Merge branch 'fix/misc' into for-linus
[pandora-kernel.git] / arch / blackfin / kernel / process.c
1 /*
2  * Blackfin architecture-dependent process handling
3  *
4  * Copyright 2004-2009 Analog Devices Inc.
5  *
6  * Licensed under the GPL-2 or later
7  */
8
9 #include <linux/module.h>
10 #include <linux/smp_lock.h>
11 #include <linux/unistd.h>
12 #include <linux/user.h>
13 #include <linux/uaccess.h>
14 #include <linux/slab.h>
15 #include <linux/sched.h>
16 #include <linux/tick.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19
20 #include <asm/blackfin.h>
21 #include <asm/fixed_code.h>
22 #include <asm/mem_map.h>
23
24 asmlinkage void ret_from_fork(void);
25
26 /* Points to the SDRAM backup memory for the stack that is currently in
27  * L1 scratchpad memory.
28  */
29 void *current_l1_stack_save;
30
31 /* The number of tasks currently using a L1 stack area.  The SRAM is
32  * allocated/deallocated whenever this changes from/to zero.
33  */
34 int nr_l1stack_tasks;
35
36 /* Start and length of the area in L1 scratchpad memory which we've allocated
37  * for process stacks.
38  */
39 void *l1_stack_base;
40 unsigned long l1_stack_len;
41
42 /*
43  * Powermanagement idle function, if any..
44  */
45 void (*pm_idle)(void) = NULL;
46 EXPORT_SYMBOL(pm_idle);
47
48 void (*pm_power_off)(void) = NULL;
49 EXPORT_SYMBOL(pm_power_off);
50
51 /*
52  * The idle loop on BFIN
53  */
54 #ifdef CONFIG_IDLE_L1
55 static void default_idle(void)__attribute__((l1_text));
56 void cpu_idle(void)__attribute__((l1_text));
57 #endif
58
59 /*
60  * This is our default idle handler.  We need to disable
61  * interrupts here to ensure we don't miss a wakeup call.
62  */
63 static void default_idle(void)
64 {
65 #ifdef CONFIG_IPIPE
66         ipipe_suspend_domain();
67 #endif
68         local_irq_disable_hw();
69         if (!need_resched())
70                 idle_with_irq_disabled();
71
72         local_irq_enable_hw();
73 }
74
75 /*
76  * The idle thread.  We try to conserve power, while trying to keep
77  * overall latency low.  The architecture specific idle is passed
78  * a value to indicate the level of "idleness" of the system.
79  */
80 void cpu_idle(void)
81 {
82         /* endless idle loop with no priority at all */
83         while (1) {
84                 void (*idle)(void) = pm_idle;
85
86 #ifdef CONFIG_HOTPLUG_CPU
87                 if (cpu_is_offline(smp_processor_id()))
88                         cpu_die();
89 #endif
90                 if (!idle)
91                         idle = default_idle;
92                 tick_nohz_stop_sched_tick(1);
93                 while (!need_resched())
94                         idle();
95                 tick_nohz_restart_sched_tick();
96                 preempt_enable_no_resched();
97                 schedule();
98                 preempt_disable();
99         }
100 }
101
102 /*
103  * This gets run with P1 containing the
104  * function to call, and R1 containing
105  * the "args".  Note P0 is clobbered on the way here.
106  */
107 void kernel_thread_helper(void);
108 __asm__(".section .text\n"
109         ".align 4\n"
110         "_kernel_thread_helper:\n\t"
111         "\tsp += -12;\n\t"
112         "\tr0 = r1;\n\t" "\tcall (p1);\n\t" "\tcall _do_exit;\n" ".previous");
113
114 /*
115  * Create a kernel thread.
116  */
117 pid_t kernel_thread(int (*fn) (void *), void *arg, unsigned long flags)
118 {
119         struct pt_regs regs;
120
121         memset(&regs, 0, sizeof(regs));
122
123         regs.r1 = (unsigned long)arg;
124         regs.p1 = (unsigned long)fn;
125         regs.pc = (unsigned long)kernel_thread_helper;
126         regs.orig_p0 = -1;
127         /* Set bit 2 to tell ret_from_fork we should be returning to kernel
128            mode.  */
129         regs.ipend = 0x8002;
130         __asm__ __volatile__("%0 = syscfg;":"=da"(regs.syscfg):);
131         return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL,
132                        NULL);
133 }
134 EXPORT_SYMBOL(kernel_thread);
135
136 /*
137  * Do necessary setup to start up a newly executed thread.
