Merge branch 'for-linus' of git://git.infradead.org/users/eparis/selinux into for...
[pandora-kernel.git] / arch / blackfin / kernel / process.c
1 /*
2  * Blackfin architecture-dependent process handling
3  *
4  * Copyright 2004-2009 Analog Devices Inc.
5  *
6  * Licensed under the GPL-2 or later
7  */
8
9 #include <linux/module.h>
10 #include <linux/unistd.h>
11 #include <linux/user.h>
12 #include <linux/uaccess.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/tick.h>
16 #include <linux/fs.h>
17 #include <linux/err.h>
18
19 #include <asm/blackfin.h>
20 #include <asm/fixed_code.h>
21 #include <asm/mem_map.h>
22
23 asmlinkage void ret_from_fork(void);
24
25 /* Points to the SDRAM backup memory for the stack that is currently in
26  * L1 scratchpad memory.
27  */
28 void *current_l1_stack_save;
29
30 /* The number of tasks currently using a L1 stack area.  The SRAM is
31  * allocated/deallocated whenever this changes from/to zero.
32  */
33 int nr_l1stack_tasks;
34
35 /* Start and length of the area in L1 scratchpad memory which we've allocated
36  * for process stacks.
37  */
38 void *l1_stack_base;
39 unsigned long l1_stack_len;
40
41 /*
42  * Powermanagement idle function, if any..
43  */
44 void (*pm_idle)(void) = NULL;
45 EXPORT_SYMBOL(pm_idle);
46
47 void (*pm_power_off)(void) = NULL;
48 EXPORT_SYMBOL(pm_power_off);
49
50 /*
51  * The idle loop on BFIN
52  */
53 #ifdef CONFIG_IDLE_L1
54 static void default_idle(void)__attribute__((l1_text));
55 void cpu_idle(void)__attribute__((l1_text));
56 #endif
57
58 /*
59  * This is our default idle handler.  We need to disable
60  * interrupts here to ensure we don't miss a wakeup call.
61  */
62 static void default_idle(void)
63 {
64 #ifdef CONFIG_IPIPE
65         ipipe_suspend_domain();
66 #endif
67         hard_local_irq_disable();
68         if (!need_resched())
69                 idle_with_irq_disabled();
70
71         hard_local_irq_enable();
72 }
73
74 /*
75  * The idle thread.  We try to conserve power, while trying to keep
76  * overall latency low.  The architecture specific idle is passed
77  * a value to indicate the level of "idleness" of the system.
78  */
79 void cpu_idle(void)
80 {
81         /* endless idle loop with no priority at all */
82         while (1) {
83                 void (*idle)(void) = pm_idle;
84
85 #ifdef CONFIG_HOTPLUG_CPU
86                 if (cpu_is_offline(smp_processor_id()))
87                         cpu_die();
88 #endif
89                 if (!idle)
90                         idle = default_idle;
91                 tick_nohz_stop_sched_tick(1);
92                 while (!need_resched())
93                         idle();
94                 tick_nohz_restart_sched_tick();
95                 preempt_enable_no_resched();
96                 schedule();
97                 preempt_disable();
98         }
99 }
100
101 /*
102  * This gets run with P1 containing the
103  * function to call, and R1 containing
104  * the "args".  Note P0 is clobbered on the way here.
105  */
106 void kernel_thread_helper(void);
107 __asm__(".section .text\n"
108         ".align 4\n"
109         "_kernel_thread_helper:\n\t"
110         "\tsp += -12;\n\t"
111         "\tr0 = r1;\n\t" "\tcall (p1);\n\t" "\tcall _do_exit;\n" ".previous");
112
113 /*
114  * Create a kernel thread.
115  */
116 pid_t kernel_thread(int (*fn) (void *), void *arg, unsigned long flags)
117 {
118         struct pt_regs regs;
119
120         memset(&regs, 0, sizeof(regs));
121
122         regs.r1 = (unsigned long)arg;
123         regs.p1 = (unsigned long)fn;
124         regs.pc = (unsigned long)kernel_thread_helper;
125         regs.orig_p0 = -1;
126         /* Set bit 2 to tell ret_from_fork we should be returning to kernel
127            mode.  */
128         regs.ipend = 0x8002;
129         __asm__ __volatile__("%0 = syscfg;":"=da"(regs.syscfg):);
130         return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL,
131                        NULL);
132 }
133 EXPORT_SYMBOL(kernel_thread);
134
135 /*
136  * Do necessary setup to start up a newly executed thread.
