DEFINE_PER_CPU(struct blackfin_cpudata, cpu_data);
83
84 static int early_init_clkin_hz(char *buf);
85
86 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
87 void __init generate_cplb_tables(void)
88 {
89         unsigned int cpu;
90
91         generate_cplb_tables_all();
92         /* Generate per-CPU I&D CPLB tables */
93         for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
94                 generate_cplb_tables_cpu(cpu);
95 }
96 #endif
97
98 void __cpuinit bfin_setup_caches(unsigned int cpu)
99 {
100 #ifdef CONFIG_BFIN_ICACHE
101         bfin_icache_init(icplb_tbl[cpu]);
102 #endif
103
104 #ifdef CONFIG_BFIN_DCACHE
105         bfin_dcache_init(dcplb_tbl[cpu]);
106 #endif
107
108         bfin_setup_cpudata(cpu);
109
110         /*
111          * In cache coherence emulation mode, we need to have the
112          * D-cache enabled before running any atomic operation which
113          * might involve cache invalidation (i.e. spinlock, rwlock).
114          * So printk's are deferred until then.
115          */
116 #ifdef CONFIG_BFIN_ICACHE
117         printk(KERN_INFO "Instruction Cache Enabled for CPU%u\n", cpu);
118         printk(KERN_INFO "  External memory:"
119 # ifdef CONFIG_BFIN_EXTMEM_ICACHEABLE
120                " cacheable"
121 # else
122                " uncacheable"
123 # endif
124                " in instruction cache\n");
125         if (L2_LENGTH)
126                 printk(KERN_INFO "  L2 SRAM        :"
127 # ifdef CONFIG_BFIN_L2_ICACHEABLE
128                        " cacheable"
129 # else
130                        " uncacheable"
131 # endif
132                        " in instruction cache\n");
133
134 #else
135         printk(KERN_INFO "Instruction Cache Disabled for CPU%u\n", cpu);
136 #endif
137
138 #ifdef CONFIG_BFIN_DCACHE
139         printk(KERN_INFO "Data Cache Enabled for CPU%u\n", cpu);
140         printk(KERN_INFO "  External memory:"
141 # if defined CONFIG_BFIN_EXTMEM_WRITEBACK
142                " cacheable (write-back)"
143 # elif defined CONFIG_BFIN_EXTMEM_WRITETHROUGH
144                " cacheable (write-through)"
145 # else
146                " uncacheable"
147 # endif
148                " in data cache\n");
149         if (L2_LENGTH)
150                 printk(KERN_INFO "  L2 SRAM        :"
151 # if defined CONFIG_BFIN_L2_WRITEBACK
152                        " cacheable (write-back)"
153 # elif defined CONFIG_BFIN_L2_WRITETHROUGH
154                        " cacheable (write-through)"
155 # else
156                        " uncacheable"
157 # endif
158                        " in data cache\n");
159 #else
160         printk(KERN_INFO "Data Cache Disabled for CPU%u\n", cpu);
161 #endif
162 }
163
164 void __cpuinit bfin_setup_cpudata(unsigned int cpu)
165 {
166         struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu);
167
168         cpudata->imemctl = bfin_read_IMEM_CONTROL();
169         cpudata->dmemctl = bfin_read_DMEM_CONTROL();
170 }
171
172 void __init bfin_cache_init(void)
173 {
174 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
175         generate_cplb_tables();
176 #endif
177         bfin_setup_caches(0);
178 }
179
180 void __init bfin_relocate_l1_mem(void)
181 {
182         unsigned long text_l1_len = (unsigned long)_text_l1_len;
183         unsigned long data_l1_len = (unsigned long)_data_l1_len;
184         unsigned long data_b_l1_len = (unsigned long)_data_b_l1_len;
185         unsigned long l2_len = (unsigned long)_l2_len;
186
187         early_shadow_stamp();
188
189         /*
190          * due to the ALIGN(4) in the arch/blackfin/kernel/vmlinux.lds.S
191          * we know that everything about l1 text/data is nice and aligned,
192          * so copy by 4 byte chunks, and don't worry about overlapping
193          * src/dest.
194          *
195          * We can't use the dma_memcpy functions, since they can call
196          * scheduler functions which might be in L1 :( and core writes
197          * into L1 instruction cause bad access errors, so we are stuck,
198          * we are required to use DMA, but can't use the common dma
199          * functions. We can't use memcpy either - since that might be
200          * going to be in the relocated L1
201          */
202
203         blackfin_dma_early_init();
204
205         /* if necessary, copy L1 text to L1 instruction SRAM */
206         if (L1_CODE_LENGTH && text_l1_len)
207                 early_dma_memcpy(_stext_l1, _text_l1_lma, text_l1_len);
208
209         /* if necessary, copy L1 data to L1 data bank A SRAM */
210         if (L1_DATA_A_LENGTH && data_l1_len)
211                 early_dma_memcpy(_sdata_l1, _data_l1_lma, data_l1_len);
212
213         /* if necessary, copy L1 data B to L1 data bank B SRAM */
214         if (L1_DATA_B_LENGTH && data_b_l1_len)
215                 early_dma_memcpy(_sdata_b_l1, _data_b_l1_lma, data_b_l1_len);
216
217         early_dma_memcpy_done();
218
219 #if defined(CONFIG_SMP) && defined(CONFIG_ICACHE_FLUSH_L1)
220         blackfin_iflush_l1_entry[0] = (unsigned long)blackfin_icache_flush_range_l1;
221 #endif
222
223         /* if necessary, copy L2 text/data to L2 SRAM */
224         if (L2_LENGTH && l2_len)
225                 memcpy(_stext_l2, _l2_lma, l2_len);
226 }
227
228 #ifdef CONFIG_SMP
229 void __init bfin_relocate_coreb_l1_mem(void)
230 {
231         unsigned long text_l1_len = (unsigned long)_text_l1_len;
232         unsigned long data_l1_len = (unsigned long)_data_l1_len;
233         unsigned long data_b_l1_len = (unsigned long)_data_b_l1_len;
234
235         blackfin_dma_early_init();
236
237         /* if necessary, copy L1 text to L1 instruction SRAM */
238         if (L1_CODE_LENGTH && text_l1_len)
239                 early_dma_memcpy((void *)COREB_L1_CODE_START, _text_l1_lma,
240                                 text_l1_len);
241
242         /* if necessary, copy L1 data to L1 data bank A SRAM */
243         if (L1_DATA_A_LENGTH && data_l1_len)
244                 early_dma_memcpy((void *)COREB_L1_DATA_A_START, _data_l1_lma,
245                                 data_l1_len);
246
247         /* if necessary, copy L1 data B to L1 data bank B SRAM */
248         if (L1_DATA_B_LENGTH && data_b_l1_len)
249                 early_dma_memcpy((void *)COREB_L1_DATA_B_START, _data_b_l1_lma,
250                                 data_b_l1_len);
251
252         early_dma_memcpy_done();
