Merge tag 'mfd-for-linus-3.20' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[pandora-kernel.git] / arch / arm / probes / kprobes / test-core.c
1 /*
2  * arch/arm/kernel/kprobes-test.c
3  *
4  * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 /*
12  * This file contains test code for ARM kprobes.
13  *
14  * The top level function run_all_tests() executes tests for all of the
15  * supported instruction sets: ARM, 16-bit Thumb, and 32-bit Thumb. These tests
16  * fall into two categories; run_api_tests() checks basic functionality of the
17  * kprobes API, and run_test_cases() is a comprehensive test for kprobes
18  * instruction decoding and simulation.
19  *
20  * run_test_cases() first checks the kprobes decoding table for self consistency
21  * (using table_test()) then executes a series of test cases for each of the CPU
22  * instruction forms. coverage_start() and coverage_end() are used to verify
23  * that these test cases cover all of the possible combinations of instructions
24  * described by the kprobes decoding tables.
25  *
26  * The individual test cases are in kprobes-test-arm.c and kprobes-test-thumb.c
27  * which use the macros defined in kprobes-test.h. The rest of this
28  * documentation will describe the operation of the framework used by these
29  * test cases.
30  */
31
32 /*
33  * TESTING METHODOLOGY
34  * -------------------
35  *
36  * The methodology used to test an ARM instruction 'test_insn' is to use
37  * inline assembler like:
38  *
39  * test_before: nop
40  * test_case:   test_insn
41  * test_after:  nop
42  *
43  * When the test case is run a kprobe is placed of each nop. The
44  * post-handler of the test_before probe is used to modify the saved CPU
45  * register context to that which we require for the test case. The
46  * pre-handler of the of the test_after probe saves a copy of the CPU
47  * register context. In this way we can execute test_insn with a specific
48  * register context and see the results afterwards.
49  *
50  * To actually test the kprobes instruction emulation we perform the above
51  * step a second time but with an additional kprobe on the test_case
52  * instruction itself. If the emulation is accurate then the results seen
53  * by the test_after probe will be identical to the first run which didn't
54  * have a probe on test_case.
55  *
56  * Each test case is run several times with a variety of variations in the
57  * flags value of stored in CPSR, and for Thumb code, different ITState.
58  *
59  * For instructions which can modify PC, a second test_after probe is used
60  * like this:
61  *
62  * test_before: nop
63  * test_case:   test_insn
64  * test_after:  nop
65  *              b test_done
66  * test_after2: nop
67  * test_done:
68  *
69  * The test case is constructed such that test_insn branches to
70  * test_after2, or, if testing a conditional instruction, it may just
71  * continue to test_after. The probes inserted at both locations let us
72  * determine which happened. A similar approach is used for testing
73  * backwards branches...
74  *
75  *              b test_before
76  *              b test_done  @ helps to cope with off by 1 branches
77  * test_after2: nop
78  *              b test_done
79  * test_before: nop
80  * test_case:   test_insn
81  * test_after:  nop
82  * test_done:
83  *
84  * The macros used to generate the assembler instructions describe above
85  * are TEST_INSTRUCTION, TEST_BRANCH_F (branch forwards) and TEST_BRANCH_B
86  * (branch backwards). In these, the local variables numbered 1, 50, 2 and
87  * 99 represent: test_before, test_case, test_after2 and test_done.
88  *
89  * FRAMEWORK
90  * ---------
91  *
92  * Each test case is wrapped between the pair of macros TESTCASE_START and
93  * TESTCASE_END. As well as performing the inline assembler boilerplate,
94  * these call out to the kprobes_test_case_start() and
95  * kprobes_test_case_end() functions which drive the execution of the test
96  * case. The specific arguments to use for each test case are stored as
97  * inline data constructed using the various TEST_ARG_* macros. Putting
98  * this all together, a simple test case may look like:
99  *
100  *      TESTCASE_START("Testing mov r0, r7")
101  *      TEST_ARG_REG(7, 0x12345678) // Set r7=0x12345678
102  *      TEST_ARG_END("")
103  *      TEST_INSTRUCTION("mov r0, r7")
104  *      TESTCASE_END
105  *
106  * Note, in practice the single convenience macro TEST_R would be used for this
107  * instead.
108  *
109  * The above would expand to assembler looking something like:
110  *
111  *      @ TESTCASE_START
112  *      bl      __kprobes_test_case_start
113  *      .pushsection .rodata
114  *      "10:
115  *      .ascii "mov r0, r7"     @ text title for test case
116  *      .byte   0
117  *      .popsection
118  *      @ start of inline data...
119  *      .word   10b             @ pointer to title in .rodata section
120  *
121  *      @ TEST_ARG_REG
122  *      .byte   ARG_TYPE_REG
123  *      .byte   7
124  *      .short  0
125  *      .word   0x1234567
126  *
127  *      @ TEST_ARG_END
128  *      .byte   ARG_TYPE_END
129  *      .byte   TEST_ISA        @ flags, including ISA being tested
130  *      .short  50f-0f          @ offset of 'test_before'
131  *      .short  2f-0f           @ offset of 'test_after2' (if relevent)
132  *      .short  99f-0f          @ offset of 'test_done'
133  *      @ start of test case code...
134  *      0:
135  *      .code   TEST_ISA        @ switch to ISA being tested
136  *
137  *      @ TEST_INSTRUCTION
138  *      50:     nop             @ location for 'test_before' probe
139  *      1:      mov r0, r7      @ the test case instruction 'test_insn'
140  *              nop             @ location for 'test_after' probe
141  *
142  *      // TESTCASE_END
143  *      2:
144  *      99:     bl __kprobes_test_case_end_##TEST_ISA
145  *      .code   NONMAL_ISA
146  *
147  * When the above is execute the following happens...
