Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs...
[pandora-kernel.git] / arch / avr32 / kernel / setup.c
1 /*
2  * Copyright (C) 2004-2006 Atmel Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8
9 #include <linux/clk.h>
10 #include <linux/init.h>
11 #include <linux/initrd.h>
12 #include <linux/sched.h>
13 #include <linux/console.h>
14 #include <linux/ioport.h>
15 #include <linux/bootmem.h>
16 #include <linux/fs.h>
17 #include <linux/module.h>
18 #include <linux/pfn.h>
19 #include <linux/root_dev.h>
20 #include <linux/cpu.h>
21 #include <linux/kernel.h>
22
23 #include <asm/sections.h>
24 #include <asm/processor.h>
25 #include <asm/pgtable.h>
26 #include <asm/setup.h>
27 #include <asm/sysreg.h>
28
29 #include <mach/board.h>
30 #include <mach/init.h>
31
32 extern int root_mountflags;
33
34 /*
35  * Initialize loops_per_jiffy as 5000000 (500MIPS).
36  * Better make it too large than too small...
37  */
38 struct avr32_cpuinfo boot_cpu_data = {
39         .loops_per_jiffy = 5000000
40 };
41 EXPORT_SYMBOL(boot_cpu_data);
42
43 static char __initdata command_line[COMMAND_LINE_SIZE];
44
45 /*
46  * Standard memory resources
47  */
48 static struct resource __initdata kernel_data = {
49         .name   = "Kernel data",
50         .start  = 0,
51         .end    = 0,
52         .flags  = IORESOURCE_MEM,
53 };
54 static struct resource __initdata kernel_code = {
55         .name   = "Kernel code",
56         .start  = 0,
57         .end    = 0,
58         .flags  = IORESOURCE_MEM,
59         .sibling = &kernel_data,
60 };
61
62 /*
63  * Available system RAM and reserved regions as singly linked
64  * lists. These lists are traversed using the sibling pointer in
65  * struct resource and are kept sorted at all times.
66  */
67 static struct resource *__initdata system_ram;
68 static struct resource *__initdata reserved = &kernel_code;
69
70 /*
71  * We need to allocate these before the bootmem allocator is up and
72  * running, so we need this "cache". 32 entries are probably enough
73  * for all but the most insanely complex systems.
74  */
75 static struct resource __initdata res_cache[32];
76 static unsigned int __initdata res_cache_next_free;
77
78 static void __init resource_init(void)
79 {
80         struct resource *mem, *res;
81         struct resource *new;
82
83         kernel_code.start = __pa(init_mm.start_code);
84
85         for (mem = system_ram; mem; mem = mem->sibling) {
86                 new = alloc_bootmem_low(sizeof(struct resource));
87                 memcpy(new, mem, sizeof(struct resource));
88
89                 new->sibling = NULL;
90                 if (request_resource(&iomem_resource, new))
91                         printk(KERN_WARNING "Bad RAM resource %08x-%08x\n",
92                                mem->start, mem->end);
93         }
94
95         for (res = reserved; res; res = res->sibling) {
96                 new = alloc_bootmem_low(sizeof(struct resource));
97                 memcpy(new, res, sizeof(struct resource));
98
99                 new->sibling = NULL;
100                 if (insert_resource(&iomem_resource, new))
101                         printk(KERN_WARNING
102                                "Bad reserved resource %s (%08x-%08x)\n",
103                                res->name, res->start, res->end);
104         }
105 }
106
107 static void __init
108 add_physical_memory(resource_size_t start, resource_size_t end)
109 {
110         struct resource *new, *next, **pprev;
111
112         for (pprev = &system_ram, next = system_ram; next;
113              pprev = &next->sibling, next = next->sibling) {
114                 if (end < next->start)
115                         break;
116                 if (start <= next->end) {
117                         printk(KERN_WARNING
118                                "Warning: Physical memory map is broken\n");
119                         printk(KERN_WARNING
120                                "Warning: %08x-%08x overlaps %08x-%08x\n",
121                                start, end, next->start, next->end);
122                         return;
123                 }
124         }
125
126         if (res_cache_next_free >= ARRAY_SIZE(res_cache)) {