253
254 #ifdef CONFIG_ICACHE_FLUSH_L1
255         blackfin_iflush_l1_entry[1] = (unsigned long)blackfin_icache_flush_range_l1 -
256                         (unsigned long)_stext_l1 + COREB_L1_CODE_START;
257 #endif
258 }
259 #endif
260
261 #ifdef CONFIG_ROMKERNEL
262 void __init bfin_relocate_xip_data(void)
263 {
264         early_shadow_stamp();
265
266         memcpy(_sdata, _data_lma, (unsigned long)_data_len - THREAD_SIZE + sizeof(struct thread_info));
267         memcpy(_sinitdata, _init_data_lma, (unsigned long)_init_data_len);
268 }
269 #endif
270
271 /* add_memory_region to memmap */
272 static void __init add_memory_region(unsigned long long start,
273                               unsigned long long size, int type)
274 {
275         int i;
276
277         i = bfin_memmap.nr_map;
278
279         if (i == BFIN_MEMMAP_MAX) {
280                 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
281                 return;
282         }
283
284         bfin_memmap.map[i].addr = start;
285         bfin_memmap.map[i].size = size;
286         bfin_memmap.map[i].type = type;
287         bfin_memmap.nr_map++;
288 }
289
290 /*
291  * Sanitize the boot memmap, removing overlaps.
292  */
293 static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
294 {
295         struct change_member *change_tmp;
296         unsigned long current_type, last_type;
297         unsigned long long last_addr;
298         int chgidx, still_changing;
299         int overlap_entries;
300         int new_entry;
301         int old_nr, new_nr, chg_nr;
302         int i;
303
304         /*
305                 Visually we're performing the following (1,2,3,4 = memory types)
306
307                 Sample memory map (w/overlaps):
308                    ____22__________________
309                    ______________________4_
310                    ____1111________________
311                    _44_____________________
312                    11111111________________
313                    ____________________33__
314                    ___________44___________
315                    __________33333_________
316                    ______________22________
317                    ___________________2222_
318                    _________111111111______
319                    _____________________11_
320                    _________________4______
321
322                 Sanitized equivalent (no overlap):
323                    1_______________________
324                    _44_____________________
325                    ___1____________________
326                    ____22__________________
327                    ______11________________
328                    _________1______________
329                    __________3_____________
330                    ___________44___________
331                    _____________33_________
332                    _______________2________
333                    ________________1_______
334                    _________________4______
335                    ___________________2____
336                    ____________________33__
337                    ______________________4_
338         */
339         /* if there's only one memory region, don't bother */
340         if (*pnr_map < 2)
341                 return -1;
342
343         old_nr = *pnr_map;
344
345         /* bail out if we find any unreasonable addresses in memmap */
346         for (i = 0; i < old_nr; i++)
347                 if (map[i].addr + map[i].size < map[i].addr)
348                         return -1;
349
350         /* create pointers for initial change-point information (for sorting) */
351         for (i = 0; i < 2*old_nr; i++)
352                 change_point[i] = &change_point_list[i];
353
354         /* record all known change-points (starting and ending addresses),
355            omitting those that are for empty memory regions */
356         chgidx = 0;
357         for (i = 0; i < old_nr; i++) {
358                 if (map[i].size != 0) {
359                         change_point[chgidx]->addr = map[i].addr;
360                         change_point[chgidx++]->pentry = &map[i];
361                         change_point[chgidx]->addr = map[i].addr + map[i].size;
362                         change_point[chgidx++]->pentry = &map[i];
363                 }
364         }
365         chg_nr = chgidx;        /* true number of change-points */
366
367         /* sort change-point list by memory addresses (low -> high) */
368         still_changing = 1;
369         while (still_changing) {
370                 still_changing = 0;
371                 for (i = 1; i < chg_nr; i++) {
372                         /* if <current_addr> > <last_addr>, swap */
373                         /* or, if current=<start_addr> & last=<end_addr>, swap */
374                         if ((change_point[i]->addr < change_point[i-1]->addr) ||
375                                 ((change_point[i]->addr == change_point[i-1]->addr) &&
376                                  (change_point[i]->addr == change_point[i]->pentry->addr) &&
377                                  (change_point[i-1]->addr != change_point[i-1]->pentry->addr))
378                            ) {
379                                 change_tmp = change_point[i];
380                                 change_point[i] = change_point[i-1];
381                                 change_point[i-1] = change_tmp;
382                                 still_changing = 1;
383                         }
384                 }
385         }
386
387         /* create a new memmap, removing overlaps */
388         overlap_entries = 0;    /* number of entries in the overlap table */
389         new_entry = 0;          /* index for creating new memmap entries */
390         last_type = 0;          /* start with undefined memory type */
391         last_addr = 0;          /* start with 0 as last starting address */
392         /* loop through change-points, determining affect on the new memmap */
393         for (chgidx = 0; chgidx < chg_nr; chgidx++) {
394                 /* keep track of all overlapping memmap entries */
395                 if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) {
396                         /* add map entry to overlap list (> 1 entry implies an overlap) */
397                         overlap_list[overlap_entries++] = change_point[chgidx]->pentry;
