Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[pandora-kernel.git] / arch / blackfin / kernel / perf_event.c
1 /*
2  * Blackfin performance counters
3  *
4  * Copyright 2011 Analog Devices Inc.
5  *
6  * Ripped from SuperH version:
7  *
8  *  Copyright (C) 2009  Paul Mundt
9  *
10  * Heavily based on the x86 and PowerPC implementations.
11  *
12  * x86:
13  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
14  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
15  *  Copyright (C) 2009 Jaswinder Singh Rajput
16  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
17  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
18  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
19  *
20  * ppc:
21  *  Copyright 2008-2009 Paul Mackerras, IBM Corporation.
22  *
23  * Licensed under the GPL-2 or later.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/perf_event.h>
29 #include <asm/bfin_pfmon.h>
30
31 /*
32  * We have two counters, and each counter can support an event type.
33  * The 'o' is PFCNTx=1 and 's' is PFCNTx=0
34  *
35  * 0x04 o pc invariant branches
36  * 0x06 o mispredicted branches
37  * 0x09 o predicted branches taken
38  * 0x0B o EXCPT insn
39  * 0x0C o CSYNC/SSYNC insn
40  * 0x0D o Insns committed
41  * 0x0E o Interrupts taken
42  * 0x0F o Misaligned address exceptions
43  * 0x80 o Code memory fetches stalled due to DMA
44  * 0x83 o 64bit insn fetches delivered
45  * 0x9A o data cache fills (bank a)
46  * 0x9B o data cache fills (bank b)
47  * 0x9C o data cache lines evicted (bank a)
48  * 0x9D o data cache lines evicted (bank b)
49  * 0x9E o data cache high priority fills
50  * 0x9F o data cache low priority fills
51  * 0x00 s loop 0 iterations
52  * 0x01 s loop 1 iterations
53  * 0x0A s CSYNC/SSYNC stalls
54  * 0x10 s DAG read/after write hazards
55  * 0x13 s RAW data hazards
56  * 0x81 s code TAG stalls
57  * 0x82 s code fill stalls
58  * 0x90 s processor to memory stalls
59  * 0x91 s data memory stalls not hidden by 0x90
60  * 0x92 s data store buffer full stalls
61  * 0x93 s data memory write buffer full stalls due to high->low priority
62  * 0x95 s data memory fill buffer stalls
63  * 0x96 s data TAG collision stalls
64  * 0x97 s data collision stalls
65  * 0x98 s data stalls
66  * 0x99 s data stalls sent to processor
67  */
68
69 static const int event_map[] = {
70         /* use CYCLES cpu register */
71         [PERF_COUNT_HW_CPU_CYCLES]          = -1,
72         [PERF_COUNT_HW_INSTRUCTIONS]        = 0x0D,
73         [PERF_COUNT_HW_CACHE_REFERENCES]    = -1,
74         [PERF_COUNT_HW_CACHE_MISSES]        = 0x83,
75         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x09,
76         [PERF_COUNT_HW_BRANCH_MISSES]       = 0x06,
77         [PERF_COUNT_HW_BUS_CYCLES]          = -1,
78 };
79
80 #define C(x)    PERF_COUNT_HW_CACHE_##x
81
82 static const int cache_events[PERF_COUNT_HW_CACHE_MAX]
83                              [PERF_COUNT_HW_CACHE_OP_MAX]
84                              [PERF_COUNT_HW_CACHE_RESULT_MAX] =
85 {
86         [C(L1D)] = {    /* Data bank A */
87                 [C(OP_READ)] = {
88                         [C(RESULT_ACCESS)] = 0,
89                         [C(RESULT_MISS)  ] = 0x9A,
90                 },
91                 [C(OP_WRITE)] = {
92                         [C(RESULT_ACCESS)] = 0,
93                         [C(RESULT_MISS)  ] = 0,
94                 },
95                 [C(OP_PREFETCH)] = {
96                         [C(RESULT_ACCESS)] = 0,
97                         [C(RESULT_MISS)  ] = 0,
98                 },
99         },
100
101         [C(L1I)] = {
102                 [C(OP_READ)] = {
103                         [C(RESULT_ACCESS)] = 0,
104                         [C(RESULT_MISS)  ] = 0x83,
105                 },
106                 [C(OP_WRITE)] = {
107                         [C(RESULT_ACCESS)] = -1,
108                         [C(RESULT_MISS)  ] = -1,
109                 },
110                 [C(OP_PREFETCH)] = {
111                         [C(RESULT_ACCESS)] = 0,
112                         [C(RESULT_MISS)  ] = 0,
113                 },
114         },
115
116         [C(LL)] = {
117                 [C(OP_READ)] = {
118                         [C(RESULT_ACCESS)] = -1,
119                         [C(RESULT_MISS)  ] = -1,
120                 },
121                 [C(OP_WRITE)] = {
122                         [C(RESULT_ACCESS)] = -1,
123                         [C(RESULT_MISS)  ] = -1,
124                 },
125                 [C(OP_PREFETCH)] = {
126                         [C(RESULT_ACCESS)] = -1,