137  *
138  * pass the data segment into user programs if it exists,
139  * it can't hurt anything as far as I can tell
140  */
141 void start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
142 {
143         set_fs(USER_DS);
144         regs->pc = new_ip;
145         if (current->mm)
146                 regs->p5 = current->mm->start_data;
147 #ifndef CONFIG_SMP
148         task_thread_info(current)->l1_task_info.stack_start =
149                 (void *)current->mm->context.stack_start;
150         task_thread_info(current)->l1_task_info.lowest_sp = (void *)new_sp;
151         memcpy(L1_SCRATCH_TASK_INFO, &task_thread_info(current)->l1_task_info,
152                sizeof(*L1_SCRATCH_TASK_INFO));
153 #endif
154         wrusp(new_sp);
155 }
156 EXPORT_SYMBOL_GPL(start_thread);
157
158 void flush_thread(void)
159 {
160 }
161
162 asmlinkage int bfin_vfork(struct pt_regs *regs)
163 {
164         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(), regs, 0, NULL,
165                        NULL);
166 }
167
168 asmlinkage int bfin_clone(struct pt_regs *regs)
169 {
170         unsigned long clone_flags;
171         unsigned long newsp;
172
173 #ifdef __ARCH_SYNC_CORE_DCACHE
174         if (current->rt.nr_cpus_allowed == num_possible_cpus())
175                 set_cpus_allowed_ptr(current, cpumask_of(smp_processor_id()));
176 #endif
177
178         /* syscall2 puts clone_flags in r0 and usp in r1 */
179         clone_flags = regs->r0;
180         newsp = regs->r1;
181         if (!newsp)
182                 newsp = rdusp();
183         else
184                 newsp -= 12;
185         return do_fork(clone_flags, newsp, regs, 0, NULL, NULL);
186 }
187
188 int
189 copy_thread(unsigned long clone_flags,
190             unsigned long usp, unsigned long topstk,
191             struct task_struct *p, struct pt_regs *regs)
192 {
193         struct pt_regs *childregs;
194
195         childregs = (struct pt_regs *) (task_stack_page(p) + THREAD_SIZE) - 1;
196         *childregs = *regs;
197         childregs->r0 = 0;
198
199         p->thread.usp = usp;
200         p->thread.ksp = (unsigned long)childregs;
201         p->thread.pc = (unsigned long)ret_from_fork;
202
203         return 0;
204 }
205
206 /*
207  * sys_execve() executes a new program.
208  */
209 asmlinkage int sys_execve(const char __user *name,
210                           const char __user *const __user *argv,
211                           const char __user *const __user *envp)
212 {
213         int error;
214         char *filename;
215         struct pt_regs *regs = (struct pt_regs *)((&name) + 6);
216
217         filename = getname(name);
218         error = PTR_ERR(filename);
219         if (IS_ERR(filename))
220                 return error;
221         error = do_execve(filename, argv, envp, regs);
222         putname(filename);
223         return error;
224 }
225
226 unsigned long get_wchan(struct task_struct *p)
227 {
228         unsigned long fp, pc;
229         unsigned long stack_page;
230         int count = 0;
231         if (!p || p == current || p->state == TASK_RUNNING)
232                 return 0;
233
234         stack_page = (unsigned long)p;
235         fp = p->thread.usp;
236         do {
237                 if (fp < stack_page + sizeof(struct thread_info) ||
238                     fp >= 8184 + stack_page)
239                         return 0;
240                 pc = ((unsigned long *)fp)[1];
241                 if (!in_sched_functions(pc))
242                         return pc;
243                 fp = *(unsigned long *)fp;
244         }
245         while (count++ < 16);
246         return 0;
247 }
248
249 void finish_atomic_sections (struct pt_regs *regs)
250 {
251         int __user *up0 = (int __user *)regs->p0;
252
253         switch (regs->pc) {
254         default:
255                 /* not in middle of an atomic step, so resume like normal */
256                 return;
257
258         case ATOMIC_XCHG32 + 2:
259                 put_user(regs->r1, up0);
260                 break;
261
262         case ATOMIC_CAS32 + 2:
263         case ATOMIC_CAS32 + 4:
264                 if (regs->r0 == regs->r1)
265         case ATOMIC_CAS32 + 6:
266                         put_user(regs->r2, up0);
267                 break;
268
269         case ATOMIC_ADD32 + 2:
270                 regs->r0 = regs->r1 + regs->r0;
271                 /* fall through */
272         case ATOMIC_ADD32 + 4:
273                 put_user(regs->r0, up0);
274                 break;
275
276         case ATOMIC_SUB32 + 2:
277                 regs->r0 = regs->r1 - regs->r0;
278                 /* fall through */
279         case ATOMIC_SUB32 + 4:
280                 put_user(regs->r0, up0);
281                 break;
282
283         case ATOMIC_IOR32 + 2:
284                 regs->r0 = regs->r1 | regs->r0;
