Merge branch 'idle-release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb...
[pandora-kernel.git] / arch / blackfin / kernel / process.c
1 /*
2  * Blackfin architecture-dependent process handling
3  *
4  * Copyright 2004-2009 Analog Devices Inc.
5  *
6  * Licensed under the GPL-2 or later
7  */
8
9 #include <linux/module.h>
10 #include <linux/smp_lock.h>
11 #include <linux/unistd.h>
12 #include <linux/user.h>
13 #include <linux/uaccess.h>
14 #include <linux/slab.h>
15 #include <linux/sched.h>
16 #include <linux/tick.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19
20 #include <asm/blackfin.h>
21 #include <asm/fixed_code.h>
22 #include <asm/mem_map.h>
23
24 asmlinkage void ret_from_fork(void);
25
26 /* Points to the SDRAM backup memory for the stack that is currently in
27  * L1 scratchpad memory.
28  */
29 void *current_l1_stack_save;
30
31 /* The number of tasks currently using a L1 stack area.  The SRAM is
32  * allocated/deallocated whenever this changes from/to zero.
33  */
34 int nr_l1stack_tasks;
35
36 /* Start and length of the area in L1 scratchpad memory which we've allocated
37  * for process stacks.
38  */
39 void *l1_stack_base;
40 unsigned long l1_stack_len;
41
42 /*
43  * Powermanagement idle function, if any..
44  */
45 void (*pm_idle)(void) = NULL;
46 EXPORT_SYMBOL(pm_idle);
47
48 void (*pm_power_off)(void) = NULL;
49 EXPORT_SYMBOL(pm_power_off);
50
51 /*
52  * The idle loop on BFIN
53  */
54 #ifdef CONFIG_IDLE_L1
55 static void default_idle(void)__attribute__((l1_text));
56 void cpu_idle(void)__attribute__((l1_text));
57 #endif
58
59 /*
60  * This is our default idle handler.  We need to disable
61  * interrupts here to ensure we don't miss a wakeup call.
62  */
63 static void default_idle(void)
64 {
65 #ifdef CONFIG_IPIPE
66         ipipe_suspend_domain();
67 #endif
68         hard_local_irq_disable();
69         if (!need_resched())
70                 idle_with_irq_disabled();
71
72         hard_local_irq_enable();
73 }
74
75 /*
76  * The idle thread.  We try to conserve power, while trying to keep
77  * overall latency low.  The architecture specific idle is passed
78  * a value to indicate the level of "idleness" of the system.
79  */
80 void cpu_idle(void)
81 {
82         /* endless idle loop with no priority at all */
83         while (1) {
84                 void (*idle)(void) = pm_idle;
85
86 #ifdef CONFIG_HOTPLUG_CPU
87                 if (cpu_is_offline(smp_processor_id()))
88                         cpu_die();
89 #endif
90                 if (!idle)
91                         idle = default_idle;
92                 tick_nohz_stop_sched_tick(1);
93                 while (!need_resched())
94                         idle();
95                 tick_nohz_restart_sched_tick();
96                 preempt_enable_no_resched();
97                 schedule();
98                 preempt_disable();
99         }
100 }
101
102 /*
103  * This gets run with P1 containing the
104  * function to call, and R1 containing
105  * the "args".  Note P0 is clobbered on the way here.
106  */
107 void kernel_thread_helper(void);
108 __asm__(".section .text\n"
109         ".align 4\n"
110         "_kernel_thread_helper:\n\t"
111         "\tsp += -12;\n\t"
112         "\tr0 = r1;\n\t" "\tcall (p1);\n\t" "\tcall _do_exit;\n" ".previous");
113
114 /*
115  * Create a kernel thread.
116  */
117 pid_t kernel_thread(int (*fn) (void *), void *arg, unsigned long flags)
118 {
119         struct pt_regs regs;
120
121         memset(&regs, 0, sizeof(regs));
122
123         regs.r1 = (unsigned long)arg;
124         regs.p1 = (unsigned long)fn;
125         regs.pc = (unsigned long)kernel_thread_helper;
126         regs.orig_p0 = -1;
127         /* Set bit 2 to tell ret_from_fork we should be returning to kernel
128            mode.  */
129         regs.ipend = 0x8002;
130         __asm__ __volatile__("%0 = syscfg;":"=da"(regs.syscfg):);
131         return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL,
132                        NULL);
133 }
134 EXPORT_SYMBOL(kernel_thread);
135
136 /*
137  * Do necessary setup to start up a newly executed thread.
