Merge branch 'msm-fix' of git://codeaurora.org/quic/kernel/davidb/linux-msm into...
[pandora-kernel.git] / arch / blackfin / kernel / perf_event.c
1 /*
2  * Blackfin performance counters
3  *
4  * Copyright 2011 Analog Devices Inc.
5  *
6  * Ripped from SuperH version:
7  *
8  *  Copyright (C) 2009  Paul Mundt
9  *
10  * Heavily based on the x86 and PowerPC implementations.
11  *
12  * x86:
13  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
14  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
15  *  Copyright (C) 2009 Jaswinder Singh Rajput
16  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
17  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
18  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
19  *
20  * ppc:
21  *  Copyright 2008-2009 Paul Mackerras, IBM Corporation.
22  *
23  * Licensed under the GPL-2 or later.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/init.h>
29 #include <linux/perf_event.h>
30 #include <asm/bfin_pfmon.h>
31
32 /*
33  * We have two counters, and each counter can support an event type.
34  * The 'o' is PFCNTx=1 and 's' is PFCNTx=0
35  *
36  * 0x04 o pc invariant branches
37  * 0x06 o mispredicted branches
38  * 0x09 o predicted branches taken
39  * 0x0B o EXCPT insn
40  * 0x0C o CSYNC/SSYNC insn
41  * 0x0D o Insns committed
42  * 0x0E o Interrupts taken
43  * 0x0F o Misaligned address exceptions
44  * 0x80 o Code memory fetches stalled due to DMA
45  * 0x83 o 64bit insn fetches delivered
46  * 0x9A o data cache fills (bank a)
47  * 0x9B o data cache fills (bank b)
48  * 0x9C o data cache lines evicted (bank a)
49  * 0x9D o data cache lines evicted (bank b)
50  * 0x9E o data cache high priority fills
51  * 0x9F o data cache low priority fills
52  * 0x00 s loop 0 iterations
53  * 0x01 s loop 1 iterations
54  * 0x0A s CSYNC/SSYNC stalls
55  * 0x10 s DAG read/after write hazards
56  * 0x13 s RAW data hazards
57  * 0x81 s code TAG stalls
58  * 0x82 s code fill stalls
59  * 0x90 s processor to memory stalls
60  * 0x91 s data memory stalls not hidden by 0x90
61  * 0x92 s data store buffer full stalls
62  * 0x93 s data memory write buffer full stalls due to high->low priority
63  * 0x95 s data memory fill buffer stalls
64  * 0x96 s data TAG collision stalls
65  * 0x97 s data collision stalls
66  * 0x98 s data stalls
67  * 0x99 s data stalls sent to processor
68  */
69
70 static const int event_map[] = {
71         /* use CYCLES cpu register */
72         [PERF_COUNT_HW_CPU_CYCLES]          = -1,
73         [PERF_COUNT_HW_INSTRUCTIONS]        = 0x0D,
74         [PERF_COUNT_HW_CACHE_REFERENCES]    = -1,
75         [PERF_COUNT_HW_CACHE_MISSES]        = 0x83,
76         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x09,
77         [PERF_COUNT_HW_BRANCH_MISSES]       = 0x06,
78         [PERF_COUNT_HW_BUS_CYCLES]          = -1,
79 };
80
81 #define C(x)    PERF_COUNT_HW_CACHE_##x
82
83 static const int cache_events[PERF_COUNT_HW_CACHE_MAX]
84                              [PERF_COUNT_HW_CACHE_OP_MAX]
85                              [PERF_COUNT_HW_CACHE_RESULT_MAX] =
86 {
87         [C(L1D)] = {    /* Data bank A */
88                 [C(OP_READ)] = {
89                         [C(RESULT_ACCESS)] = 0,
90                         [C(RESULT_MISS)  ] = 0x9A,
91                 },
92                 [C(OP_WRITE)] = {
93                         [C(RESULT_ACCESS)] = 0,
94                         [C(RESULT_MISS)  ] = 0,
95                 },
96                 [C(OP_PREFETCH)] = {
97                         [C(RESULT_ACCESS)] = 0,
98                         [C(RESULT_MISS)  ] = 0,
99                 },
100         },
101
102         [C(L1I)] = {
103                 [C(OP_READ)] = {
104                         [C(RESULT_ACCESS)] = 0,
105                         [C(RESULT_MISS)  ] = 0x83,
106                 },
107                 [C(OP_WRITE)] = {
108                         [C(RESULT_ACCESS)] = -1,
109                         [C(RESULT_MISS)  ] = -1,
110                 },
111                 [C(OP_PREFETCH)] = {
112                         [C(RESULT_ACCESS)] = 0,
113                         [C(RESULT_MISS)  ] = 0,
114                 },
115         },
116
117         [C(LL)] = {