148  *
149  * __kprobes_test_case_start() is an assembler wrapper which sets up space
150  * for a stack buffer and calls the C function kprobes_test_case_start().
151  * This C function will do some initial processing of the inline data and
152  * setup some global state. It then inserts the test_before and test_after
153  * kprobes and returns a value which causes the assembler wrapper to jump
154  * to the start of the test case code, (local label '0').
155  *
156  * When the test case code executes, the test_before probe will be hit and
157  * test_before_post_handler will call setup_test_context(). This fills the
158  * stack buffer and CPU registers with a test pattern and then processes
159  * the test case arguments. In our example there is one TEST_ARG_REG which
160  * indicates that R7 should be loaded with the value 0x12345678.
161  *
162  * When the test_before probe ends, the test case continues and executes
163  * the "mov r0, r7" instruction. It then hits the test_after probe and the
164  * pre-handler for this (test_after_pre_handler) will save a copy of the
165  * CPU register context. This should now have R0 holding the same value as
166  * R7.
167  *
168  * Finally we get to the call to __kprobes_test_case_end_{32,16}. This is
169  * an assembler wrapper which switches back to the ISA used by the test
170  * code and calls the C function kprobes_test_case_end().
171  *
172  * For each run through the test case, test_case_run_count is incremented
173  * by one. For even runs, kprobes_test_case_end() saves a copy of the
174  * register and stack buffer contents from the test case just run. It then
175  * inserts a kprobe on the test case instruction 'test_insn' and returns a
176  * value to cause the test case code to be re-run.
177  *
178  * For odd numbered runs, kprobes_test_case_end() compares the register and
179  * stack buffer contents to those that were saved on the previous even
180  * numbered run (the one without the kprobe on test_insn). These should be
181  * the same if the kprobe instruction simulation routine is correct.
182  *
183  * The pair of test case runs is repeated with different combinations of
184  * flag values in CPSR and, for Thumb, different ITState. This is
185  * controlled by test_context_cpsr().
186  *
187  * BUILDING TEST CASES
188  * -------------------
189  *
190  *
191  * As an aid to building test cases, the stack buffer is initialised with
192  * some special values:
193  *
194  *   [SP+13*4]  Contains SP+120. This can be used to test instructions
195  *              which load a value into SP.
196  *
197  *   [SP+15*4]  When testing branching instructions using TEST_BRANCH_{F,B},
198  *              this holds the target address of the branch, 'test_after2'.
199  *              This can be used to test instructions which load a PC value
200  *              from memory.
201  */
202
203 #include <linux/kernel.h>
204 #include <linux/module.h>
205 #include <linux/slab.h>
206 #include <linux/kprobes.h>
207 #include <linux/errno.h>
208 #include <linux/stddef.h>
209 #include <linux/bug.h>
210 #include <asm/opcodes.h>
211
212 #include "core.h"
213 #include "test-core.h"
214 #include "../decode-arm.h"
215 #include "../decode-thumb.h"
216
217
218 #define BENCHMARKING    1
219
220
221 /*
222  * Test basic API
223  */
224
225 static bool test_regs_ok;
226 static int test_func_instance;
227 static int pre_handler_called;
228 static int post_handler_called;
229 static int jprobe_func_called;
230 static int kretprobe_handler_called;
231 static int tests_failed;
232
233 #define FUNC_ARG1 0x12345678
234 #define FUNC_ARG2 0xabcdef
235
236
237 #ifndef CONFIG_THUMB2_KERNEL
238
239 #define RET(reg)        "mov    pc, "#reg
240
241 long arm_func(long r0, long r1);
242
243 static void __used __naked __arm_kprobes_test_func(void)
244 {
245         __asm__ __volatile__ (
246                 ".arm                                   \n\t"
247                 ".type arm_func, %%function             \n\t"
248                 "arm_func:                              \n\t"
249                 "adds   r0, r0, r1                      \n\t"
250                 "mov    pc, lr                          \n\t"
251                 ".code "NORMAL_ISA       /* Back to Thumb if necessary */
252                 : : : "r0", "r1", "cc"
253         );
254 }
255
256 #else /* CONFIG_THUMB2_KERNEL */
257
258 #define RET(reg)        "bx     "#reg
259
260 long thumb16_func(long r0, long r1);
261 long thumb32even_func(long r0, long r1);
262 long thumb32odd_func(long r0, long r1);
263
264 static void __used __naked __thumb_kprobes_test_funcs(void)
265 {
266         __asm__ __volatile__ (
267                 ".type thumb16_func, %%function         \n\t"
268                 "thumb16_func:                          \n\t"
269                 "adds.n r0, r0, r1                      \n\t"
270                 "bx     lr                              \n\t"
271
272                 ".align                                 \n\t"
273                 ".type thumb32even_func, %%function     \n\t"
274                 "thumb32even_func:                      \n\t"
275                 "adds.w r0, r0, r1                      \n\t"
276                 "bx     lr                              \n\t"
277
278                 ".align                                 \n\t"
279                 "nop.n                                  \n\t"
280                 ".type thumb32odd_func, %%function      \n\t"
281                 "thumb32odd_func:                       \n\t"
282                 "adds.w r0, r0, r1                      \n\t"
283                 "bx     lr                              \n\t"
284
285                 : : : "r0", "r1", "cc"
286         );
287 }
288
289 #endif /* CONFIG_THUMB2_KERNEL */
290
291
292 static int call_test_func(long (*func)(long, long), bool check_test_regs)
293 {
294         long ret;
295
296         ++test_func_instance;
297         test_regs_ok = false;
298
299         ret = (*func)(FUNC_ARG1, FUNC_ARG2);