398                 } else {
399                         /* remove entry from list (order independent, so swap with last) */
400                         for (i = 0; i < overlap_entries; i++) {
401                                 if (overlap_list[i] == change_point[chgidx]->pentry)
402                                         overlap_list[i] = overlap_list[overlap_entries-1];
403                         }
404                         overlap_entries--;
405                 }
406                 /* if there are overlapping entries, decide which "type" to use */
407                 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
408                 current_type = 0;
409                 for (i = 0; i < overlap_entries; i++)
410                         if (overlap_list[i]->type > current_type)
411                                 current_type = overlap_list[i]->type;
412                 /* continue building up new memmap based on this information */
413                 if (current_type != last_type) {
414                         if (last_type != 0) {
415                                 new_map[new_entry].size =
416                                         change_point[chgidx]->addr - last_addr;
417                                 /* move forward only if the new size was non-zero */
418                                 if (new_map[new_entry].size != 0)
419                                         if (++new_entry >= BFIN_MEMMAP_MAX)
420                                                 break;  /* no more space left for new entries */
421                         }
422                         if (current_type != 0) {
423                                 new_map[new_entry].addr = change_point[chgidx]->addr;
424                                 new_map[new_entry].type = current_type;
425                                 last_addr = change_point[chgidx]->addr;
426                         }
427                         last_type = current_type;
428                 }
429         }
430         new_nr = new_entry;     /* retain count for new entries */
431
432         /* copy new mapping into original location */
433         memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
434         *pnr_map = new_nr;
435
436         return 0;
437 }
438
439 static void __init print_memory_map(char *who)
440 {
441         int i;
442
443         for (i = 0; i < bfin_memmap.nr_map; i++) {
444                 printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who,
445                         bfin_memmap.map[i].addr,
446                         bfin_memmap.map[i].addr + bfin_memmap.map[i].size);
447                 switch (bfin_memmap.map[i].type) {
448                 case BFIN_MEMMAP_RAM:
449                         printk(KERN_CONT "(usable)\n");
450                         break;
451                 case BFIN_MEMMAP_RESERVED:
452                         printk(KERN_CONT "(reserved)\n");
453                         break;
454                 default:
455                         printk(KERN_CONT "type %lu\n", bfin_memmap.map[i].type);
456                         break;
457                 }
458         }
459 }
460
461 static __init int parse_memmap(char *arg)
462 {
463         unsigned long long start_at, mem_size;
464
465         if (!arg)
466                 return -EINVAL;
467
468         mem_size = memparse(arg, &arg);
469         if (*arg == '@') {
470                 start_at = memparse(arg+1, &arg);
471                 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM);
472         } else if (*arg == '$') {
473                 start_at = memparse(arg+1, &arg);
474                 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED);
475         }
476
477         return 0;
478 }
479
480 /*
481  * Initial parsing of the command line.  Currently, we support:
482  *  - Controlling the linux memory size: mem=xxx[KMG]
483  *  - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
484  *       $ -> reserved memory is dcacheable
485  *       # -> reserved memory is icacheable
486  *  - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
487  *       @ from <start> to <start>+<mem>, type RAM
488  *       $ from <start> to <start>+<mem>, type RESERVED
489  */
490 static __init void parse_cmdline_early(char *cmdline_p)
491 {
492         char c = ' ', *to = cmdline_p;
493         unsigned int memsize;
494         for (;;) {
495                 if (c == ' ') {
496                         if (!memcmp(to, "mem=", 4)) {
497                                 to += 4;
498                                 memsize = memparse(to, &to);
499                                 if (memsize)
500                                         _ramend = memsize;
501
502                         } else if (!memcmp(to, "max_mem=", 8)) {
503                                 to += 8;
504                                 memsize = memparse(to, &to);
505                                 if (memsize) {
506                                         physical_mem_end = memsize;
507                                         if (*to != ' ') {
508                                                 if (*to == '$'
509                                                     || *(to + 1) == '$')
510                                                         reserved_mem_dcache_on = 1;
511                                                 if (*to == '#'
512                                                     || *(to + 1) == '#')
513                                                         reserved_mem_icache_on = 1;
514                                         }
515                                 }
516                         } else if (!memcmp(to, "clkin_hz=", 9)) {
517                                 to += 9;
518                                 early_init_clkin_hz(to);
519 #ifdef CONFIG_EARLY_PRINTK
520                         } else if (!memcmp(to, "earlyprintk=", 12)) {
521                                 to += 12;
522                                 setup_early_printk(to);
523 #endif
524                         } else if (!memcmp(to, "memmap=", 7)) {
525                                 to += 7;
526                                 parse_memmap(to);
527                         }
528                 }
529                 c = *(to++);
530                 if (!c)
531                         break;
532         }
533 }
534
535 /*
536  * Setup memory defaults from user config.