118                 [C(OP_READ)] = {
119                         [C(RESULT_ACCESS)] = -1,
120                         [C(RESULT_MISS)  ] = -1,
121                 },
122                 [C(OP_WRITE)] = {
123                         [C(RESULT_ACCESS)] = -1,
124                         [C(RESULT_MISS)  ] = -1,
125                 },
126                 [C(OP_PREFETCH)] = {
127                         [C(RESULT_ACCESS)] = -1,
128                         [C(RESULT_MISS)  ] = -1,
129                 },
130         },
131
132         [C(DTLB)] = {
133                 [C(OP_READ)] = {
134                         [C(RESULT_ACCESS)] = -1,
135                         [C(RESULT_MISS)  ] = -1,
136                 },
137                 [C(OP_WRITE)] = {
138                         [C(RESULT_ACCESS)] = -1,
139                         [C(RESULT_MISS)  ] = -1,
140                 },
141                 [C(OP_PREFETCH)] = {
142                         [C(RESULT_ACCESS)] = -1,
143                         [C(RESULT_MISS)  ] = -1,
144                 },
145         },
146
147         [C(ITLB)] = {
148                 [C(OP_READ)] = {
149                         [C(RESULT_ACCESS)] = -1,
150                         [C(RESULT_MISS)  ] = -1,
151                 },
152                 [C(OP_WRITE)] = {
153                         [C(RESULT_ACCESS)] = -1,
154                         [C(RESULT_MISS)  ] = -1,
155                 },
156                 [C(OP_PREFETCH)] = {
157                         [C(RESULT_ACCESS)] = -1,
158                         [C(RESULT_MISS)  ] = -1,
159                 },
160         },
161
162         [C(BPU)] = {
163                 [C(OP_READ)] = {
164                         [C(RESULT_ACCESS)] = -1,
165                         [C(RESULT_MISS)  ] = -1,
166                 },
167                 [C(OP_WRITE)] = {
168                         [C(RESULT_ACCESS)] = -1,
169                         [C(RESULT_MISS)  ] = -1,
170                 },
171                 [C(OP_PREFETCH)] = {
172                         [C(RESULT_ACCESS)] = -1,
173                         [C(RESULT_MISS)  ] = -1,
174                 },
175         },
176 };
177
178 const char *perf_pmu_name(void)
179 {
180         return "bfin";
181 }
182 EXPORT_SYMBOL(perf_pmu_name);
183
184 int perf_num_counters(void)
185 {
186         return ARRAY_SIZE(event_map);
187 }
188 EXPORT_SYMBOL(perf_num_counters);
189
190 static u64 bfin_pfmon_read(int idx)
191 {
192         return bfin_read32(PFCNTR0 + (idx * 4));
193 }
194
195 static void bfin_pfmon_disable(struct hw_perf_event *hwc, int idx)
196 {
197         bfin_write_PFCTL(bfin_read_PFCTL() & ~PFCEN(idx, PFCEN_MASK));
198 }
199
200 static void bfin_pfmon_enable(struct hw_perf_event *hwc, int idx)
201 {
202         u32 val, mask;
203
204         val = PFPWR;
205         if (idx) {
206                 mask = ~(PFCNT1 | PFMON1 | PFCEN1 | PEMUSW1);
207                 /* The packed config is for event0, so shift it to event1 slots */
208                 val |= (hwc->config << (PFMON1_P - PFMON0_P));
209                 val |= (hwc->config & PFCNT0) << (PFCNT1_P - PFCNT0_P);
210                 bfin_write_PFCNTR1(0);
211         } else {
212                 mask = ~(PFCNT0 | PFMON0 | PFCEN0 | PEMUSW0);
213                 val |= hwc->config;
214                 bfin_write_PFCNTR0(0);
215         }
216
217         bfin_write_PFCTL((bfin_read_PFCTL() & mask) | val);
218 }
219
220 static void bfin_pfmon_disable_all(void)
221 {
222         bfin_write_PFCTL(bfin_read_PFCTL() & ~PFPWR);
223 }
224
225 static void bfin_pfmon_enable_all(void)
226 {
227         bfin_write_PFCTL(bfin_read_PFCTL() | PFPWR);
228 }
229
230 struct cpu_hw_events {
231         struct perf_event *events[MAX_HWEVENTS];
232         unsigned long used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
233 };
234 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
235
236 static int hw_perf_cache_event(int config, int *evp)
237 {
238         unsigned long type, op, result;
239         int ev;
240
241         /* unpack config */
242         type = config & 0xff;
243         op = (config >> 8) & 0xff;
244         result = (config >> 16) & 0xff;