300         if (ret != FUNC_ARG1 + FUNC_ARG2) {
301                 pr_err("FAIL: call_test_func: func returned %lx\n", ret);
302                 return false;
303         }
304
305         if (check_test_regs && !test_regs_ok) {
306                 pr_err("FAIL: test regs not OK\n");
307                 return false;
308         }
309
310         return true;
311 }
312
313 static int __kprobes pre_handler(struct kprobe *p, struct pt_regs *regs)
314 {
315         pre_handler_called = test_func_instance;
316         if (regs->ARM_r0 == FUNC_ARG1 && regs->ARM_r1 == FUNC_ARG2)
317                 test_regs_ok = true;
318         return 0;
319 }
320
321 static void __kprobes post_handler(struct kprobe *p, struct pt_regs *regs,
322                                 unsigned long flags)
323 {
324         post_handler_called = test_func_instance;
325         if (regs->ARM_r0 != FUNC_ARG1 + FUNC_ARG2 || regs->ARM_r1 != FUNC_ARG2)
326                 test_regs_ok = false;
327 }
328
329 static struct kprobe the_kprobe = {
330         .addr           = 0,
331         .pre_handler    = pre_handler,
332         .post_handler   = post_handler
333 };
334
335 static int test_kprobe(long (*func)(long, long))
336 {
337         int ret;
338
339         the_kprobe.addr = (kprobe_opcode_t *)func;
340         ret = register_kprobe(&the_kprobe);
341         if (ret < 0) {
342                 pr_err("FAIL: register_kprobe failed with %d\n", ret);
343                 return ret;
344         }
345
346         ret = call_test_func(func, true);
347
348         unregister_kprobe(&the_kprobe);
349         the_kprobe.flags = 0; /* Clear disable flag to allow reuse */
350
351         if (!ret)
352                 return -EINVAL;
353         if (pre_handler_called != test_func_instance) {
354                 pr_err("FAIL: kprobe pre_handler not called\n");
355                 return -EINVAL;
356         }
357         if (post_handler_called != test_func_instance) {
358                 pr_err("FAIL: kprobe post_handler not called\n");
359                 return -EINVAL;
360         }
361         if (!call_test_func(func, false))
362                 return -EINVAL;
363         if (pre_handler_called == test_func_instance ||
364                                 post_handler_called == test_func_instance) {
365                 pr_err("FAIL: probe called after unregistering\n");
366                 return -EINVAL;
367         }
368
369         return 0;
370 }
371
372 static void __kprobes jprobe_func(long r0, long r1)
373 {
374         jprobe_func_called = test_func_instance;
375         if (r0 == FUNC_ARG1 && r1 == FUNC_ARG2)
376                 test_regs_ok = true;
377         jprobe_return();
378 }
379
380 static struct jprobe the_jprobe = {
381         .entry          = jprobe_func,
382 };
383
384 static int test_jprobe(long (*func)(long, long))
385 {
386         int ret;
387
388         the_jprobe.kp.addr = (kprobe_opcode_t *)func;
389         ret = register_jprobe(&the_jprobe);
390         if (ret < 0) {
391                 pr_err("FAIL: register_jprobe failed with %d\n", ret);
392                 return ret;
393         }
394
395         ret = call_test_func(func, true);
396
397         unregister_jprobe(&the_jprobe);
398         the_jprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
399
400         if (!ret)
401                 return -EINVAL;
402         if (jprobe_func_called != test_func_instance) {
403                 pr_err("FAIL: jprobe handler function not called\n");
404                 return -EINVAL;
405         }
406         if (!call_test_func(func, false))
407                 return -EINVAL;
408         if (jprobe_func_called == test_func_instance) {
409                 pr_err("FAIL: probe called after unregistering\n");
410                 return -EINVAL;
411         }
412
413         return 0;
414 }
415
416 static int __kprobes
417 kretprobe_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
418 {
419         kretprobe_handler_called = test_func_instance;
420         if (regs_return_value(regs) == FUNC_ARG1 + FUNC_ARG2)
421                 test_regs_ok = true;
422         return 0;
423 }
424
425 static struct kretprobe the_kretprobe = {
426         .handler        = kretprobe_handler,
427 };
428
429 static int test_kretprobe(long (*func)(long, long))
430 {
431         int ret;
432
433         the_kretprobe.kp.addr = (kprobe_opcode_t *)func;
434         ret = register_kretprobe(&the_kretprobe);
435         if (ret < 0) {
436                 pr_err("FAIL: register_kretprobe failed with %d\n", ret);
437                 return ret;
438         }
439
440         ret = call_test_func(func, true);
441
442         unregister_kretprobe(&the_kretprobe);
443         the_kretprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
444
445         if (!ret)
446                 return -EINVAL;
447         if (kretprobe_handler_called != test_func_instance) {
448                 pr_err("FAIL: kretprobe handler not called\n");
449                 return -EINVAL;
450         }
451         if (!call_test_func(func, false))
452                 return -EINVAL;
453         if (jprobe_func_called == test_func_instance) {
454                 pr_err("FAIL: kretprobe called after unregistering\n");
455                 return -EINVAL;
456         }
457
458         return 0;
459 }
460
461 static int run_api_tests(long (*func)(long, long))
462 {
463         int ret;
464
465         pr_info("    kprobe\n");
466         ret = test_kprobe(func);
467         if (ret < 0)
468                 return ret;
469
470         pr_info("    jprobe\n");
471         ret = test_jprobe(func);
472 #if defined(CONFIG_THUMB2_KERNEL) && !defined(MODULE)
473         if (ret == -EINVAL) {
474                 pr_err("FAIL: Known longtime bug with jprobe on Thumb kernels\n");
475                 tests_failed = ret;
476                 ret = 0;
477         }
478 #endif
479         if (ret < 0)
480                 return ret;
481
482         pr_info("    kretprobe\n");
483         ret = test_kretprobe(func);