537  * The physical memory layout looks like:
538  *
539  *  [_rambase, _ramstart]:              kernel image
540  *  [memory_start, memory_end]:         dynamic memory managed by kernel
541  *  [memory_end, _ramend]:              reserved memory
542  *      [memory_mtd_start(memory_end),
543  *              memory_mtd_start + mtd_size]:   rootfs (if any)
544  *      [_ramend - DMA_UNCACHED_REGION,
545  *              _ramend]:                       uncached DMA region
546  *  [_ramend, physical_mem_end]:        memory not managed by kernel
547  */
548 static __init void memory_setup(void)
549 {
550 #ifdef CONFIG_MTD_UCLINUX
551         unsigned long mtd_phys = 0;
552 #endif
553         unsigned long max_mem;
554
555         _rambase = CONFIG_BOOT_LOAD;
556         _ramstart = (unsigned long)_end;
557
558         if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) {
559                 console_init();
560                 panic("DMA region exceeds memory limit: %lu.",
561                         _ramend - _ramstart);
562         }
563         max_mem = memory_end = _ramend - DMA_UNCACHED_REGION;
564
565 #if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263)
566         /* Due to a Hardware Anomaly we need to limit the size of usable
567          * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
568          * 05000263 - Hardware loop corrupted when taking an ICPLB exception
569          */
570 # if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
571         if (max_mem >= 56 * 1024 * 1024)
572                 max_mem = 56 * 1024 * 1024;
573 # else
574         if (max_mem >= 60 * 1024 * 1024)
575                 max_mem = 60 * 1024 * 1024;
576 # endif                         /* CONFIG_DEBUG_HUNT_FOR_ZERO */
577 #endif                          /* ANOMALY_05000263 */
578
579
580 #ifdef CONFIG_MPU
581         /* Round up to multiple of 4MB */
582         memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
583 #else
584         memory_start = PAGE_ALIGN(_ramstart);
585 #endif
586
587 #if defined(CONFIG_MTD_UCLINUX)
588         /* generic memory mapped MTD driver */
589         memory_mtd_end = memory_end;
590
591         mtd_phys = _ramstart;
592         mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8)));
593
594 # if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
595         if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC)
596                 mtd_size =
597                     PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10);
598 # endif
599
600 # if defined(CONFIG_CRAMFS)
601         if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC)
602                 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4)));
603 # endif
604
605 # if defined(CONFIG_ROMFS_FS)
606         if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0
607             && ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1) {
608                 mtd_size =
609                     PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2]));
610
611                 /* ROM_FS is XIP, so if we found it, we need to limit memory */
612                 if (memory_end > max_mem) {
613                         pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
614                         memory_end = max_mem;
615                 }
616         }
617 # endif                         /* CONFIG_ROMFS_FS */
618
619         /* Since the default MTD_UCLINUX has no magic number, we just blindly
620          * read 8 past the end of the kernel's image, and look at it.
621          * When no image is attached, mtd_size is set to a random number
622          * Do some basic sanity checks before operating on things
623          */
624         if (mtd_size == 0 || memory_end <= mtd_size) {
625                 pr_emerg("Could not find valid ram mtd attached.\n");
626         } else {
627                 memory_end -= mtd_size;
628
629                 /* Relocate MTD image to the top of memory after the uncached memory area */
630                 uclinux_ram_map.phys = memory_mtd_start = memory_end;
631                 uclinux_ram_map.size = mtd_size;
632                 pr_info("Found mtd parition at 0x%p, (len=0x%lx), moving to 0x%p\n",
633                         _end, mtd_size, (void *)memory_mtd_start);
634                 dma_memcpy((void *)uclinux_ram_map.phys, _end, uclinux_ram_map.size);
635         }
636 #endif                          /* CONFIG_MTD_UCLINUX */
637
638         /* We need lo limit memory, since everything could have a text section
639          * of userspace in it, and expose anomaly 05000263. If the anomaly
640          * doesn't exist, or we don't need to - then dont.
641          */
642         if (memory_end > max_mem) {
643                 pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
644                 memory_end = max_mem;
645         }
646
647 #ifdef CONFIG_MPU
648 #if defined(CONFIG_ROMFS_ON_MTD) && defined(CONFIG_MTD_ROM)
649         page_mask_nelts = (((_ramend + ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE -
650                                         ASYNC_BANK0_BASE) >> PAGE_SHIFT) + 31) / 32;
651 #else
652         page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32;
653 #endif
654         page_mask_order = get_order(3 * page_mask_nelts * sizeof(long));
655 #endif
656
657         init_mm.start_code = (unsigned long)_stext;
658         init_mm.end_code = (unsigned long)_etext;
659         init_mm.end_data = (unsigned long)_edata;
660         init_mm.brk = (unsigned long)0;
661
662         printk(KERN_INFO "Board Memory: %ldMB\n", physical_mem_end >> 20);
663         printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", _ramend >> 20);
664
665         printk(KERN_INFO "Memory map:\n"
666                "  fixedcode = 0x%p-0x%p\n"
667                "  text      = 0x%p-0x%p\n"
668                "  rodata    = 0x%p-0x%p\n"
669                "  bss       = 0x%p-0x%p\n"
670                "  data      = 0x%p-0x%p\n"
671                "    stack   = 0x%p-0x%p\n"
672                "  init      = 0x%p-0x%p\n"
673                "  available = 0x%p-0x%p\n"
674 #ifdef CONFIG_MTD_UCLINUX
675                "  rootfs    = 0x%p-0x%p\n"
676 #endif
677 #if DMA_UNCACHED_REGION > 0
678                "  DMA Zone  = 0x%p-0x%p\n"
679 #endif
680                 , (void *)FIXED_CODE_START, (void *)FIXED_CODE_END,
681                 _stext, _etext,
682                 __start_rodata, __end_rodata,
683                 __bss_start, __bss_stop,
684                 _sdata, _edata,
685                 (void *)&init_thread_union,
686                 (void *)((int)(&init_thread_union) + THREAD_SIZE),
687                 __init_begin, __init_end,
688                 (void *)_ramstart, (void *)memory_end
689 #ifdef CONFIG_MTD_UCLINUX
690                 , (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size)
691 #endif
692 #if DMA_UNCACHED_REGION > 0
693                 , (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend)
694 #endif
695                 );
696 }
697
698 /*
699  * Find the lowest, highest page frame number we have available
700  */
701 void __init find_min_max_pfn(void)
702 {
703         int i;
704
705         max_pfn = 0;
706         min_low_pfn = memory_end;
707
708         for (i = 0; i < bfin_memmap.nr_map; i++) {
709                 unsigned long start, end;
710                 /* RAM? */
711                 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
712                         continue;
713                 start = PFN_UP(bfin_memmap.map[i].addr);
714                 end = PFN_DOWN(bfin_memmap.map[i].addr +
715                                 bfin_memmap.map[i].size);
716                 if (start >= end)
717                         continue;
718                 if (end > max_pfn)
719                         max_pfn = end;
720                 if (start < min_low_pfn)
721                         min_low_pfn = start;
722         }
723 }
724
725 static __init void setup_bootmem_allocator(void)
726 {
727         int bootmap_size;
728         int i;
729         unsigned long start_pfn, end_pfn;
730         unsigned long curr_pfn, last_pfn, size;
731
732         /* mark memory between memory_start and memory_end usable */
733         add_memory_region(memory_start,
734                 memory_end - memory_start, BFIN_MEMMAP_RAM);
735         /* sanity check for overlap */
736         sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map);
737         print_memory_map("boot memmap");
738
739         /* initialize globals in linux/bootmem.h */
740         find_min_max_pfn();
741         /* pfn of the last usable page frame */
742         if (max_pfn > memory_end >> PAGE_SHIFT)
743                 max_pfn = memory_end >> PAGE_SHIFT;
744         /* pfn of last page frame directly mapped by kernel */
745         max_low_pfn = max_pfn;
746         /* pfn of the first usable page frame after kernel image*/
747         if (min_low_pfn < memory_start >> PAGE_SHIFT)
748                 min_low_pfn = memory_start >> PAGE_SHIFT;
749
750         start_pfn = PAGE_OFFSET >> PAGE_SHIFT;
751         end_pfn = memory_end >> PAGE_SHIFT;
752
753         /*
754          * give all the memory to the bootmap allocator, tell it to put the
755          * boot mem_map at the start of memory.