127                 printk(KERN_WARNING
128                        "Warning: Failed to add physical memory %08x-%08x\n",
129                        start, end);
130                 return;
131         }
132
133         new = &res_cache[res_cache_next_free++];
134         new->start = start;
135         new->end = end;
136         new->name = "System RAM";
137         new->flags = IORESOURCE_MEM;
138
139         *pprev = new;
140 }
141
142 static int __init
143 add_reserved_region(resource_size_t start, resource_size_t end,
144                     const char *name)
145 {
146         struct resource *new, *next, **pprev;
147
148         if (end < start)
149                 return -EINVAL;
150
151         if (res_cache_next_free >= ARRAY_SIZE(res_cache))
152                 return -ENOMEM;
153
154         for (pprev = &reserved, next = reserved; next;
155              pprev = &next->sibling, next = next->sibling) {
156                 if (end < next->start)
157                         break;
158                 if (start <= next->end)
159                         return -EBUSY;
160         }
161
162         new = &res_cache[res_cache_next_free++];
163         new->start = start;
164         new->end = end;
165         new->name = name;
166         new->sibling = next;
167         new->flags = IORESOURCE_MEM;
168
169         *pprev = new;
170
171         return 0;
172 }
173
174 static unsigned long __init
175 find_free_region(const struct resource *mem, resource_size_t size,
176                  resource_size_t align)
177 {
178         struct resource *res;
179         unsigned long target;
180
181         target = ALIGN(mem->start, align);
182         for (res = reserved; res; res = res->sibling) {
183                 if ((target + size) <= res->start)
184                         break;
185                 if (target <= res->end)
186                         target = ALIGN(res->end + 1, align);
187         }
188
189         if ((target + size) > (mem->end + 1))
190                 return mem->end + 1;
191
192         return target;
193 }
194
195 static int __init
196 alloc_reserved_region(resource_size_t *start, resource_size_t size,
197                       resource_size_t align, const char *name)
198 {
199         struct resource *mem;
200         resource_size_t target;
201         int ret;
202
203         for (mem = system_ram; mem; mem = mem->sibling) {
204                 target = find_free_region(mem, size, align);
205                 if (target <= mem->end) {
206                         ret = add_reserved_region(target, target + size - 1,
207                                                   name);
208                         if (!ret)
209                                 *start = target;
210                         return ret;
211                 }
212         }
213
214         return -ENOMEM;
215 }
216
217 /*
218  * Early framebuffer allocation. Works as follows:
219  *   - If fbmem_size is zero, nothing will be allocated or reserved.
220  *   - If fbmem_start is zero when setup_bootmem() is called,
221  *     a block of fbmem_size bytes will be reserved before bootmem
222  *     initialization. It will be aligned to the largest page size
223  *     that fbmem_size is a multiple of.
224  *   - If fbmem_start is nonzero, an area of size fbmem_size will be
225  *     reserved at the physical address fbmem_start if possible. If
226  *     it collides with other reserved memory, a different block of
227  *     same size will be allocated, just as if fbmem_start was zero.
228  *
229  * Board-specific code may use these variables to set up platform data
230  * for the framebuffer driver if fbmem_size is nonzero.
231  */
232 resource_size_t __initdata fbmem_start;
233 resource_size_t __initdata fbmem_size;
234
235 /*
236  * "fbmem=xxx[kKmM]" allocates the specified amount of boot memory for
237  * use as framebuffer.
238  *
239  * "fbmem=xxx[kKmM]@yyy[kKmM]" defines a memory region of size xxx and
240  * starting at yyy to be reserved for use as framebuffer.
241  *
242  * The kernel won't verify that the memory region starting at yyy
243  * actually contains usable RAM.