285                 /* fall through */
286         case ATOMIC_IOR32 + 4:
287                 put_user(regs->r0, up0);
288                 break;
289
290         case ATOMIC_AND32 + 2:
291                 regs->r0 = regs->r1 & regs->r0;
292                 /* fall through */
293         case ATOMIC_AND32 + 4:
294                 put_user(regs->r0, up0);
295                 break;
296
297         case ATOMIC_XOR32 + 2:
298                 regs->r0 = regs->r1 ^ regs->r0;
299                 /* fall through */
300         case ATOMIC_XOR32 + 4:
301                 put_user(regs->r0, up0);
302                 break;
303         }
304
305         /*
306          * We've finished the atomic section, and the only thing left for
307          * userspace is to do a RTS, so we might as well handle that too
308          * since we need to update the PC anyways.
309          */
310         regs->pc = regs->rets;
311 }
312
313 static inline
314 int in_mem(unsigned long addr, unsigned long size,
315            unsigned long start, unsigned long end)
316 {
317         return addr >= start && addr + size <= end;
318 }
319 static inline
320 int in_mem_const_off(unsigned long addr, unsigned long size, unsigned long off,
321                      unsigned long const_addr, unsigned long const_size)
322 {
323         return const_size &&
324                in_mem(addr, size, const_addr + off, const_addr + const_size);
325 }
326 static inline
327 int in_mem_const(unsigned long addr, unsigned long size,
328                  unsigned long const_addr, unsigned long const_size)
329 {
330         return in_mem_const_off(addr, size, 0, const_addr, const_size);
331 }
332 #define ASYNC_ENABLED(bnum, bctlnum) \
333 ({ \
334         (bfin_read_EBIU_AMGCTL() & 0xe) < ((bnum + 1) << 1) ? 0 : \
335         bfin_read_EBIU_AMBCTL##bctlnum() & B##bnum##RDYEN ? 0 : \
336         1; \
337 })
338 /*
339  * We can't read EBIU banks that aren't enabled or we end up hanging
340  * on the access to the async space.  Make sure we validate accesses
341  * that cross async banks too.
342  *      0 - found, but unusable
343  *      1 - found & usable
344  *      2 - not found
345  */
346 static
347 int in_async(unsigned long addr, unsigned long size)
348 {
349         if (addr >= ASYNC_BANK0_BASE && addr < ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE) {
350                 if (!ASYNC_ENABLED(0, 0))
351                         return 0;
352                 if (addr + size <= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE)
353                         return 1;
354                 size -= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE - addr;
355                 addr = ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE;
356         }
357         if (addr >= ASYNC_BANK1_BASE && addr < ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE) {
358                 if (!ASYNC_ENABLED(1, 0))
359                         return 0;
360                 if (addr + size <= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE)
361                         return 1;
362                 size -= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE - addr;
363                 addr = ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE;
364         }
365         if (addr >= ASYNC_BANK2_BASE && addr < ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE) {
366                 if (!ASYNC_ENABLED(2, 1))
367                         return 0;
368                 if (addr + size <= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE)
369                         return 1;
370                 size -= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE - addr;
371                 addr = ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE;
372         }
373         if (addr >= ASYNC_BANK3_BASE && addr < ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE) {
374                 if (ASYNC_ENABLED(3, 1))
375                         return 0;
376                 if (addr + size <= ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE)
377                         return 1;
378                 return 0;
379         }
380
381         /* not within async bounds */
382         return 2;
383 }
384
385 int bfin_mem_access_type(unsigned long addr, unsigned long size)
386 {
387         int cpu = raw_smp_processor_id();
388
389         /* Check that things do not wrap around */
390         if (addr > ULONG_MAX - size)
391                 return -EFAULT;
392
393         if (in_mem(addr, size, FIXED_CODE_START, physical_mem_end))
394                 return BFIN_MEM_ACCESS_CORE;
395
396         if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
397                 return cpu == 0 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