484         if (ret < 0)
485                 return ret;
486
487         return 0;
488 }
489
490
491 /*
492  * Benchmarking
493  */
494
495 #if BENCHMARKING
496
497 static void __naked benchmark_nop(void)
498 {
499         __asm__ __volatile__ (
500                 "nop            \n\t"
501                 RET(lr)"        \n\t"
502         );
503 }
504
505 #ifdef CONFIG_THUMB2_KERNEL
506 #define wide ".w"
507 #else
508 #define wide
509 #endif
510
511 static void __naked benchmark_pushpop1(void)
512 {
513         __asm__ __volatile__ (
514                 "stmdb"wide"    sp!, {r3-r11,lr}  \n\t"
515                 "ldmia"wide"    sp!, {r3-r11,pc}"
516         );
517 }
518
519 static void __naked benchmark_pushpop2(void)
520 {
521         __asm__ __volatile__ (
522                 "stmdb"wide"    sp!, {r0-r8,lr}  \n\t"
523                 "ldmia"wide"    sp!, {r0-r8,pc}"
524         );
525 }
526
527 static void __naked benchmark_pushpop3(void)
528 {
529         __asm__ __volatile__ (
530                 "stmdb"wide"    sp!, {r4,lr}  \n\t"
531                 "ldmia"wide"    sp!, {r4,pc}"
532         );
533 }
534
535 static void __naked benchmark_pushpop4(void)
536 {
537         __asm__ __volatile__ (
538                 "stmdb"wide"    sp!, {r0,lr}  \n\t"
539                 "ldmia"wide"    sp!, {r0,pc}"
540         );
541 }
542
543
544 #ifdef CONFIG_THUMB2_KERNEL
545
546 static void __naked benchmark_pushpop_thumb(void)
547 {
548         __asm__ __volatile__ (
549                 "push.n {r0-r7,lr}  \n\t"
550                 "pop.n  {r0-r7,pc}"
551         );
552 }
553
554 #endif
555
556 static int __kprobes
557 benchmark_pre_handler(struct kprobe *p, struct pt_regs *regs)
558 {
559         return 0;
560 }
561
562 static int benchmark(void(*fn)(void))
563 {
564         unsigned n, i, t, t0;
565
566         for (n = 1000; ; n *= 2) {
567                 t0 = sched_clock();
568                 for (i = n; i > 0; --i)
569                         fn();
570                 t = sched_clock() - t0;
571                 if (t >= 250000000)
572                         break; /* Stop once we took more than 0.25 seconds */
573         }
574         return t / n; /* Time for one iteration in nanoseconds */
575 };
576
577 static int kprobe_benchmark(void(*fn)(void), unsigned offset)
578 {
579         struct kprobe k = {
580                 .addr           = (kprobe_opcode_t *)((uintptr_t)fn + offset),
581                 .pre_handler    = benchmark_pre_handler,
582         };
583
584         int ret = register_kprobe(&k);
585         if (ret < 0) {
586                 pr_err("FAIL: register_kprobe failed with %d\n", ret);
587                 return ret;
588         }
589
590         ret = benchmark(fn);
591
592         unregister_kprobe(&k);
593         return ret;
594 };
595
596 struct benchmarks {
597         void            (*fn)(void);
598         unsigned        offset;
599         const char      *title;
600 };
601
602 static int run_benchmarks(void)
603 {
604         int ret;
605         struct benchmarks list[] = {
606                 {&benchmark_nop, 0, "nop"},
607                 /*
608                  * benchmark_pushpop{1,3} will have the optimised
609                  * instruction emulation, whilst benchmark_pushpop{2,4} will
610                  * be the equivalent unoptimised instructions.
611                  */
612                 {&benchmark_pushpop1, 0, "stmdb sp!, {r3-r11,lr}"},
613                 {&benchmark_pushpop1, 4, "ldmia sp!, {r3-r11,pc}"},
614                 {&benchmark_pushpop2, 0, "stmdb sp!, {r0-r8,lr}"},
615                 {&benchmark_pushpop2, 4, "ldmia sp!, {r0-r8,pc}"},
616                 {&benchmark_pushpop3, 0, "stmdb sp!, {r4,lr}"},
617                 {&benchmark_pushpop3, 4, "ldmia sp!, {r4,pc}"},
618                 {&benchmark_pushpop4, 0, "stmdb sp!, {r0,lr}"},
619                 {&benchmark_pushpop4, 4, "ldmia sp!, {r0,pc}"},
620 #ifdef CONFIG_THUMB2_KERNEL
621                 {&benchmark_pushpop_thumb, 0, "push.n   {r0-r7,lr}"},
622                 {&benchmark_pushpop_thumb, 2, "pop.n    {r0-r7,pc}"},
623 #endif
624                 {0}
625         };
626
627         struct benchmarks *b;
628         for (b = list; b->fn; ++b) {
629                 ret = kprobe_benchmark(b->fn, b->offset);
630                 if (ret < 0)
631                         return ret;
632                 pr_info("    %dns for kprobe %s\n", ret, b->title);
633         }
634
635         pr_info("\n");
636         return 0;
637 }
638
639 #endif /* BENCHMARKING */
640
641
642 /*
643  * Decoding table self-consistency tests
644  */
645
646 static const int decode_struct_sizes[NUM_DECODE_TYPES] = {
647         [DECODE_TYPE_TABLE]     = sizeof(struct decode_table),
648         [DECODE_TYPE_CUSTOM]    = sizeof(struct decode_custom),
649         [DECODE_TYPE_SIMULATE]  = sizeof(struct decode_simulate),
650         [DECODE_TYPE_EMULATE]   = sizeof(struct decode_emulate),
651         [DECODE_TYPE_OR]        = sizeof(struct decode_or),
652         [DECODE_TYPE_REJECT]    = sizeof(struct decode_reject)
653 };
654
655 static int table_iter(const union decode_item *table,
656                         int (*fn)(const struct decode_header *, void *),
657                         void *args)
658 {
659         const struct decode_header *h = (struct decode_header *)table;
660         int result;
661
662         for (;;) {
663                 enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
664
665                 if (type == DECODE_TYPE_END)
666                         return 0;
667
668                 result = fn(h, args);
669                 if (result)
670                         return result;
671
672                 h = (struct decode_header *)
673                         ((uintptr_t)h + decode_struct_sizes[type]);
674
675         }
676 }
677
678 static int table_test_fail(const struct decode_header *h, const char* message)
679 {
680
681         pr_err("FAIL: kprobes test failure \"%s\" (mask %08x, value %08x)\n",