127                         [C(RESULT_MISS)  ] = -1,
128                 },
129         },
130
131         [C(DTLB)] = {
132                 [C(OP_READ)] = {
133                         [C(RESULT_ACCESS)] = -1,
134                         [C(RESULT_MISS)  ] = -1,
135                 },
136                 [C(OP_WRITE)] = {
137                         [C(RESULT_ACCESS)] = -1,
138                         [C(RESULT_MISS)  ] = -1,
139                 },
140                 [C(OP_PREFETCH)] = {
141                         [C(RESULT_ACCESS)] = -1,
142                         [C(RESULT_MISS)  ] = -1,
143                 },
144         },
145
146         [C(ITLB)] = {
147                 [C(OP_READ)] = {
148                         [C(RESULT_ACCESS)] = -1,
149                         [C(RESULT_MISS)  ] = -1,
150                 },
151                 [C(OP_WRITE)] = {
152                         [C(RESULT_ACCESS)] = -1,
153                         [C(RESULT_MISS)  ] = -1,
154                 },
155                 [C(OP_PREFETCH)] = {
156                         [C(RESULT_ACCESS)] = -1,
157                         [C(RESULT_MISS)  ] = -1,
158                 },
159         },
160
161         [C(BPU)] = {
162                 [C(OP_READ)] = {
163                         [C(RESULT_ACCESS)] = -1,
164                         [C(RESULT_MISS)  ] = -1,
165                 },
166                 [C(OP_WRITE)] = {
167                         [C(RESULT_ACCESS)] = -1,
168                         [C(RESULT_MISS)  ] = -1,
169                 },
170                 [C(OP_PREFETCH)] = {
171                         [C(RESULT_ACCESS)] = -1,
172                         [C(RESULT_MISS)  ] = -1,
173                 },
174         },
175 };
176
177 const char *perf_pmu_name(void)
178 {
179         return "bfin";
180 }
181 EXPORT_SYMBOL(perf_pmu_name);
182
183 int perf_num_counters(void)
184 {
185         return ARRAY_SIZE(event_map);
186 }
187 EXPORT_SYMBOL(perf_num_counters);
188
189 static u64 bfin_pfmon_read(int idx)
190 {
191         return bfin_read32(PFCNTR0 + (idx * 4));
192 }
193
194 static void bfin_pfmon_disable(struct hw_perf_event *hwc, int idx)
195 {
196         bfin_write_PFCTL(bfin_read_PFCTL() & ~PFCEN(idx, PFCEN_MASK));
197 }
198
199 static void bfin_pfmon_enable(struct hw_perf_event *hwc, int idx)
200 {
201         u32 val, mask;
202
203         val = PFPWR;
204         if (idx) {
205                 mask = ~(PFCNT1 | PFMON1 | PFCEN1 | PEMUSW1);
206                 /* The packed config is for event0, so shift it to event1 slots */
207                 val |= (hwc->config << (PFMON1_P - PFMON0_P));
208                 val |= (hwc->config & PFCNT0) << (PFCNT1_P - PFCNT0_P);
209                 bfin_write_PFCNTR1(0);
210         } else {
211                 mask = ~(PFCNT0 | PFMON0 | PFCEN0 | PEMUSW0);
212                 val |= hwc->config;
213                 bfin_write_PFCNTR0(0);
214         }
215
216         bfin_write_PFCTL((bfin_read_PFCTL() & mask) | val);
217 }
218
219 static void bfin_pfmon_disable_all(void)
220 {
221         bfin_write_PFCTL(bfin_read_PFCTL() & ~PFPWR);
222 }
223
224 static void bfin_pfmon_enable_all(void)
225 {
226         bfin_write_PFCTL(bfin_read_PFCTL() | PFPWR);
227 }
228
229 struct cpu_hw_events {
230         struct perf_event *events[MAX_HWEVENTS];
231         unsigned long used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
232 };
233 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
234
235 static int hw_perf_cache_event(int config, int *evp)
236 {
237         unsigned long type, op, result;
238         int ev;
239
240         /* unpack config */
241         type = config & 0xff;
242         op = (config >> 8) & 0xff;
243         result = (config >> 16) & 0xff;
244
245         if (type >= PERF_COUNT_HW_CACHE_MAX ||
246             op >= PERF_COUNT_HW_CACHE_OP_MAX ||
247             result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
248                 return -EINVAL;
249
250         ev = cache_events[type][op][result];
251         if (ev == 0)
252                 return -EOPNOTSUPP;
253         if (ev == -1)
254                 return -EINVAL;
255         *evp = ev;
256         return 0;
257 }
258
259 static void bfin_perf_event_update(struct perf_event *event,
260                                    struct hw_perf_event *hwc, int idx)
261 {
262         u64 prev_raw_count, new_raw_count;
263         s64 delta;
264         int shift = 0;
265
266         /*
267          * Depending on the counter configuration, they may or may not