138  *
139  * pass the data segment into user programs if it exists,
140  * it can't hurt anything as far as I can tell
141  */
142 void start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
143 {
144         set_fs(USER_DS);
145         regs->pc = new_ip;
146         if (current->mm)
147                 regs->p5 = current->mm->start_data;
148 #ifndef CONFIG_SMP
149         task_thread_info(current)->l1_task_info.stack_start =
150                 (void *)current->mm->context.stack_start;
151         task_thread_info(current)->l1_task_info.lowest_sp = (void *)new_sp;
152         memcpy(L1_SCRATCH_TASK_INFO, &task_thread_info(current)->l1_task_info,
153                sizeof(*L1_SCRATCH_TASK_INFO));
154 #endif
155         wrusp(new_sp);
156 }
157 EXPORT_SYMBOL_GPL(start_thread);
158
159 void flush_thread(void)
160 {
161 }
162
163 asmlinkage int bfin_vfork(struct pt_regs *regs)
164 {
165         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(), regs, 0, NULL,
166                        NULL);
167 }
168
169 asmlinkage int bfin_clone(struct pt_regs *regs)
170 {
171         unsigned long clone_flags;
172         unsigned long newsp;
173
174 #ifdef __ARCH_SYNC_CORE_DCACHE
175         if (current->rt.nr_cpus_allowed == num_possible_cpus()) {
176                 current->cpus_allowed = cpumask_of_cpu(smp_processor_id());
177                 current->rt.nr_cpus_allowed = 1;
178         }
179 #endif
180
181         /* syscall2 puts clone_flags in r0 and usp in r1 */
182         clone_flags = regs->r0;
183         newsp = regs->r1;
184         if (!newsp)
185                 newsp = rdusp();
186         else
187                 newsp -= 12;
188         return do_fork(clone_flags, newsp, regs, 0, NULL, NULL);
189 }
190
191 int
192 copy_thread(unsigned long clone_flags,
193             unsigned long usp, unsigned long topstk,
194             struct task_struct *p, struct pt_regs *regs)
195 {
196         struct pt_regs *childregs;
197
198         childregs = (struct pt_regs *) (task_stack_page(p) + THREAD_SIZE) - 1;
199         *childregs = *regs;
200         childregs->r0 = 0;
201
202         p->thread.usp = usp;
203         p->thread.ksp = (unsigned long)childregs;
204         p->thread.pc = (unsigned long)ret_from_fork;
205
206         return 0;
207 }
208
209 /*
210  * sys_execve() executes a new program.
211  */
212 asmlinkage int sys_execve(char __user *name, char __user * __user *argv, char __user * __user *envp)
213 {
214         int error;
215         char *filename;
216         struct pt_regs *regs = (struct pt_regs *)((&name) + 6);
217
218         filename = getname(name);
219         error = PTR_ERR(filename);
220         if (IS_ERR(filename))
221                 return error;
222         error = do_execve(filename, argv, envp, regs);
223         putname(filename);
224         return error;
225 }
226
227 unsigned long get_wchan(struct task_struct *p)
228 {
229         unsigned long fp, pc;
230         unsigned long stack_page;
231         int count = 0;
232         if (!p || p == current || p->state == TASK_RUNNING)
233                 return 0;
234
235         stack_page = (unsigned long)p;
236         fp = p->thread.usp;
237         do {
238                 if (fp < stack_page + sizeof(struct thread_info) ||
239                     fp >= 8184 + stack_page)
240                         return 0;
241                 pc = ((unsigned long *)fp)[1];
242                 if (!in_sched_functions(pc))
243                         return pc;
244                 fp = *(unsigned long *)fp;
245         }
246         while (count++ < 16);
247         return 0;
248 }
249
250 void finish_atomic_sections (struct pt_regs *regs)
251 {
252         int __user *up0 = (int __user *)regs->p0;
253
254         switch (regs->pc) {
255         default:
256                 /* not in middle of an atomic step, so resume like normal */
257                 return;
258
259         case ATOMIC_XCHG32 + 2:
260                 put_user(regs->r1, up0);
261                 break;
262
263         case ATOMIC_CAS32 + 2:
264         case ATOMIC_CAS32 + 4:
265                 if (regs->r0 == regs->r1)
266         case ATOMIC_CAS32 + 6:
267                         put_user(regs->r2, up0);
268                 break;
269
270         case ATOMIC_ADD32 + 2:
271                 regs->r0 = regs->r1 + regs->r0;
272                 /* fall through */
273         case ATOMIC_ADD32 + 4:
274                 put_user(regs->r0, up0);
275                 break;
276
277         case ATOMIC_SUB32 + 2:
278                 regs->r0 = regs->r1 - regs->r0;
279                 /* fall through */
280         case ATOMIC_SUB32 + 4:
281                 put_user(regs->r0, up0);
282                 break;
283
284         case ATOMIC_IOR32 + 2:
285                 regs->r0 = regs->r1 | regs->r0;
286                 /* fall through */
287         case ATOMIC_IOR32 + 4:
288                 put_user(regs->r0, up0);
289                 break;
290
291         case ATOMIC_AND32 + 2:
292                 regs->r0 = regs->r1 & regs->r0;
293                 /* fall through */
294         case ATOMIC_AND32 + 4:
295                 put_user(regs->r0, up0);
296                 break;
297
298         case ATOMIC_XOR32 + 2:
299                 regs->r0 = regs->r1 ^ regs->r0;
300                 /* fall through */
301         case ATOMIC_XOR32 + 4:
302                 put_user(regs->r0, up0);
303                 break;
304         }
305
306         /*
307          * We've finished the atomic section, and the only thing left for
308          * userspace is to do a RTS, so we might as well handle that too
309          * since we need to update the PC anyways.
310          */
311         regs->pc = regs->rets;
312 }
313
314 static inline
315 int in_mem(unsigned long addr, unsigned long size,
316            unsigned long start, unsigned long end)
317 {
318         return addr >= start && addr + size <= end;
319 }
320 static inline
321 int in_mem_const_off(unsigned long addr, unsigned long size, unsigned long off,
322                      unsigned long const_addr, unsigned long const_size)
323 {
324         return const_size &&
325                in_mem(addr, size, const_addr + off, const_addr + const_size);
326 }
327 static inline
328 int in_mem_const(unsigned long addr, unsigned long size,
329                  unsigned long const_addr, unsigned long const_size)
330 {
331         return in_mem_const_off(addr, size, 0, const_addr, const_size);
332 }
333 #define ASYNC_ENABLED(bnum, bctlnum) \
334 ({ \
335         (bfin_read_EBIU_AMGCTL() & 0xe) < ((bnum + 1) << 1) ? 0 : \
336         bfin_read_EBIU_AMBCTL##bctlnum() & B##bnum##RDYEN ? 0 : \
337         1; \
338 })
339 /*
340  * We can't read EBIU banks that aren't enabled or we end up hanging
341  * on the access to the async space.  Make sure we validate accesses
342  * that cross async banks too.
343  *      0 - found, but unusable
344  *      1 - found & usable
345  *      2 - not found
346  */
347 static
348 int in_async(unsigned long addr, unsigned long size)
349 {
350         if (addr >= ASYNC_BANK0_BASE && addr < ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE) {
351                 if (!ASYNC_ENABLED(0, 0))
352                         return 0;
353                 if (addr + size <= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE)
354                         return 1;
355                 size -= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE - addr;
356                 addr = ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE;
357         }
358         if (addr >= ASYNC_BANK1_BASE && addr < ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE) {
359                 if (!ASYNC_ENABLED(1, 0))
360                         return 0;
361                 if (addr + size <= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE)
362                         return 1;
363                 size -= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE - addr;
364                 addr = ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE;
365         }
366         if (addr >= ASYNC_BANK2_BASE && addr < ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE) {
367                 if (!ASYNC_ENABLED(2, 1))
368                         return 0;
369                 if (addr + size <= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE)
370                         return 1;
371                 size -= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE - addr;
372                 addr = ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE;
373         }
374         if (addr >= ASYNC_BANK3_BASE && addr < ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE) {
375                 if (ASYNC_ENABLED(3, 1))
376                         return 0;
377                 if (addr + size <= ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE)
378                         return 1;
379                 return 0;
380         }
381
382         /* not within async bounds */
383         return 2;
384 }
385
386 int bfin_mem_access_type(unsigned long addr, unsigned long size)
387 {
388         int cpu = raw_smp_processor_id();
389
390         /* Check that things do not wrap around */
391         if (addr > ULONG_MAX - size)
392                 return -EFAULT;
393
394         if (in_mem(addr, size, FIXED_CODE_START, physical_mem_end))
395                 return BFIN_MEM_ACCESS_CORE;
396
397         if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