682                                         message, h->mask.bits, h->value.bits);
683         return -EINVAL;
684 }
685
686 struct table_test_args {
687         const union decode_item *root_table;
688         u32                     parent_mask;
689         u32                     parent_value;
690 };
691
692 static int table_test_fn(const struct decode_header *h, void *args)
693 {
694         struct table_test_args *a = (struct table_test_args *)args;
695         enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
696
697         if (h->value.bits & ~h->mask.bits)
698                 return table_test_fail(h, "Match value has bits not in mask");
699
700         if ((h->mask.bits & a->parent_mask) != a->parent_mask)
701                 return table_test_fail(h, "Mask has bits not in parent mask");
702
703         if ((h->value.bits ^ a->parent_value) & a->parent_mask)
704                 return table_test_fail(h, "Value is inconsistent with parent");
705
706         if (type == DECODE_TYPE_TABLE) {
707                 struct decode_table *d = (struct decode_table *)h;
708                 struct table_test_args args2 = *a;
709                 args2.parent_mask = h->mask.bits;
710                 args2.parent_value = h->value.bits;
711                 return table_iter(d->table.table, table_test_fn, &args2);
712         }
713
714         return 0;
715 }
716
717 static int table_test(const union decode_item *table)
718 {
719         struct table_test_args args = {
720                 .root_table     = table,
721                 .parent_mask    = 0,
722                 .parent_value   = 0
723         };
724         return table_iter(args.root_table, table_test_fn, &args);
725 }
726
727
728 /*
729  * Decoding table test coverage analysis
730  *
731  * coverage_start() builds a coverage_table which contains a list of
732  * coverage_entry's to match each entry in the specified kprobes instruction
733  * decoding table.
734  *
735  * When test cases are run, coverage_add() is called to process each case.
736  * This looks up the corresponding entry in the coverage_table and sets it as
737  * being matched, as well as clearing the regs flag appropriate for the test.
738  *
739  * After all test cases have been run, coverage_end() is called to check that
740  * all entries in coverage_table have been matched and that all regs flags are
741  * cleared. I.e. that all possible combinations of instructions described by
742  * the kprobes decoding tables have had a test case executed for them.
743  */
744
745 bool coverage_fail;
746
747 #define MAX_COVERAGE_ENTRIES 256
748
749 struct coverage_entry {
750         const struct decode_header      *header;
751         unsigned                        regs;
752         unsigned                        nesting;
753         char                            matched;
754 };
755
756 struct coverage_table {
757         struct coverage_entry   *base;
758         unsigned                num_entries;
759         unsigned                nesting;
760 };
761
762 struct coverage_table coverage;
763
764 #define COVERAGE_ANY_REG        (1<<0)
765 #define COVERAGE_SP             (1<<1)
766 #define COVERAGE_PC             (1<<2)
767 #define COVERAGE_PCWB           (1<<3)
768
769 static const char coverage_register_lookup[16] = {
770         [REG_TYPE_ANY]          = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
771         [REG_TYPE_SAMEAS16]     = COVERAGE_ANY_REG,
772         [REG_TYPE_SP]           = COVERAGE_SP,
773         [REG_TYPE_PC]           = COVERAGE_PC,
774         [REG_TYPE_NOSP]         = COVERAGE_ANY_REG | COVERAGE_SP,
775         [REG_TYPE_NOSPPC]       = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
776         [REG_TYPE_NOPC]         = COVERAGE_ANY_REG | COVERAGE_PC,
777         [REG_TYPE_NOPCWB]       = COVERAGE_ANY_REG | COVERAGE_PC | COVERAGE_PCWB,
778         [REG_TYPE_NOPCX]        = COVERAGE_ANY_REG,
779         [REG_TYPE_NOSPPCX]      = COVERAGE_ANY_REG | COVERAGE_SP,
780 };
781
782 unsigned coverage_start_registers(const struct decode_header *h)
783 {
784         unsigned regs = 0;
785         int i;
786         for (i = 0; i < 20; i += 4) {
787                 int r = (h->type_regs.bits >> (DECODE_TYPE_BITS + i)) & 0xf;
788                 regs |= coverage_register_lookup[r] << i;
789         }
790         return regs;
791 }
792
793 static int coverage_start_fn(const struct decode_header *h, void *args)
794 {
795         struct coverage_table *coverage = (struct coverage_table *)args;
796         enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
797         struct coverage_entry *entry = coverage->base + coverage->num_entries;
798
799         if (coverage->num_entries == MAX_COVERAGE_ENTRIES - 1) {
800                 pr_err("FAIL: Out of space for test coverage data");
801                 return -ENOMEM;
802         }
803
804         ++coverage->num_entries;
805
806         entry->header = h;
807         entry->regs = coverage_start_registers(h);
808         entry->nesting = coverage->nesting;
809         entry->matched = false;
810
811         if (type == DECODE_TYPE_TABLE) {
812                 struct decode_table *d = (struct decode_table *)h;
813                 int ret;
814                 ++coverage->nesting;
815                 ret = table_iter(d->table.table, coverage_start_fn, coverage);
816                 --coverage->nesting;
817                 return ret;
818         }
819
820         return 0;
821 }
822
823 static int coverage_start(const union decode_item *table)
824 {
825         coverage.base = kmalloc(MAX_COVERAGE_ENTRIES *
826                                 sizeof(struct coverage_entry), GFP_KERNEL);
827         coverage.num_entries = 0;
828         coverage.nesting = 0;
829         return table_iter(table, coverage_start_fn, &coverage);
830 }
831
832 static void
833 coverage_add_registers(struct coverage_entry *entry, kprobe_opcode_t insn)
834 {
835         int regs = entry->header->type_regs.bits >> DECODE_TYPE_BITS;
836         int i;