245
246         if (type >= PERF_COUNT_HW_CACHE_MAX ||
247             op >= PERF_COUNT_HW_CACHE_OP_MAX ||
248             result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
249                 return -EINVAL;
250
251         ev = cache_events[type][op][result];
252         if (ev == 0)
253                 return -EOPNOTSUPP;
254         if (ev == -1)
255                 return -EINVAL;
256         *evp = ev;
257         return 0;
258 }
259
260 static void bfin_perf_event_update(struct perf_event *event,
261                                    struct hw_perf_event *hwc, int idx)
262 {
263         u64 prev_raw_count, new_raw_count;
264         s64 delta;
265         int shift = 0;
266
267         /*
268          * Depending on the counter configuration, they may or may not
269          * be chained, in which case the previous counter value can be
270          * updated underneath us if the lower-half overflows.
271          *
272          * Our tactic to handle this is to first atomically read and
273          * exchange a new raw count - then add that new-prev delta
274          * count to the generic counter atomically.
275          *
276          * As there is no interrupt associated with the overflow events,
277          * this is the simplest approach for maintaining consistency.
278          */
279 again:
280         prev_raw_count = local64_read(&hwc->prev_count);
281         new_raw_count = bfin_pfmon_read(idx);
282
283         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
284                              new_raw_count) != prev_raw_count)
285                 goto again;
286
287         /*
288          * Now we have the new raw value and have updated the prev
289          * timestamp already. We can now calculate the elapsed delta
290          * (counter-)time and add that to the generic counter.
291          *
292          * Careful, not all hw sign-extends above the physical width
293          * of the count.
294          */
295         delta = (new_raw_count << shift) - (prev_raw_count << shift);
296         delta >>= shift;
297
298         local64_add(delta, &event->count);
299 }
300
301 static void bfin_pmu_stop(struct perf_event *event, int flags)
302 {
303         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
304         struct hw_perf_event *hwc = &event->hw;
305         int idx = hwc->idx;
306
307         if (!(event->hw.state & PERF_HES_STOPPED)) {
308                 bfin_pfmon_disable(hwc, idx);
309                 cpuc->events[idx] = NULL;
310                 event->hw.state |= PERF_HES_STOPPED;
311         }
312
313         if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
314                 bfin_perf_event_update(event, &event->hw, idx);
315                 event->hw.state |= PERF_HES_UPTODATE;
316         }
317 }
318
319 static void bfin_pmu_start(struct perf_event *event, int flags)
320 {
321         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
322         struct hw_perf_event *hwc = &event->hw;
323         int idx = hwc->idx;
324
325         if (WARN_ON_ONCE(idx == -1))
326                 return;
327
328         if (flags & PERF_EF_RELOAD)
329                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
330
331         cpuc->events[idx] = event;
332         event->hw.state = 0;
333         bfin_pfmon_enable(hwc, idx);
334 }
335
336 static void bfin_pmu_del(struct perf_event *event, int flags)
337 {
338         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
339
340         bfin_pmu_stop(event, PERF_EF_UPDATE);
341         __clear_bit(event->hw.idx, cpuc->used_mask);
342
343         perf_event_update_userpage(event);
344 }
345
346 static int bfin_pmu_add(struct perf_event *event, int flags)
347 {
348         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
349         struct hw_perf_event *hwc = &event->hw;
350         int idx = hwc->idx;
351         int ret = -EAGAIN;
352
353         perf_pmu_disable(event->pmu);
354
355         if (__test_and_set_bit(idx, cpuc->used_mask)) {
356                 idx = find_first_zero_bit(cpuc->used_mask, MAX_HWEVENTS);
357                 if (idx == MAX_HWEVENTS)
358                         goto out;