756          */
757         bootmap_size = init_bootmem_node(NODE_DATA(0),
758                         memory_start >> PAGE_SHIFT,     /* map goes here */
759                         start_pfn, end_pfn);
760
761         /* register the memmap regions with the bootmem allocator */
762         for (i = 0; i < bfin_memmap.nr_map; i++) {
763                 /*
764                  * Reserve usable memory
765                  */
766                 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
767                         continue;
768                 /*
769                  * We are rounding up the start address of usable memory:
770                  */
771                 curr_pfn = PFN_UP(bfin_memmap.map[i].addr);
772                 if (curr_pfn >= end_pfn)
773                         continue;
774                 /*
775                  * ... and at the end of the usable range downwards:
776                  */
777                 last_pfn = PFN_DOWN(bfin_memmap.map[i].addr +
778                                          bfin_memmap.map[i].size);
779
780                 if (last_pfn > end_pfn)
781                         last_pfn = end_pfn;
782
783                 /*
784                  * .. finally, did all the rounding and playing
785                  * around just make the area go away?
786                  */
787                 if (last_pfn <= curr_pfn)
788                         continue;
789
790                 size = last_pfn - curr_pfn;
791                 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
792         }
793
794         /* reserve memory before memory_start, including bootmap */
795         reserve_bootmem(PAGE_OFFSET,
796                 memory_start + bootmap_size + PAGE_SIZE - 1 - PAGE_OFFSET,
797                 BOOTMEM_DEFAULT);
798 }
799
800 #define EBSZ_TO_MEG(ebsz) \
801 ({ \
802         int meg = 0; \
803         switch (ebsz & 0xf) { \
804                 case 0x1: meg =  16; break; \
805                 case 0x3: meg =  32; break; \
806                 case 0x5: meg =  64; break; \
807                 case 0x7: meg = 128; break; \
808                 case 0x9: meg = 256; break; \
809                 case 0xb: meg = 512; break; \
810         } \
811         meg; \
812 })
813 static inline int __init get_mem_size(void)
814 {
815 #if defined(EBIU_SDBCTL)
816 # if defined(BF561_FAMILY)
817         int ret = 0;
818         u32 sdbctl = bfin_read_EBIU_SDBCTL();
819         ret += EBSZ_TO_MEG(sdbctl >>  0);
820         ret += EBSZ_TO_MEG(sdbctl >>  8);
821         ret += EBSZ_TO_MEG(sdbctl >> 16);
822         ret += EBSZ_TO_MEG(sdbctl >> 24);
823         return ret;
824 # else
825         return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
826 # endif
827 #elif defined(EBIU_DDRCTL1)
828         u32 ddrctl = bfin_read_EBIU_DDRCTL1();
829         int ret = 0;
830         switch (ddrctl & 0xc0000) {
831                 case DEVSZ_64:  ret = 64 / 8;
832                 case DEVSZ_128: ret = 128 / 8;
833                 case DEVSZ_256: ret = 256 / 8;
834                 case DEVSZ_512: ret = 512 / 8;
835         }
836         switch (ddrctl & 0x30000) {
837                 case DEVWD_4:  ret *= 2;
838                 case DEVWD_8:  ret *= 2;
839                 case DEVWD_16: break;
840         }
841         if ((ddrctl & 0xc000) == 0x4000)
842                 ret *= 2;
843         return ret;
844 #endif
845         BUG();
846 }
847
848 __attribute__((weak))
849 void __init native_machine_early_platform_add_devices(void)
850 {
851 }
852
853 void __init setup_arch(char **cmdline_p)
854 {
855         u32 mmr;
856         unsigned long sclk, cclk;
857
858         native_machine_early_platform_add_devices();
859
860         enable_shadow_console();
861
862         /* Check to make sure we are running on the right processor */
863         if (unlikely(CPUID != bfin_cpuid()))
864                 printk(KERN_ERR "ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
865                         CPU, bfin_cpuid(), bfin_revid());
866
867 #ifdef CONFIG_DUMMY_CONSOLE
868         conswitchp = &dummy_con;
869 #endif
870
871 #if defined(CONFIG_CMDLINE_BOOL)
872         strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line));
873         command_line[sizeof(command_line) - 1] = 0;
874 #endif
875
876         /* Keep a copy of command line */
877         *cmdline_p = &command_line[0];
878         memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
879         boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
880
881         memset(&bfin_memmap, 0, sizeof(bfin_memmap));
882
883         /* If the user does not specify things on the command line, use
884          * what the bootloader set things up as
885          */
886         physical_mem_end = 0;
887         parse_cmdline_early(&command_line[0]);
888
889         if (_ramend == 0)
890                 _ramend = get_mem_size() * 1024 * 1024;
891
892         if (physical_mem_end == 0)
893                 physical_mem_end = _ramend;
894
895         memory_setup();
896
897         /* Initialize Async memory banks */
898         bfin_write_EBIU_AMBCTL0(AMBCTL0VAL);
899         bfin_write_EBIU_AMBCTL1(AMBCTL1VAL);
900         bfin_write_EBIU_AMGCTL(AMGCTLVAL);
901 #ifdef CONFIG_EBIU_MBSCTLVAL
902         bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL);
903         bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL);
904         bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL);
905 #endif
906 #ifdef CONFIG_BFIN_HYSTERESIS_CONTROL
907         bfin_write_PORTF_HYSTERESIS(HYST_PORTF_0_15);
908         bfin_write_PORTG_HYSTERESIS(HYST_PORTG_0_15);
909         bfin_write_PORTH_HYSTERESIS(HYST_PORTH_0_15);
910         bfin_write_MISCPORT_HYSTERESIS((bfin_read_MISCPORT_HYSTERESIS() &
911                                         ~HYST_NONEGPIO_MASK) | HYST_NONEGPIO);
912 #endif
913
914         cclk = get_cclk();
915         sclk = get_sclk();
916
917         if ((ANOMALY_05000273 || ANOMALY_05000274) && (cclk >> 1) < sclk)
918                 panic("ANOMALY 05000273 or 05000274: CCLK must be >= 2*SCLK");
919
920 #ifdef BF561_FAMILY
921         if (ANOMALY_05000266) {
922                 bfin_read_IMDMA_D0_IRQ_STATUS();
923                 bfin_read_IMDMA_D1_IRQ_STATUS();
924         }
925 #endif
926
927         mmr = bfin_read_TBUFCTL();
928         printk(KERN_INFO "Hardware Trace %s and %sabled\n",
929                 (mmr & 0x1) ? "active" : "off",
930                 (mmr & 0x2) ? "en" : "dis");
931
932         mmr = bfin_read_SYSCR();