837         for (i = 0; i < 20; i += 4) {
838                 enum decode_reg_type reg_type = (regs >> i) & 0xf;
839                 int reg = (insn >> i) & 0xf;
840                 int flag;
841
842                 if (!reg_type)
843                         continue;
844
845                 if (reg == 13)
846                         flag = COVERAGE_SP;
847                 else if (reg == 15)
848                         flag = COVERAGE_PC;
849                 else
850                         flag = COVERAGE_ANY_REG;
851                 entry->regs &= ~(flag << i);
852
853                 switch (reg_type) {
854
855                 case REG_TYPE_NONE:
856                 case REG_TYPE_ANY:
857                 case REG_TYPE_SAMEAS16:
858                         break;
859
860                 case REG_TYPE_SP:
861                         if (reg != 13)
862                                 return;
863                         break;
864
865                 case REG_TYPE_PC:
866                         if (reg != 15)
867                                 return;
868                         break;
869
870                 case REG_TYPE_NOSP:
871                         if (reg == 13)
872                                 return;
873                         break;
874
875                 case REG_TYPE_NOSPPC:
876                 case REG_TYPE_NOSPPCX:
877                         if (reg == 13 || reg == 15)
878                                 return;
879                         break;
880
881                 case REG_TYPE_NOPCWB:
882                         if (!is_writeback(insn))
883                                 break;
884                         if (reg == 15) {
885                                 entry->regs &= ~(COVERAGE_PCWB << i);
886                                 return;
887                         }
888                         break;
889
890                 case REG_TYPE_NOPC:
891                 case REG_TYPE_NOPCX:
892                         if (reg == 15)
893                                 return;
894                         break;
895                 }
896
897         }
898 }
899
900 static void coverage_add(kprobe_opcode_t insn)
901 {
902         struct coverage_entry *entry = coverage.base;
903         struct coverage_entry *end = coverage.base + coverage.num_entries;
904         bool matched = false;
905         unsigned nesting = 0;
906
907         for (; entry < end; ++entry) {
908                 const struct decode_header *h = entry->header;
909                 enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
910
911                 if (entry->nesting > nesting)
912                         continue; /* Skip sub-table we didn't match */
913
914                 if (entry->nesting < nesting)
915                         break; /* End of sub-table we were scanning */
916
917                 if (!matched) {
918                         if ((insn & h->mask.bits) != h->value.bits)
919                                 continue;
920                         entry->matched = true;
921                 }
922
923                 switch (type) {
924
925                 case DECODE_TYPE_TABLE:
926                         ++nesting;
927                         break;
928
929                 case DECODE_TYPE_CUSTOM:
930                 case DECODE_TYPE_SIMULATE:
931                 case DECODE_TYPE_EMULATE:
932                         coverage_add_registers(entry, insn);
933                         return;
934
935                 case DECODE_TYPE_OR:
936                         matched = true;
937                         break;
938
939                 case DECODE_TYPE_REJECT:
940                 default:
941                         return;
942                 }
943
944         }
945 }
946
947 static void coverage_end(void)
948 {
949         struct coverage_entry *entry = coverage.base;
950         struct coverage_entry *end = coverage.base + coverage.num_entries;
951
952         for (; entry < end; ++entry) {
953                 u32 mask = entry->header->mask.bits;
954                 u32 value = entry->header->value.bits;
955
956                 if (entry->regs) {
957                         pr_err("FAIL: Register test coverage missing for %08x %08x (%05x)\n",
958                                 mask, value, entry->regs);
959                         coverage_fail = true;
960                 }
961                 if (!entry->matched) {
962                         pr_err("FAIL: Test coverage entry missing for %08x %08x\n",
963                                 mask, value);
964                         coverage_fail = true;
965                 }
966         }
967
968         kfree(coverage.base);
969 }
970
971
972 /*
973  * Framework for instruction set test cases
974  */
975
976 void __naked __kprobes_test_case_start(void)
977 {
978         __asm__ __volatile__ (
979                 "stmdb  sp!, {r4-r11}                           \n\t"
980                 "sub    sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
981                 "bic    r0, lr, #1  @ r0 = inline data          \n\t"
982                 "mov    r1, sp                                  \n\t"
983                 "bl     kprobes_test_case_start                 \n\t"
984                 RET(r0)"                                        \n\t"
985         );
986 }
987
988 #ifndef CONFIG_THUMB2_KERNEL
989
990 void __naked __kprobes_test_case_end_32(void)
991 {
992         __asm__ __volatile__ (
993                 "mov    r4, lr                                  \n\t"
994                 "bl     kprobes_test_case_end                   \n\t"
995                 "cmp    r0, #0                                  \n\t"
996                 "movne  pc, r0                                  \n\t"
997                 "mov    r0, r4                                  \n\t"
998                 "add    sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
999                 "ldmia  sp!, {r4-r11}                           \n\t"
1000                 "mov    pc, r0                                  \n\t"