244  */
245 static int __init early_parse_fbmem(char *p)
246 {
247         int ret;
248         unsigned long align;
249
250         fbmem_size = memparse(p, &p);
251         if (*p == '@') {
252                 fbmem_start = memparse(p + 1, &p);
253                 ret = add_reserved_region(fbmem_start,
254                                           fbmem_start + fbmem_size - 1,
255                                           "Framebuffer");
256                 if (ret) {
257                         printk(KERN_WARNING
258                                "Failed to reserve framebuffer memory\n");
259                         fbmem_start = 0;
260                 }
261         }
262
263         if (!fbmem_start) {
264                 if ((fbmem_size & 0x000fffffUL) == 0)
265                         align = 0x100000;       /* 1 MiB */
266                 else if ((fbmem_size & 0x0000ffffUL) == 0)
267                         align = 0x10000;        /* 64 KiB */
268                 else
269                         align = 0x1000;         /* 4 KiB */
270
271                 ret = alloc_reserved_region(&fbmem_start, fbmem_size,
272                                             align, "Framebuffer");
273                 if (ret) {
274                         printk(KERN_WARNING
275                                "Failed to allocate framebuffer memory\n");
276                         fbmem_size = 0;
277                 } else {
278                         memset(__va(fbmem_start), 0, fbmem_size);
279                 }
280         }
281
282         return 0;
283 }
284 early_param("fbmem", early_parse_fbmem);
285
286 /*
287  * Pick out the memory size.  We look for mem=size@start,
288  * where start and size are "size[KkMmGg]"
289  */
290 static int __init early_mem(char *p)
291 {
292         resource_size_t size, start;
293
294         start = system_ram->start;
295         size  = memparse(p, &p);
296         if (*p == '@')
297                 start = memparse(p + 1, &p);
298
299         system_ram->start = start;
300         system_ram->end = system_ram->start + size - 1;
301         return 0;
302 }
303 early_param("mem", early_mem);
304
305 static int __init parse_tag_core(struct tag *tag)
306 {
307         if (tag->hdr.size > 2) {
308                 if ((tag->u.core.flags & 1) == 0)
309                         root_mountflags &= ~MS_RDONLY;
310                 ROOT_DEV = new_decode_dev(tag->u.core.rootdev);
311         }
312         return 0;
313 }
314 __tagtable(ATAG_CORE, parse_tag_core);
315
316 static int __init parse_tag_mem(struct tag *tag)
317 {
318         unsigned long start, end;
319
320         /*
321          * Ignore zero-sized entries. If we're running standalone, the
322          * SDRAM code may emit such entries if something goes
323          * wrong...
324          */
325         if (tag->u.mem_range.size == 0)
326                 return 0;
327
328         start = tag->u.mem_range.addr;
329         end = tag->u.mem_range.addr + tag->u.mem_range.size - 1;
330
331         add_physical_memory(start, end);
332         return 0;
333 }
334 __tagtable(ATAG_MEM, parse_tag_mem);
335
336 static int __init parse_tag_rdimg(struct tag *tag)
337 {
338 #ifdef CONFIG_BLK_DEV_INITRD
339         struct tag_mem_range *mem = &tag->u.mem_range;
340         int ret;
341
342         if (initrd_start) {
343                 printk(KERN_WARNING
344                        "Warning: Only the first initrd image will be used\n");
345                 return 0;
346         }
347
348         ret = add_reserved_region(mem->addr, mem->addr + mem->size - 1,
349                                   "initrd");
350         if (ret) {
351                 printk(KERN_WARNING
352                        "Warning: Failed to reserve initrd memory\n");
353                 return ret;
354         }
355
356         initrd_start = (unsigned long)__va(mem->addr);
357         initrd_end = initrd_start + mem->size;
358 #else
359         printk(KERN_WARNING "RAM disk image present, but "
360                "no initrd support in kernel, ignoring\n");
361 #endif
362
363         return 0;
364 }
365 __tagtable(ATAG_RDIMG, parse_tag_rdimg);
366
367 static int __init parse_tag_rsvd_mem(struct tag *tag)
368 {
369         struct tag_mem_range *mem = &tag->u.mem_range;
370
371         return add_reserved_region(mem->addr, mem->addr + mem->size - 1,
372                                    "Reserved");
373 }
374 __tagtable(ATAG_RSVD_MEM, parse_tag_rsvd_mem);
375
376 static int __init parse_tag_cmdline(struct tag *tag)
377 {
378         strlcpy(boot_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE);
379         return 0;
380 }
381 __tagtable(ATAG_CMDLINE, parse_tag_cmdline);
382
383 static int __init parse_tag_clock(struct tag *tag)
384 {
385         /*
386          * We'll figure out the clocks by peeking at the system
387          * manager regs directly.