268          * be chained, in which case the previous counter value can be
269          * updated underneath us if the lower-half overflows.
270          *
271          * Our tactic to handle this is to first atomically read and
272          * exchange a new raw count - then add that new-prev delta
273          * count to the generic counter atomically.
274          *
275          * As there is no interrupt associated with the overflow events,
276          * this is the simplest approach for maintaining consistency.
277          */
278 again:
279         prev_raw_count = local64_read(&hwc->prev_count);
280         new_raw_count = bfin_pfmon_read(idx);
281
282         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
283                              new_raw_count) != prev_raw_count)
284                 goto again;
285
286         /*
287          * Now we have the new raw value and have updated the prev
288          * timestamp already. We can now calculate the elapsed delta
289          * (counter-)time and add that to the generic counter.
290          *
291          * Careful, not all hw sign-extends above the physical width
292          * of the count.
293          */
294         delta = (new_raw_count << shift) - (prev_raw_count << shift);
295         delta >>= shift;
296
297         local64_add(delta, &event->count);
298 }
299
300 static void bfin_pmu_stop(struct perf_event *event, int flags)
301 {
302         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
303         struct hw_perf_event *hwc = &event->hw;
304         int idx = hwc->idx;
305
306         if (!(event->hw.state & PERF_HES_STOPPED)) {
307                 bfin_pfmon_disable(hwc, idx);
308                 cpuc->events[idx] = NULL;
309                 event->hw.state |= PERF_HES_STOPPED;
310         }
311
312         if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
313                 bfin_perf_event_update(event, &event->hw, idx);
314                 event->hw.state |= PERF_HES_UPTODATE;
315         }
316 }
317
318 static void bfin_pmu_start(struct perf_event *event, int flags)
319 {
320         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
321         struct hw_perf_event *hwc = &event->hw;
322         int idx = hwc->idx;
323
324         if (WARN_ON_ONCE(idx == -1))
325                 return;
326
327         if (flags & PERF_EF_RELOAD)
328                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
329
330         cpuc->events[idx] = event;
331         event->hw.state = 0;
332         bfin_pfmon_enable(hwc, idx);
333 }
334
335 static void bfin_pmu_del(struct perf_event *event, int flags)
336 {
337         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
338
339         bfin_pmu_stop(event, PERF_EF_UPDATE);
340         __clear_bit(event->hw.idx, cpuc->used_mask);
341
342         perf_event_update_userpage(event);
343 }
344
345 static int bfin_pmu_add(struct perf_event *event, int flags)
346 {
347         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
348         struct hw_perf_event *hwc = &event->hw;
349         int idx = hwc->idx;
350         int ret = -EAGAIN;
351
352         perf_pmu_disable(event->pmu);
353
354         if (__test_and_set_bit(idx, cpuc->used_mask)) {
355                 idx = find_first_zero_bit(cpuc->used_mask, MAX_HWEVENTS);
356                 if (idx == MAX_HWEVENTS)
357                         goto out;
358
359                 __set_bit(idx, cpuc->used_mask);
360                 hwc->idx = idx;
361         }
362
363         bfin_pfmon_disable(hwc, idx);
364
365         event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
366         if (flags & PERF_EF_START)
367                 bfin_pmu_start(event, PERF_EF_RELOAD);
368
369         perf_event_update_userpage(event);
370         ret = 0;
371 out:
372         perf_pmu_enable(event->pmu);
373         return ret;
374 }
375
376 static void bfin_pmu_read(struct perf_event *event)
377 {
378         bfin_perf_event_update(event, &event->hw, event->hw.idx);
379 }
380
381 static int bfin_pmu_event_init(struct perf_event *event)
382 {
383         struct perf_event_attr *attr = &event->attr;
384         struct hw_perf_event *hwc = &event->hw;
385         int config = -1;
386         int ret;
387
388         if (attr->exclude_hv || attr->exclude_idle)
389                 return -EPERM;
390
391         /*
392          * All of the on-chip counters are "limited", in that they have
393          * no interrupts, and are therefore unable to do sampling without
394          * further work and timer assistance.