398         if (in_mem_const(addr, size, L1_SCRATCH_START, L1_SCRATCH_LENGTH))
399                 return cpu == 0 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
400         if (in_mem_const(addr, size, L1_DATA_A_START, L1_DATA_A_LENGTH))
401                 return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
402         if (in_mem_const(addr, size, L1_DATA_B_START, L1_DATA_B_LENGTH))
403                 return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
404 #ifdef COREB_L1_CODE_START
405         if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
406                 return cpu == 1 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
407         if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
408                 return cpu == 1 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
409         if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
410                 return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
411         if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
412                 return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
413 #endif
414         if (in_mem_const(addr, size, L2_START, L2_LENGTH))
415                 return BFIN_MEM_ACCESS_CORE;
416
417         if (addr >= SYSMMR_BASE)
418                 return BFIN_MEM_ACCESS_CORE_ONLY;
419
420         switch (in_async(addr, size)) {
421         case 0: return -EFAULT;
422         case 1: return BFIN_MEM_ACCESS_CORE;
423         case 2: /* fall through */;
424         }
425
426         if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
427                 return BFIN_MEM_ACCESS_CORE;
428         if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
429                 return BFIN_MEM_ACCESS_DMA;
430
431         return -EFAULT;
432 }
433
434 #if defined(CONFIG_ACCESS_CHECK)
435 #ifdef CONFIG_ACCESS_OK_L1
436 __attribute__((l1_text))
437 #endif
438 /* Return 1 if access to memory range is OK, 0 otherwise */
439 int _access_ok(unsigned long addr, unsigned long size)
440 {
441         int aret;
442
443         if (size == 0)
444                 return 1;
445         /* Check that things do not wrap around */
446         if (addr > ULONG_MAX - size)
447                 return 0;
448         if (segment_eq(get_fs(), KERNEL_DS))
449                 return 1;
450 #ifdef CONFIG_MTD_UCLINUX
451         if (1)
452 #else
453         if (0)
454 #endif
455         {
456                 if (in_mem(addr, size, memory_start, memory_end))
457                         return 1;
458                 if (in_mem(addr, size, memory_mtd_end, physical_mem_end))
459                         return 1;
460 # ifndef CONFIG_ROMFS_ON_MTD
461                 if (0)
462 # endif
463                         /* For XIP, allow user space to use pointers within the ROMFS.  */
464                         if (in_mem(addr, size, memory_mtd_start, memory_mtd_end))
465                                 return 1;
466         } else {
467                 if (in_mem(addr, size, memory_start, physical_mem_end))
468                         return 1;
469         }
470
471         if (in_mem(addr, size, (unsigned long)__init_begin, (unsigned long)__init_end))
472                 return 1;
473
474         if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
475                 return 1;
476         if (in_mem_const_off(addr, size, _etext_l1 - _stext_l1, L1_CODE_START, L1_CODE_LENGTH))
477                 return 1;
478         if (in_mem_const_off(addr, size, _ebss_l1 - _sdata_l1, L1_DATA_A_START, L1_DATA_A_LENGTH))
479                 return 1;
480         if (in_mem_const_off(addr, size, _ebss_b_l1 - _sdata_b_l1, L1_DATA_B_START, L1_DATA_B_LENGTH))
481                 return 1;
482 #ifdef COREB_L1_CODE_START
483         if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
484                 return 1;
485         if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
486                 return 1;
487         if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
488                 return 1;
489         if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
490                 return 1;
491 #endif
492
493 #ifndef CONFIG_EXCEPTION_L1_SCRATCH
494         if (in_mem_const(addr, size, (unsigned long)l1_stack_base, l1_stack_len))
495                 return 1;
496 #endif
497
498         aret = in_async(addr, size);
499         if (aret < 2)
500                 return aret;
501
502         if (in_mem_const_off(addr, size, _ebss_l2 - _stext_l2, L2_START, L2_LENGTH))
503                 return 1;
504
505         if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
506                 return 1;
507         if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
508                 return 1;
509
510         return 0;
511 }
512 EXPORT_SYMBOL(_access_ok);
513 #endif /* CONFIG_ACCESS_CHECK */