933         printk(KERN_INFO "Boot Mode: %i\n", mmr & 0xF);
934
935         /* Newer parts mirror SWRST bits in SYSCR */
936 #if defined(CONFIG_BF53x) || defined(CONFIG_BF561) || \
937     defined(CONFIG_BF538) || defined(CONFIG_BF539)
938         _bfin_swrst = bfin_read_SWRST();
939 #else
940         /* Clear boot mode field */
941         _bfin_swrst = mmr & ~0xf;
942 #endif
943
944 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
945         bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT);
946 #endif
947 #ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
948         bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT);
949 #endif
950
951 #ifdef CONFIG_SMP
952         if (_bfin_swrst & SWRST_DBL_FAULT_A) {
953 #else
954         if (_bfin_swrst & RESET_DOUBLE) {
955 #endif
956                 printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n");
957 #ifdef CONFIG_DEBUG_DOUBLEFAULT
958                 /* We assume the crashing kernel, and the current symbol table match */
959                 printk(KERN_EMERG " While handling exception (EXCAUSE = %#x) at %pF\n",
960                         initial_pda.seqstat_doublefault & SEQSTAT_EXCAUSE,
961                         initial_pda.retx_doublefault);
962                 printk(KERN_NOTICE "   DCPLB_FAULT_ADDR: %pF\n",
963                         initial_pda.dcplb_doublefault_addr);
964                 printk(KERN_NOTICE "   ICPLB_FAULT_ADDR: %pF\n",
965                         initial_pda.icplb_doublefault_addr);
966 #endif
967                 printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
968                         initial_pda.retx);
969         } else if (_bfin_swrst & RESET_WDOG)
970                 printk(KERN_INFO "Recovering from Watchdog event\n");
971         else if (_bfin_swrst & RESET_SOFTWARE)
972                 printk(KERN_NOTICE "Reset caused by Software reset\n");
973
974         printk(KERN_INFO "Blackfin support (C) 2004-2010 Analog Devices, Inc.\n");
975         if (bfin_compiled_revid() == 0xffff)
976                 printk(KERN_INFO "Compiled for ADSP-%s Rev any, running on 0.%d\n", CPU, bfin_revid());
977         else if (bfin_compiled_revid() == -1)
978                 printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU);
979         else
980                 printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid());
981
982         if (likely(CPUID == bfin_cpuid())) {
983                 if (bfin_revid() != bfin_compiled_revid()) {
984                         if (bfin_compiled_revid() == -1)
985                                 printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n",
986                                        bfin_revid());
987                         else if (bfin_compiled_revid() != 0xffff) {
988                                 printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n",
989                                        bfin_compiled_revid(), bfin_revid());
990                                 if (bfin_compiled_revid() > bfin_revid())
991                                         panic("Error: you are missing anomaly workarounds for this rev");
992                         }
993                 }
994                 if (bfin_revid() < CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX)
995                         printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
996                                CPU, bfin_revid());
997         }
998
999         printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
1000
1001         printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
1002                cclk / 1000000, sclk / 1000000);
1003
1004         setup_bootmem_allocator();
1005
1006         paging_init();
1007
1008         /* Copy atomic sequences to their fixed location, and sanity check that
1009            these locations are the ones that we advertise to userspace.  */
1010         memcpy((void *)FIXED_CODE_START, &fixed_code_start,
1011                FIXED_CODE_END - FIXED_CODE_START);
1012         BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start
1013                != SIGRETURN_STUB - FIXED_CODE_START);
1014         BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start
1015                != ATOMIC_XCHG32 - FIXED_CODE_START);
1016         BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start
1017                != ATOMIC_CAS32 - FIXED_CODE_START);
1018         BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start
1019                != ATOMIC_ADD32 - FIXED_CODE_START);
1020         BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start
1021                != ATOMIC_SUB32 - FIXED_CODE_START);
1022         BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start
1023                != ATOMIC_IOR32 - FIXED_CODE_START);
1024         BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start
1025                != ATOMIC_AND32 - FIXED_CODE_START);
1026         BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
1027                != ATOMIC_XOR32 - FIXED_CODE_START);
1028         BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
1029                 != SAFE_USER_INSTRUCTION - FIXED_CODE_START);
1030
1031 #ifdef CONFIG_SMP
1032         platform_init_cpus();
1033 #endif
1034         init_exception_vectors();
1035         bfin_cache_init();      /* Initialize caches for the boot CPU */
1036 }
1037
1038 static int __init topology_init(void)
1039 {
1040         unsigned int cpu;
1041
1042         for_each_possible_cpu(cpu) {
1043                 register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu);
1044         }
1045
1046         return 0;
1047 }
1048
1049 subsys_initcall(topology_init);
1050
1051 /* Get the input clock frequency */
1052 static u_long cached_clkin_hz = CONFIG_CLKIN_HZ;
1053 static u_long get_clkin_hz(void)
1054 {
1055         return cached_clkin_hz;
1056 }
1057 static int __init early_init_clkin_hz(char *buf)
1058 {
1059         cached_clkin_hz = simple_strtoul(buf, NULL, 0);
1060 #ifdef BFIN_KERNEL_CLOCK
1061         if (cached_clkin_hz != CONFIG_CLKIN_HZ)
1062                 panic("cannot change clkin_hz when reprogramming clocks");
1063 #endif
1064         return 1;
1065 }
1066 early_param("clkin_hz=", early_init_clkin_hz);
1067
1068 /* Get the voltage input multiplier */
1069 static u_long get_vco(void)
1070 {
1071         static u_long cached_vco;
1072         u_long msel, pll_ctl;
1073
1074         /* The assumption here is that VCO never changes at runtime.