1001         );
1002 }
1003
1004 #else /* CONFIG_THUMB2_KERNEL */
1005
1006 void __naked __kprobes_test_case_end_16(void)
1007 {
1008         __asm__ __volatile__ (
1009                 "mov    r4, lr                                  \n\t"
1010                 "bl     kprobes_test_case_end                   \n\t"
1011                 "cmp    r0, #0                                  \n\t"
1012                 "bxne   r0                                      \n\t"
1013                 "mov    r0, r4                                  \n\t"
1014                 "add    sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
1015                 "ldmia  sp!, {r4-r11}                           \n\t"
1016                 "bx     r0                                      \n\t"
1017         );
1018 }
1019
1020 void __naked __kprobes_test_case_end_32(void)
1021 {
1022         __asm__ __volatile__ (
1023                 ".arm                                           \n\t"
1024                 "orr    lr, lr, #1  @ will return to Thumb code \n\t"
1025                 "ldr    pc, 1f                                  \n\t"
1026                 "1:                                             \n\t"
1027                 ".word  __kprobes_test_case_end_16              \n\t"
1028         );
1029 }
1030
1031 #endif
1032
1033
1034 int kprobe_test_flags;
1035 int kprobe_test_cc_position;
1036
1037 static int test_try_count;
1038 static int test_pass_count;
1039 static int test_fail_count;
1040
1041 static struct pt_regs initial_regs;
1042 static struct pt_regs expected_regs;
1043 static struct pt_regs result_regs;
1044
1045 static u32 expected_memory[TEST_MEMORY_SIZE/sizeof(u32)];
1046
1047 static const char *current_title;
1048 static struct test_arg *current_args;
1049 static u32 *current_stack;
1050 static uintptr_t current_branch_target;
1051
1052 static uintptr_t current_code_start;
1053 static kprobe_opcode_t current_instruction;
1054
1055
1056 #define TEST_CASE_PASSED -1
1057 #define TEST_CASE_FAILED -2
1058
1059 static int test_case_run_count;
1060 static bool test_case_is_thumb;
1061 static int test_instance;
1062
1063 static unsigned long test_check_cc(int cc, unsigned long cpsr)
1064 {
1065         int ret = arm_check_condition(cc << 28, cpsr);
1066
1067         return (ret != ARM_OPCODE_CONDTEST_FAIL);
1068 }
1069
1070 static int is_last_scenario;
1071 static int probe_should_run; /* 0 = no, 1 = yes, -1 = unknown */
1072 static int memory_needs_checking;
1073
1074 static unsigned long test_context_cpsr(int scenario)
1075 {
1076         unsigned long cpsr;
1077
1078         probe_should_run = 1;
1079
1080         /* Default case is that we cycle through 16 combinations of flags */
1081         cpsr  = (scenario & 0xf) << 28; /* N,Z,C,V flags */
1082         cpsr |= (scenario & 0xf) << 16; /* GE flags */
1083         cpsr |= (scenario & 0x1) << 27; /* Toggle Q flag */
1084
1085         if (!test_case_is_thumb) {
1086                 /* Testing ARM code */
1087                 int cc = current_instruction >> 28;
1088
1089                 probe_should_run = test_check_cc(cc, cpsr) != 0;
1090                 if (scenario == 15)
1091                         is_last_scenario = true;
1092
1093         } else if (kprobe_test_flags & TEST_FLAG_NO_ITBLOCK) {
1094                 /* Testing Thumb code without setting ITSTATE */
1095                 if (kprobe_test_cc_position) {
1096                         int cc = (current_instruction >> kprobe_test_cc_position) & 0xf;
1097                         probe_should_run = test_check_cc(cc, cpsr) != 0;
1098                 }
1099
1100                 if (scenario == 15)
1101                         is_last_scenario = true;
1102
1103         } else if (kprobe_test_flags & TEST_FLAG_FULL_ITBLOCK) {
1104                 /* Testing Thumb code with all combinations of ITSTATE */
1105                 unsigned x = (scenario >> 4);
1106                 unsigned cond_base = x % 7; /* ITSTATE<7:5> */
1107                 unsigned mask = x / 7 + 2;  /* ITSTATE<4:0>, bits reversed */
1108
1109                 if (mask > 0x1f) {
1110                         /* Finish by testing state from instruction 'itt al' */
1111                         cond_base = 7;
1112                         mask = 0x4;
1113                         if ((scenario & 0xf) == 0xf)
1114                                 is_last_scenario = true;
1115                 }
1116
1117                 cpsr |= cond_base << 13;        /* ITSTATE<7:5> */
1118                 cpsr |= (mask & 0x1) << 12;     /* ITSTATE<4> */
1119                 cpsr |= (mask & 0x2) << 10;     /* ITSTATE<3> */
1120                 cpsr |= (mask & 0x4) << 8;      /* ITSTATE<2> */
1121                 cpsr |= (mask & 0x8) << 23;     /* ITSTATE<1> */
1122                 cpsr |= (mask & 0x10) << 21;    /* ITSTATE<0> */
1123
1124                 probe_should_run = test_check_cc((cpsr >> 12) & 0xf, cpsr) != 0;
1125
1126         } else {
1127                 /* Testing Thumb code with several combinations of ITSTATE */
1128                 switch (scenario) {
1129                 case 16: /* Clear NZCV flags and 'it eq' state (false as Z=0) */
1130                         cpsr = 0x00000800;
1131                         probe_should_run = 0;
1132                         break;
1133                 case 17: /* Set NZCV flags and 'it vc' state (false as V=1) */
1134                         cpsr = 0xf0007800;
1135                         probe_should_run = 0;
1136                         break;
1137                 case 18: /* Clear NZCV flags and 'it ls' state (true as C=0) */
1138                         cpsr = 0x00009800;
1139                         break;
1140                 case 19: /* Set NZCV flags and 'it cs' state (true as C=1) */
1141                         cpsr = 0xf0002800;
1142                         is_last_scenario = true;
1143                         break;
1144                 }
1145         }
1146
1147         return cpsr;
1148 }
1149
1150 static void setup_test_context(struct pt_regs *regs)