138  *
139  * pass the data segment into user programs if it exists,
140  * it can't hurt anything as far as I can tell
141  */
142 void start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
143 {
144         set_fs(USER_DS);
145         regs->pc = new_ip;
146         if (current->mm)
147                 regs->p5 = current->mm->start_data;
148 #ifndef CONFIG_SMP
149         task_thread_info(current)->l1_task_info.stack_start =
150                 (void *)current->mm->context.stack_start;
151         task_thread_info(current)->l1_task_info.lowest_sp = (void *)new_sp;
152         memcpy(L1_SCRATCH_TASK_INFO, &task_thread_info(current)->l1_task_info,
153                sizeof(*L1_SCRATCH_TASK_INFO));
154 #endif
155         wrusp(new_sp);
156 }
157 EXPORT_SYMBOL_GPL(start_thread);
158
159 void flush_thread(void)
160 {
161 }
162
163 asmlinkage int bfin_vfork(struct pt_regs *regs)
164 {
165         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(), regs, 0, NULL,
166                        NULL);
167 }
168
169 asmlinkage int bfin_clone(struct pt_regs *regs)
170 {
171         unsigned long clone_flags;
172         unsigned long newsp;
173
174 #ifdef __ARCH_SYNC_CORE_DCACHE
175         if (current->rt.nr_cpus_allowed == num_possible_cpus()) {
176                 current->cpus_allowed = cpumask_of_cpu(smp_processor_id());
177                 current->rt.nr_cpus_allowed = 1;
178         }
179 #endif
180
181         /* syscall2 puts clone_flags in r0 and usp in r1 */
182         clone_flags = regs->r0;
183         newsp = regs->r1;
184         if (!newsp)
185                 newsp = rdusp();
186         else
187                 newsp -= 12;
188         return do_fork(clone_flags, newsp, regs, 0, NULL, NULL);
189 }
190
191 int
192 copy_thread(unsigned long clone_flags,
193             unsigned long usp, unsigned long topstk,
194             struct task_struct *p, struct pt_regs *regs)
195 {
196         struct pt_regs *childregs;
197
198         childregs = (struct pt_regs *) (task_stack_page(p) + THREAD_SIZE) - 1;
199         *childregs = *regs;
200         childregs->r0 = 0;
201
202         p->thread.usp = usp;
203         p->thread.ksp = (unsigned long)childregs;
204         p->thread.pc = (unsigned long)ret_from_fork;
205
206         return 0;
207 }
208
209 /*
210  * sys_execve() executes a new program.
211  */
212 asmlinkage int sys_execve(const char __user *name,
213                           const char __user *const __user *argv,
214                           const char __user *const __user *envp)
215 {
216         int error;
217         char *filename;
218         struct pt_regs *regs = (struct pt_regs *)((&name) + 6);
219
220         filename = getname(name);
221         error = PTR_ERR(filename);
222         if (IS_ERR(filename))
223                 return error;
224         error = do_execve(filename, argv, envp, regs);
225         putname(filename);
226         return error;
227 }
228
229 unsigned long get_wchan(struct task_struct *p)
230 {
231         unsigned long fp, pc;
232         unsigned long stack_page;
233         int count = 0;
234         if (!p || p == current || p->state == TASK_RUNNING)
235                 return 0;
236
237         stack_page = (unsigned long)p;
238         fp = p->thread.usp;
239         do {
240                 if (fp < stack_page + sizeof(struct thread_info) ||
241                     fp >= 8184 + stack_page)
242                         return 0;
243                 pc = ((unsigned long *)fp)[1];
244                 if (!in_sched_functions(pc))
245                         return pc;
246                 fp = *(unsigned long *)fp;
247         }
248         while (count++ < 16);
249         return 0;
250 }
251
252 void finish_atomic_sections (struct pt_regs *regs)
253 {
254         int __user *up0 = (int __user *)regs->p0;
255
256         switch (regs->pc) {
257         default:
258                 /* not in middle of an atomic step, so resume like normal */
259                 return;
260
261         case ATOMIC_XCHG32 + 2:
262                 put_user(regs->r1, up0);
263                 break;
264
265         case ATOMIC_CAS32 + 2:
266         case ATOMIC_CAS32 + 4:
267                 if (regs->r0 == regs->r1)
268         case ATOMIC_CAS32 + 6:
269                         put_user(regs->r2, up0);
270                 break;
271
272         case ATOMIC_ADD32 + 2:
273                 regs->r0 = regs->r1 + regs->r0;
274                 /* fall through */
275         case ATOMIC_ADD32 + 4:
276                 put_user(regs->r0, up0);
277                 break;
278
279         case ATOMIC_SUB32 + 2:
280                 regs->r0 = regs->r1 - regs->r0;
281                 /* fall through */
282         case ATOMIC_SUB32 + 4:
283                 put_user(regs->r0, up0);
284                 break;
285
286         case ATOMIC_IOR32 + 2:
287                 regs->r0 = regs->r1 | regs->r0;
288                 /* fall through */
289         case ATOMIC_IOR32 + 4:
290                 put_user(regs->r0, up0);
291                 break;
292
293         case ATOMIC_AND32 + 2:
294                 regs->r0 = regs->r1 & regs->r0;
295                 /* fall through */
296         case ATOMIC_AND32 + 4:
297                 put_user(regs->r0, up0);
298                 break;
299
300         case ATOMIC_XOR32 + 2:
301                 regs->r0 = regs->r1 ^ regs->r0;
302                 /* fall through */
303         case ATOMIC_XOR32 + 4:
304                 put_user(regs->r0, up0);
305                 break;
306         }
307
308         /*
309          * We've finished the atomic section, and the only thing left for
310          * userspace is to do a RTS, so we might as well handle that too
311          * since we need to update the PC anyways.
312          */
313         regs->pc = regs->rets;
314 }
315
316 static inline
317 int in_mem(unsigned long addr, unsigned long size,
318            unsigned long start, unsigned long end)
319 {
320         return addr >= start && addr + size <= end;
321 }
322 static inline
323 int in_mem_const_off(unsigned long addr, unsigned long size, unsigned long off,
324                      unsigned long const_addr, unsigned long const_size)
325 {
326         return const_size &&
327                in_mem(addr, size, const_addr + off, const_addr + const_size);
328 }
329 static inline
330 int in_mem_const(unsigned long addr, unsigned long size,
331                  unsigned long const_addr, unsigned long const_size)
332 {
333         return in_mem_const_off(addr, size, 0, const_addr, const_size);
334 }
335 #define ASYNC_ENABLED(bnum, bctlnum) \
336 ({ \
337         (bfin_read_EBIU_AMGCTL() & 0xe) < ((bnum + 1) << 1) ? 0 : \
338         bfin_read_EBIU_AMBCTL##bctlnum() & B##bnum##RDYEN ? 0 : \
339         1; \
340 })
341 /*
342  * We can't read EBIU banks that aren't enabled or we end up hanging
343  * on the access to the async space.  Make sure we validate accesses
344  * that cross async banks too.
345  *      0 - found, but unusable
346  *      1 - found & usable
347  *      2 - not found
348  */
349 static
350 int in_async(unsigned long addr, unsigned long size)
351 {
352         if (addr >= ASYNC_BANK0_BASE && addr < ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE) {
353                 if (!ASYNC_ENABLED(0, 0))
354                         return 0;
355                 if (addr + size <= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE)
356                         return 1;
357                 size -= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE - addr;
358                 addr = ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE;
359         }
360         if (addr >= ASYNC_BANK1_BASE && addr < ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE) {
361                 if (!ASYNC_ENABLED(1, 0))
362                         return 0;
363                 if (addr + size <= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE)
364                         return 1;
365                 size -= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE - addr;
366                 addr = ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE;
367         }
368         if (addr >= ASYNC_BANK2_BASE && addr < ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE) {
369                 if (!ASYNC_ENABLED(2, 1))
370                         return 0;
371                 if (addr + size <= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE)
372                         return 1;
373                 size -= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE - addr;
374                 addr = ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE;
375         }
376         if (addr >= ASYNC_BANK3_BASE && addr < ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE) {
377                 if (ASYNC_ENABLED(3, 1))
378                         return 0;
379                 if (addr + size <= ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE)
380                         return 1;
381                 return 0;
382         }
383
384         /* not within async bounds */
385         return 2;
386 }
387
388 int bfin_mem_access_type(unsigned long addr, unsigned long size)
389 {
390         int cpu = raw_smp_processor_id();
391
392         /* Check that things do not wrap around */
393         if (addr > ULONG_MAX - size)
394                 return -EFAULT;
395
396         if (in_mem(addr, size, FIXED_CODE_START, physical_mem_end))
397                 return BFIN_MEM_ACCESS_CORE;
398
399         if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
400                 return cpu == 0 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