398                 return cpu == 0 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
399         if (in_mem_const(addr, size, L1_SCRATCH_START, L1_SCRATCH_LENGTH))
400                 return cpu == 0 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
401         if (in_mem_const(addr, size, L1_DATA_A_START, L1_DATA_A_LENGTH))
402                 return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
403         if (in_mem_const(addr, size, L1_DATA_B_START, L1_DATA_B_LENGTH))
404                 return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
405 #ifdef COREB_L1_CODE_START
406         if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
407                 return cpu == 1 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
408         if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
409                 return cpu == 1 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
410         if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
411                 return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
412         if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
413                 return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
414 #endif
415         if (in_mem_const(addr, size, L2_START, L2_LENGTH))
416                 return BFIN_MEM_ACCESS_CORE;
417
418         if (addr >= SYSMMR_BASE)
419                 return BFIN_MEM_ACCESS_CORE_ONLY;
420
421         switch (in_async(addr, size)) {
422         case 0: return -EFAULT;
423         case 1: return BFIN_MEM_ACCESS_CORE;
424         case 2: /* fall through */;
425         }
426
427         if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
428                 return BFIN_MEM_ACCESS_CORE;
429         if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
430                 return BFIN_MEM_ACCESS_DMA;
431
432         return -EFAULT;
433 }
434
435 #if defined(CONFIG_ACCESS_CHECK)
436 #ifdef CONFIG_ACCESS_OK_L1
437 __attribute__((l1_text))
438 #endif
439 /* Return 1 if access to memory range is OK, 0 otherwise */
440 int _access_ok(unsigned long addr, unsigned long size)
441 {
442         int aret;
443
444         if (size == 0)
445                 return 1;
446         /* Check that things do not wrap around */
447         if (addr > ULONG_MAX - size)
448                 return 0;
449         if (segment_eq(get_fs(), KERNEL_DS))
450                 return 1;
451 #ifdef CONFIG_MTD_UCLINUX
452         if (1)
453 #else
454         if (0)
455 #endif
456         {
457                 if (in_mem(addr, size, memory_start, memory_end))
458                         return 1;
459                 if (in_mem(addr, size, memory_mtd_end, physical_mem_end))
460                         return 1;
461 # ifndef CONFIG_ROMFS_ON_MTD
462                 if (0)
463 # endif
464                         /* For XIP, allow user space to use pointers within the ROMFS.  */
465                         if (in_mem(addr, size, memory_mtd_start, memory_mtd_end))
466                                 return 1;
467         } else {
468                 if (in_mem(addr, size, memory_start, physical_mem_end))
469                         return 1;
470         }
471
472         if (in_mem(addr, size, (unsigned long)__init_begin, (unsigned long)__init_end))
473                 return 1;
474
475         if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
476                 return 1;
477         if (in_mem_const_off(addr, size, _etext_l1 - _stext_l1, L1_CODE_START, L1_CODE_LENGTH))
478                 return 1;
479         if (in_mem_const_off(addr, size, _ebss_l1 - _sdata_l1, L1_DATA_A_START, L1_DATA_A_LENGTH))
480                 return 1;
481         if (in_mem_const_off(addr, size, _ebss_b_l1 - _sdata_b_l1, L1_DATA_B_START, L1_DATA_B_LENGTH))
482                 return 1;
483 #ifdef COREB_L1_CODE_START
484         if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
485                 return 1;
486         if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
487                 return 1;
488         if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
489                 return 1;
490         if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
491                 return 1;
492 #endif
493
494         aret = in_async(addr, size);
495         if (aret < 2)
496                 return aret;
497
498         if (in_mem_const_off(addr, size, _ebss_l2 - _stext_l2, L2_START, L2_LENGTH))
499                 return 1;
500
501         if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
502                 return 1;
503         if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
504                 return 1;
505
506         return 0;
507 }
508 EXPORT_SYMBOL(_access_ok);
509 #endif /* CONFIG_ACCESS_CHECK */