1075          * If, someday, we support that, then we'll have to change this.
1076          */
1077         if (cached_vco)
1078                 return cached_vco;
1079
1080         pll_ctl = bfin_read_PLL_CTL();
1081         msel = (pll_ctl >> 9) & 0x3F;
1082         if (0 == msel)
1083                 msel = 64;
1084
1085         cached_vco = get_clkin_hz();
1086         cached_vco >>= (1 & pll_ctl);   /* DF bit */
1087         cached_vco *= msel;
1088         return cached_vco;
1089 }
1090
1091 /* Get the Core clock */
1092 u_long get_cclk(void)
1093 {
1094         static u_long cached_cclk_pll_div, cached_cclk;
1095         u_long csel, ssel;
1096
1097         if (bfin_read_PLL_STAT() & 0x1)
1098                 return get_clkin_hz();
1099
1100         ssel = bfin_read_PLL_DIV();
1101         if (ssel == cached_cclk_pll_div)
1102                 return cached_cclk;
1103         else
1104                 cached_cclk_pll_div = ssel;
1105
1106         csel = ((ssel >> 4) & 0x03);
1107         ssel &= 0xf;
1108         if (ssel && ssel < (1 << csel)) /* SCLK > CCLK */
1109                 cached_cclk = get_vco() / ssel;
1110         else
1111                 cached_cclk = get_vco() >> csel;
1112         return cached_cclk;
1113 }
1114 EXPORT_SYMBOL(get_cclk);
1115
1116 /* Get the System clock */
1117 u_long get_sclk(void)
1118 {
1119         static u_long cached_sclk;
1120         u_long ssel;
1121
1122         /* The assumption here is that SCLK never changes at runtime.
1123          * If, someday, we support that, then we'll have to change this.
1124          */
1125         if (cached_sclk)
1126                 return cached_sclk;
1127
1128         if (bfin_read_PLL_STAT() & 0x1)
1129                 return get_clkin_hz();
1130
1131         ssel = bfin_read_PLL_DIV() & 0xf;
1132         if (0 == ssel) {
1133                 printk(KERN_WARNING "Invalid System Clock\n");
1134                 ssel = 1;
1135         }
1136
1137         cached_sclk = get_vco() / ssel;
1138         return cached_sclk;
1139 }
1140 EXPORT_SYMBOL(get_sclk);
1141
1142 unsigned long sclk_to_usecs(unsigned long sclk)
1143 {
1144         u64 tmp = USEC_PER_SEC * (u64)sclk;
1145         do_div(tmp, get_sclk());
1146         return tmp;
1147 }
1148 EXPORT_SYMBOL(sclk_to_usecs);
1149
1150 unsigned long usecs_to_sclk(unsigned long usecs)
1151 {
1152         u64 tmp = get_sclk() * (u64)usecs;
1153         do_div(tmp, USEC_PER_SEC);
1154         return tmp;
1155 }
1156 EXPORT_SYMBOL(usecs_to_sclk);
1157
1158 /*
1159  *      Get CPU information for use by the procfs.