401         if (in_mem_const(addr, size, L1_SCRATCH_START, L1_SCRATCH_LENGTH))
402                 return cpu == 0 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
403         if (in_mem_const(addr, size, L1_DATA_A_START, L1_DATA_A_LENGTH))
404                 return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
405         if (in_mem_const(addr, size, L1_DATA_B_START, L1_DATA_B_LENGTH))
406                 return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
407 #ifdef COREB_L1_CODE_START
408         if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
409                 return cpu == 1 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
410         if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
411                 return cpu == 1 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
412         if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
413                 return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
414         if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
415                 return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
416 #endif
417         if (in_mem_const(addr, size, L2_START, L2_LENGTH))
418                 return BFIN_MEM_ACCESS_CORE;
419
420         if (addr >= SYSMMR_BASE)
421                 return BFIN_MEM_ACCESS_CORE_ONLY;
422
423         switch (in_async(addr, size)) {
424         case 0: return -EFAULT;
425         case 1: return BFIN_MEM_ACCESS_CORE;
426         case 2: /* fall through */;
427         }
428
429         if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
430                 return BFIN_MEM_ACCESS_CORE;
431         if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
432                 return BFIN_MEM_ACCESS_DMA;
433
434         return -EFAULT;
435 }
436
437 #if defined(CONFIG_ACCESS_CHECK)
438 #ifdef CONFIG_ACCESS_OK_L1
439 __attribute__((l1_text))
440 #endif
441 /* Return 1 if access to memory range is OK, 0 otherwise */
442 int _access_ok(unsigned long addr, unsigned long size)
443 {
444         int aret;
445
446         if (size == 0)
447                 return 1;
448         /* Check that things do not wrap around */
449         if (addr > ULONG_MAX - size)
450                 return 0;
451         if (segment_eq(get_fs(), KERNEL_DS))
452                 return 1;
453 #ifdef CONFIG_MTD_UCLINUX
454         if (1)
455 #else
456         if (0)
457 #endif
458         {
459                 if (in_mem(addr, size, memory_start, memory_end))
460                         return 1;
461                 if (in_mem(addr, size, memory_mtd_end, physical_mem_end))
462                         return 1;
463 # ifndef CONFIG_ROMFS_ON_MTD
464                 if (0)
465 # endif
466                         /* For XIP, allow user space to use pointers within the ROMFS.  */
467                         if (in_mem(addr, size, memory_mtd_start, memory_mtd_end))
468                                 return 1;
469         } else {
470                 if (in_mem(addr, size, memory_start, physical_mem_end))
471                         return 1;
472         }
473
474         if (in_mem(addr, size, (unsigned long)__init_begin, (unsigned long)__init_end))
475                 return 1;
476
477         if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
478                 return 1;
479         if (in_mem_const_off(addr, size, _etext_l1 - _stext_l1, L1_CODE_START, L1_CODE_LENGTH))
480                 return 1;
481         if (in_mem_const_off(addr, size, _ebss_l1 - _sdata_l1, L1_DATA_A_START, L1_DATA_A_LENGTH))
482                 return 1;
483         if (in_mem_const_off(addr, size, _ebss_b_l1 - _sdata_b_l1, L1_DATA_B_START, L1_DATA_B_LENGTH))
484                 return 1;
485 #ifdef COREB_L1_CODE_START
486         if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
487                 return 1;
488         if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
489                 return 1;
490         if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
491                 return 1;
492         if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
493                 return 1;
494 #endif
495
496 #ifndef CONFIG_EXCEPTION_L1_SCRATCH
497         if (in_mem_const(addr, size, (unsigned long)l1_stack_base, l1_stack_len))
498                 return 1;
499 #endif
500
501         aret = in_async(addr, size);
502         if (aret < 2)
503                 return aret;
504
505         if (in_mem_const_off(addr, size, _ebss_l2 - _stext_l2, L2_START, L2_LENGTH))
506                 return 1;
507
508         if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
509                 return 1;
510         if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
511                 return 1;
512
513         return 0;
514 }
515 EXPORT_SYMBOL(_access_ok);
516 #endif /* CONFIG_ACCESS_CHECK */