359
360                 __set_bit(idx, cpuc->used_mask);
361                 hwc->idx = idx;
362         }
363
364         bfin_pfmon_disable(hwc, idx);
365
366         event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
367         if (flags & PERF_EF_START)
368                 bfin_pmu_start(event, PERF_EF_RELOAD);
369
370         perf_event_update_userpage(event);
371         ret = 0;
372 out:
373         perf_pmu_enable(event->pmu);
374         return ret;
375 }
376
377 static void bfin_pmu_read(struct perf_event *event)
378 {
379         bfin_perf_event_update(event, &event->hw, event->hw.idx);
380 }
381
382 static int bfin_pmu_event_init(struct perf_event *event)
383 {
384         struct perf_event_attr *attr = &event->attr;
385         struct hw_perf_event *hwc = &event->hw;
386         int config = -1;
387         int ret;
388
389         if (attr->exclude_hv || attr->exclude_idle)
390                 return -EPERM;
391
392         /*
393          * All of the on-chip counters are "limited", in that they have
394          * no interrupts, and are therefore unable to do sampling without
395          * further work and timer assistance.
396          */
397         if (hwc->sample_period)
398                 return -EINVAL;
399
400         ret = 0;
401         switch (attr->type) {
402         case PERF_TYPE_RAW:
403                 config = PFMON(0, attr->config & PFMON_MASK) |
404                         PFCNT(0, !(attr->config & 0x100));
405                 break;
406         case PERF_TYPE_HW_CACHE:
407                 ret = hw_perf_cache_event(attr->config, &config);
408                 break;
409         case PERF_TYPE_HARDWARE:
410                 if (attr->config >= ARRAY_SIZE(event_map))
411                         return -EINVAL;
412
413                 config = event_map[attr->config];
414                 break;
415         }
416
417         if (config == -1)
418                 return -EINVAL;
419
420         if (!attr->exclude_kernel)
421                 config |= PFCEN(0, PFCEN_ENABLE_SUPV);
422         if (!attr->exclude_user)
423                 config |= PFCEN(0, PFCEN_ENABLE_USER);
424
425         hwc->config |= config;
426
427         return ret;
428 }
429
430 static void bfin_pmu_enable(struct pmu *pmu)
431 {
432         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
433         struct perf_event *event;
434         struct hw_perf_event *hwc;
435         int i;
436
437         for (i = 0; i < MAX_HWEVENTS; ++i) {
438                 event = cpuc->events[i];
439                 if (!event)
440                         continue;
441                 hwc = &event->hw;
442                 bfin_pfmon_enable(hwc, hwc->idx);
443         }
444
445         bfin_pfmon_enable_all();
446 }
447
448 static void bfin_pmu_disable(struct pmu *pmu)
449 {
450         bfin_pfmon_disable_all();
451 }
452
453 static struct pmu pmu = {
454         .pmu_enable  = bfin_pmu_enable,
455         .pmu_disable = bfin_pmu_disable,
456         .event_init  = bfin_pmu_event_init,
457         .add         = bfin_pmu_add,
458         .del         = bfin_pmu_del,
459         .start       = bfin_pmu_start,
460         .stop        = bfin_pmu_stop,
461         .read        = bfin_pmu_read,
462 };
463
464 static void bfin_pmu_setup(int cpu)
465 {
466         struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
467
468         memset(cpuhw, 0, sizeof(struct cpu_hw_events));
469 }
470
471 static int __cpuinit
472 bfin_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
473 {
474         unsigned int cpu = (long)hcpu;
475
476         switch (action & ~CPU_TASKS_FROZEN) {
477         case CPU_UP_PREPARE:
478                 bfin_write_PFCTL(0);
479                 bfin_pmu_setup(cpu);
480                 break;
481
482         default:
483                 break;
484         }
485
486         return NOTIFY_OK;
487 }
488
489 static int __init bfin_pmu_init(void)
490 {
491         int ret;
492
493         ret = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
494         if (!ret)
495                 perf_cpu_notifier(bfin_pmu_notifier);
496
497         return ret;
498 }
499 early_initcall(bfin_pmu_init);