395          */
396         if (hwc->sample_period)
397                 return -EINVAL;
398
399         ret = 0;
400         switch (attr->type) {
401         case PERF_TYPE_RAW:
402                 config = PFMON(0, attr->config & PFMON_MASK) |
403                         PFCNT(0, !(attr->config & 0x100));
404                 break;
405         case PERF_TYPE_HW_CACHE:
406                 ret = hw_perf_cache_event(attr->config, &config);
407                 break;
408         case PERF_TYPE_HARDWARE:
409                 if (attr->config >= ARRAY_SIZE(event_map))
410                         return -EINVAL;
411
412                 config = event_map[attr->config];
413                 break;
414         }
415
416         if (config == -1)
417                 return -EINVAL;
418
419         if (!attr->exclude_kernel)
420                 config |= PFCEN(0, PFCEN_ENABLE_SUPV);
421         if (!attr->exclude_user)
422                 config |= PFCEN(0, PFCEN_ENABLE_USER);
423
424         hwc->config |= config;
425
426         return ret;
427 }
428
429 static void bfin_pmu_enable(struct pmu *pmu)
430 {
431         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
432         struct perf_event *event;
433         struct hw_perf_event *hwc;
434         int i;
435
436         for (i = 0; i < MAX_HWEVENTS; ++i) {
437                 event = cpuc->events[i];
438                 if (!event)
439                         continue;
440                 hwc = &event->hw;
441                 bfin_pfmon_enable(hwc, hwc->idx);
442         }
443
444         bfin_pfmon_enable_all();
445 }
446
447 static void bfin_pmu_disable(struct pmu *pmu)
448 {
449         bfin_pfmon_disable_all();
450 }
451
452 static struct pmu pmu = {
453         .pmu_enable  = bfin_pmu_enable,
454         .pmu_disable = bfin_pmu_disable,
455         .event_init  = bfin_pmu_event_init,
456         .add         = bfin_pmu_add,
457         .del         = bfin_pmu_del,
458         .start       = bfin_pmu_start,
459         .stop        = bfin_pmu_stop,
460         .read        = bfin_pmu_read,
461 };
462
463 static void bfin_pmu_setup(int cpu)
464 {
465         struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
466
467         memset(cpuhw, 0, sizeof(struct cpu_hw_events));
468 }
469
470 static int __cpuinit
471 bfin_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
472 {
473         unsigned int cpu = (long)hcpu;
474
475         switch (action & ~CPU_TASKS_FROZEN) {
476         case CPU_UP_PREPARE:
477                 bfin_write_PFCTL(0);
478                 bfin_pmu_setup(cpu);
479                 break;
480
481         default:
482                 break;
483         }
484
485         return NOTIFY_OK;
486 }
487
488 static int __init bfin_pmu_init(void)
489 {
490         int ret;
491
492         ret = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
493         if (!ret)
494                 perf_cpu_notifier(bfin_pmu_notifier);
495
496         return ret;
497 }
498 early_initcall(bfin_pmu_init);