388          */
389         return 0;
390 }
391 __tagtable(ATAG_CLOCK, parse_tag_clock);
392
393 /*
394  * The board_number correspond to the bd->bi_board_number in U-Boot. This
395  * parameter is only available during initialisation and can be used in some
396  * kind of board identification.
397  */
398 u32 __initdata board_number;
399
400 static int __init parse_tag_boardinfo(struct tag *tag)
401 {
402         board_number = tag->u.boardinfo.board_number;
403
404         return 0;
405 }
406 __tagtable(ATAG_BOARDINFO, parse_tag_boardinfo);
407
408 /*
409  * Scan the tag table for this tag, and call its parse function. The
410  * tag table is built by the linker from all the __tagtable
411  * declarations.
412  */
413 static int __init parse_tag(struct tag *tag)
414 {
415         extern struct tagtable __tagtable_begin, __tagtable_end;
416         struct tagtable *t;
417
418         for (t = &__tagtable_begin; t < &__tagtable_end; t++)
419                 if (tag->hdr.tag == t->tag) {
420                         t->parse(tag);
421                         break;
422                 }
423
424         return t < &__tagtable_end;
425 }
426
427 /*
428  * Parse all tags in the list we got from the boot loader
429  */
430 static void __init parse_tags(struct tag *t)
431 {
432         for (; t->hdr.tag != ATAG_NONE; t = tag_next(t))
433                 if (!parse_tag(t))
434                         printk(KERN_WARNING
435                                "Ignoring unrecognised tag 0x%08x\n",
436                                t->hdr.tag);
437 }
438
439 /*
440  * Find a free memory region large enough for storing the
441  * bootmem bitmap.
442  */
443 static unsigned long __init
444 find_bootmap_pfn(const struct resource *mem)
445 {
446         unsigned long bootmap_pages, bootmap_len;
447         unsigned long node_pages = PFN_UP(resource_size(mem));
448         unsigned long bootmap_start;
449
450         bootmap_pages = bootmem_bootmap_pages(node_pages);
451         bootmap_len = bootmap_pages << PAGE_SHIFT;
452
453         /*
454          * Find a large enough region without reserved pages for
455          * storing the bootmem bitmap. We can take advantage of the
456          * fact that all lists have been sorted.
457          *
458          * We have to check that we don't collide with any reserved
459          * regions, which includes the kernel image and any RAMDISK
460          * images.
461          */
462         bootmap_start = find_free_region(mem, bootmap_len, PAGE_SIZE);
463
464         return bootmap_start >> PAGE_SHIFT;
465 }
466
467 #define MAX_LOWMEM      HIGHMEM_START
468 #define MAX_LOWMEM_PFN  PFN_DOWN(MAX_LOWMEM)
469
470 static void __init setup_bootmem(void)
471 {
472         unsigned bootmap_size;
473         unsigned long first_pfn, bootmap_pfn, pages;
474         unsigned long max_pfn, max_low_pfn;
475         unsigned node = 0;
476         struct resource *res;
477
478         printk(KERN_INFO "Physical memory:\n");
479         for (res = system_ram; res; res = res->sibling)
480                 printk("  %08x-%08x\n", res->start, res->end);
481         printk(KERN_INFO "Reserved memory:\n");
482         for (res = reserved; res; res = res->sibling)
483                 printk("  %08x-%08x: %s\n",
484                        res->start, res->end, res->name);
485
486         nodes_clear(node_online_map);
487
488         if (system_ram->sibling)
489                 printk(KERN_WARNING "Only using first memory bank\n");
490
491         for (res = system_ram; res; res = NULL) {
492                 first_pfn = PFN_UP(res->start);
493                 max_low_pfn = max_pfn = PFN_DOWN(res->end + 1);
494                 bootmap_pfn = find_bootmap_pfn(res);
495                 if (bootmap_pfn > max_pfn)
496                         panic("No space for bootmem bitmap!\n");
497
498                 if (max_low_pfn > MAX_LOWMEM_PFN) {
499                         max_low_pfn = MAX_LOWMEM_PFN;
500 #ifndef CONFIG_HIGHMEM
501                         /*
502                          * Lowmem is memory that can be addressed
503                          * directly through P1/P2
504                          */
505                         printk(KERN_WARNING
506                                "Node %u: Only %ld MiB of memory will be used.\n",
507                                node, MAX_LOWMEM >> 20);
508                         printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n");
509 #else
510 #error HIGHMEM is not supported by AVR32 yet
511 #endif
512                 }
513
514                 /* Initialize the boot-time allocator with low memory only. */
515                 bootmap_size = init_bootmem_node(NODE_DATA(node), bootmap_pfn,
516                                                  first_pfn, max_low_pfn);
517
518                 /*
519                  * Register fully available RAM pages with the bootmem
520                  * allocator.