1160  */
1161 static int show_cpuinfo(struct seq_file *m, void *v)
1162 {
1163         char *cpu, *mmu, *fpu, *vendor, *cache;
1164         uint32_t revid;
1165         int cpu_num = *(unsigned int *)v;
1166         u_long sclk, cclk;
1167         u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0;
1168         struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu_num);
1169
1170         cpu = CPU;
1171         mmu = "none";
1172         fpu = "none";
1173         revid = bfin_revid();
1174
1175         sclk = get_sclk();
1176         cclk = get_cclk();
1177
1178         switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
1179         case 0xca:
1180                 vendor = "Analog Devices";
1181                 break;
1182         default:
1183                 vendor = "unknown";
1184                 break;
1185         }
1186
1187         seq_printf(m, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num, vendor);
1188
1189         if (CPUID == bfin_cpuid())
1190                 seq_printf(m, "cpu family\t: 0x%04x\n", CPUID);
1191         else
1192                 seq_printf(m, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
1193                         CPUID, bfin_cpuid());
1194
1195         seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
1196                 "stepping\t: %d ",
1197                 cpu, cclk/1000000, sclk/1000000,
1198 #ifdef CONFIG_MPU
1199                 "mpu on",
1200 #else
1201                 "mpu off",
1202 #endif
1203                 revid);
1204
1205         if (bfin_revid() != bfin_compiled_revid()) {
1206                 if (bfin_compiled_revid() == -1)
1207                         seq_printf(m, "(Compiled for Rev none)");
1208                 else if (bfin_compiled_revid() == 0xffff)
1209                         seq_printf(m, "(Compiled for Rev any)");
1210                 else
1211                         seq_printf(m, "(Compiled for Rev %d)", bfin_compiled_revid());
1212         }
1213
1214         seq_printf(m, "\ncpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
1215                 cclk/1000000, cclk%1000000,
1216                 sclk/1000000, sclk%1000000);
1217         seq_printf(m, "bogomips\t: %lu.%02lu\n"
1218                 "Calibration\t: %lu loops\n",
1219                 (loops_per_jiffy * HZ) / 500000,
1220                 ((loops_per_jiffy * HZ) / 5000) % 100,
1221                 (loops_per_jiffy * HZ));
1222
1223         /* Check Cache configutation */
1224         switch (cpudata->dmemctl & (1 << DMC0_P | 1 << DMC1_P)) {
1225         case ACACHE_BSRAM:
1226                 cache = "dbank-A/B\t: cache/sram";
1227                 dcache_size = 16;
1228                 dsup_banks = 1;
1229                 break;
1230         case ACACHE_BCACHE:
1231                 cache = "dbank-A/B\t: cache/cache";
1232                 dcache_size = 32;
1233                 dsup_banks = 2;
1234                 break;
1235         case ASRAM_BSRAM:
1236                 cache = "dbank-A/B\t: sram/sram";
1237                 dcache_size = 0;
1238                 dsup_banks = 0;
1239                 break;
1240         default:
1241                 cache = "unknown";
1242                 dcache_size = 0;
1243                 dsup_banks = 0;
1244                 break;
1245         }
1246
1247         /* Is it turned on? */
1248         if ((cpudata->dmemctl & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
1249                 dcache_size = 0;
1250
1251         if ((cpudata->imemctl & (IMC | ENICPLB)) != (IMC | ENICPLB))
1252                 icache_size = 0;
1253
1254         seq_printf(m, "cache size\t: %d KB(L1 icache) "
1255                 "%d KB(L1 dcache) %d KB(L2 cache)\n",
1256                 icache_size, dcache_size, 0);
1257         seq_printf(m, "%s\n", cache);
1258         seq_printf(m, "external memory\t: "
1259 #if defined(CONFIG_BFIN_EXTMEM_ICACHEABLE)
1260                    "cacheable"
1261 #else
1262                    "uncacheable"
1263 #endif
1264                    " in instruction cache\n");
1265         seq_printf(m, "external memory\t: "
1266 #if defined(CONFIG_BFIN_EXTMEM_WRITEBACK)
1267                       "cacheable (write-back)"
1268 #elif defined(CONFIG_BFIN_EXTMEM_WRITETHROUGH)
1269                       "cacheable (write-through)"
1270 #else
1271                       "uncacheable"
1272 #endif
1273                       " in data cache\n");
1274
1275         if (icache_size)
1276                 seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
1277                            BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES);
1278         else
1279                 seq_printf(m, "icache setup\t: off\n");
1280
1281         seq_printf(m,
1282                    "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
1283                    dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
1284                    BFIN_DLINES);
1285 #ifdef __ARCH_SYNC_CORE_DCACHE
1286         seq_printf(m, "dcache flushes\t: %lu\n", dcache_invld_count[cpu_num]);
1287 #endif
1288 #ifdef __ARCH_SYNC_CORE_ICACHE
1289         seq_printf(m, "icache flushes\t: %lu\n", icache_invld_count[cpu_num]);
1290 #endif
1291
1292         seq_printf(m, "\n");
1293
1294         if (cpu_num != num_possible_cpus() - 1)
1295                 return 0;
1296
1297         if (L2_LENGTH) {
1298                 seq_printf(m, "L2 SRAM\t\t: %dKB\n", L2_LENGTH/0x400);
1299                 seq_printf(m, "L2 SRAM\t\t: "
1300 #if defined(CONFIG_BFIN_L2_ICACHEABLE)
1301                               "cacheable"
1302 #else
1303                               "uncacheable"
1304 #endif
1305                               " in instruction cache\n");
1306                 seq_printf(m, "L2 SRAM\t\t: "
1307 #if defined(CONFIG_BFIN_L2_WRITEBACK)
1308                               "cacheable (write-back)"
1309 #elif defined(CONFIG_BFIN_L2_WRITETHROUGH)
1310                               "cacheable (write-through)"
1311 #else
1312                               "uncacheable"
1313 #endif
1314                               " in data cache\n");
1315         }
1316         seq_printf(m, "board name\t: %s\n", bfin_board_name);
1317         seq_printf(m, "board memory\t: %ld kB (0x%08lx -> 0x%08lx)\n",
1318                 physical_mem_end >> 10, 0ul, physical_mem_end);
1319         seq_printf(m, "kernel memory\t: %d kB (0x%08lx -> 0x%08lx)\n",
1320                 ((int)memory_end - (int)_rambase) >> 10,
1321                 _rambase, memory_end);
1322
1323         return 0;
1324 }
1325
1326 static void *c_start(struct seq_file *m, loff_t *pos)
1327 {
1328         if (*pos == 0)
1329                 *pos = cpumask_first(cpu_online_mask);
1330         if (*pos >= num_online_cpus())
1331                 return NULL;
1332
1333         return pos;
1334 }
1335
1336 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1337 {
1338         *pos = cpumask_next(*pos, cpu_online_mask);
1339
1340         return c_start(m, pos);
1341 }
1342
1343 static void c_stop(struct seq_file *m, void *v)
1344 {
1345 }
1346
1347 const struct seq_operations cpuinfo_op = {
1348         .start = c_start,
1349         .next = c_next,
1350         .stop = c_stop,
1351         .show = show_cpuinfo,
1352 };
1353
1354 void __init cmdline_init(const char *r0)
1355 {
1356         early_shadow_stamp();
1357         if (r0)
1358                 strncpy(command_line, r0, COMMAND_LINE_SIZE);
1359 }