521                  */
522                 pages = max_low_pfn - first_pfn;
523                 free_bootmem_node (NODE_DATA(node), PFN_PHYS(first_pfn),
524                                    PFN_PHYS(pages));
525
526                 /* Reserve space for the bootmem bitmap... */
527                 reserve_bootmem_node(NODE_DATA(node),
528                                      PFN_PHYS(bootmap_pfn),
529                                      bootmap_size,
530                                      BOOTMEM_DEFAULT);
531
532                 /* ...and any other reserved regions. */
533                 for (res = reserved; res; res = res->sibling) {
534                         if (res->start > PFN_PHYS(max_pfn))
535                                 break;
536
537                         /*
538                          * resource_init will complain about partial
539                          * overlaps, so we'll just ignore such
540                          * resources for now.
541                          */
542                         if (res->start >= PFN_PHYS(first_pfn)
543                             && res->end < PFN_PHYS(max_pfn))
544                                 reserve_bootmem_node(NODE_DATA(node),
545                                                      res->start,
546                                                      resource_size(res),
547                                                      BOOTMEM_DEFAULT);
548                 }
549
550                 node_set_online(node);
551         }
552 }
553
554 void __init setup_arch (char **cmdline_p)
555 {
556         struct clk *cpu_clk;
557
558         init_mm.start_code = (unsigned long)_text;
559         init_mm.end_code = (unsigned long)_etext;
560         init_mm.end_data = (unsigned long)_edata;
561         init_mm.brk = (unsigned long)_end;
562
563         /*
564          * Include .init section to make allocations easier. It will
565          * be removed before the resource is actually requested.
566          */
567         kernel_code.start = __pa(__init_begin);
568         kernel_code.end = __pa(init_mm.end_code - 1);
569         kernel_data.start = __pa(init_mm.end_code);
570         kernel_data.end = __pa(init_mm.brk - 1);
571
572         parse_tags(bootloader_tags);
573
574         setup_processor();
575         setup_platform();
576         setup_board();
577
578         cpu_clk = clk_get(NULL, "cpu");
579         if (IS_ERR(cpu_clk)) {
580                 printk(KERN_WARNING "Warning: Unable to get CPU clock\n");
581         } else {
582                 unsigned long cpu_hz = clk_get_rate(cpu_clk);
583
584                 /*
585                  * Well, duh, but it's probably a good idea to
586                  * increment the use count.
587                  */
588                 clk_enable(cpu_clk);
589
590                 boot_cpu_data.clk = cpu_clk;
591                 boot_cpu_data.loops_per_jiffy = cpu_hz * 4;
592                 printk("CPU: Running at %lu.%03lu MHz\n",
593                        ((cpu_hz + 500) / 1000) / 1000,
594                        ((cpu_hz + 500) / 1000) % 1000);
595         }
596
597         strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
598         *cmdline_p = command_line;
599         parse_early_param();
600
601         setup_bootmem();
602
603 #ifdef CONFIG_VT
604         conswitchp = &dummy_con;
605 #endif
606
607         paging_init();
608         resource_init();
609 }