1151 {
1152         int scenario = test_case_run_count>>1;
1153         unsigned long val;
1154         struct test_arg *args;
1155         int i;
1156
1157         is_last_scenario = false;
1158         memory_needs_checking = false;
1159
1160         /* Initialise test memory on stack */
1161         val = (scenario & 1) ? VALM : ~VALM;
1162         for (i = 0; i < TEST_MEMORY_SIZE / sizeof(current_stack[0]); ++i)
1163                 current_stack[i] = val + (i << 8);
1164         /* Put target of branch on stack for tests which load PC from memory */
1165         if (current_branch_target)
1166                 current_stack[15] = current_branch_target;
1167         /* Put a value for SP on stack for tests which load SP from memory */
1168         current_stack[13] = (u32)current_stack + 120;
1169
1170         /* Initialise register values to their default state */
1171         val = (scenario & 2) ? VALR : ~VALR;
1172         for (i = 0; i < 13; ++i)
1173                 regs->uregs[i] = val ^ (i << 8);
1174         regs->ARM_lr = val ^ (14 << 8);
1175         regs->ARM_cpsr &= ~(APSR_MASK | PSR_IT_MASK);
1176         regs->ARM_cpsr |= test_context_cpsr(scenario);
1177
1178         /* Perform testcase specific register setup  */
1179         args = current_args;
1180         for (; args[0].type != ARG_TYPE_END; ++args)
1181                 switch (args[0].type) {
1182                 case ARG_TYPE_REG: {
1183                         struct test_arg_regptr *arg =
1184                                 (struct test_arg_regptr *)args;
1185                         regs->uregs[arg->reg] = arg->val;
1186                         break;
1187                 }
1188                 case ARG_TYPE_PTR: {
1189                         struct test_arg_regptr *arg =
1190                                 (struct test_arg_regptr *)args;
1191                         regs->uregs[arg->reg] =
1192                                 (unsigned long)current_stack + arg->val;
1193                         memory_needs_checking = true;
1194                         /*
1195                          * Test memory at an address below SP is in danger of
1196                          * being altered by an interrupt occurring and pushing
1197                          * data onto the stack. Disable interrupts to stop this.
1198                          */
1199                         if (arg->reg == 13)
1200                                 regs->ARM_cpsr |= PSR_I_BIT;
1201                         break;
1202                 }
1203                 case ARG_TYPE_MEM: {
1204                         struct test_arg_mem *arg = (struct test_arg_mem *)args;
1205                         current_stack[arg->index] = arg->val;
1206                         break;
1207                 }
1208                 default:
1209                         break;
1210                 }
1211 }
1212
1213 struct test_probe {
1214         struct kprobe   kprobe;
1215         bool            registered;
1216         int             hit;
1217 };
1218
1219 static void unregister_test_probe(struct test_probe *probe)
1220 {
1221         if (probe->registered) {
1222                 unregister_kprobe(&probe->kprobe);
1223                 probe->kprobe.flags = 0; /* Clear disable flag to allow reuse */
1224         }
1225         probe->registered = false;
1226 }
1227
1228 static int register_test_probe(struct test_probe *probe)
1229 {
1230         int ret;
1231
1232         if (probe->registered)
1233                 BUG();
1234
1235         ret = register_kprobe(&probe->kprobe);
1236         if (ret >= 0) {
1237                 probe->registered = true;
1238                 probe->hit = -1;
1239         }
1240         return ret;
1241 }
1242
1243 static int __kprobes
1244 test_before_pre_handler(struct kprobe *p, struct pt_regs *regs)
1245 {
1246         container_of(p, struct test_probe, kprobe)->hit = test_instance;
1247         return 0;
1248 }
1249
1250 static void __kprobes
1251 test_before_post_handler(struct kprobe *p, struct pt_regs *regs,
1252                                                         unsigned long flags)
1253 {
1254         setup_test_context(regs);
1255         initial_regs = *regs;
1256         initial_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
1257 }
1258
1259 static int __kprobes
1260 test_case_pre_handler(struct kprobe *p, struct pt_regs *regs)
1261 {
1262         container_of(p, struct test_probe, kprobe)->hit = test_instance;
1263         return 0;
1264 }
1265
1266 static int __kprobes
1267 test_after_pre_handler(struct kprobe *p, struct pt_regs *regs)
1268 {
1269         struct test_arg *args;
1270
1271         if (container_of(p, struct test_probe, kprobe)->hit == test_instance)
1272                 return 0; /* Already run for this test instance */
1273
1274         result_regs = *regs;
1275
1276         /* Mask out results which are indeterminate */
1277         result_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
1278         for (args = current_args; args[0].type != ARG_TYPE_END; ++args)
1279                 if (args[0].type == ARG_TYPE_REG_MASKED) {
1280                         struct test_arg_regptr *arg =
1281                                 (struct test_arg_regptr *)args;
1282                         result_regs.uregs[arg->reg] &= arg->val;
1283                 }
1284
1285         /* Undo any changes done to SP by the test case */
1286         regs->ARM_sp = (unsigned long)current_stack;
1287         /* Enable interrupts in case setup_test_context disabled them */
1288         regs->ARM_cpsr &= ~PSR_I_BIT;
1289
1290         container_of(p, struct test_probe, kprobe)->hit = test_instance;
1291         return 0;
1292 }
1293
1294 static struct test_probe test_before_probe = {
1295         .kprobe.pre_handler     = test_before_pre_handler,
1296         .kprobe.post_handler    = test_before_post_handler,
1297 };
1298
1299 static struct test_probe test_case_probe = {
1300         .kprobe.pre_handler     = test_case_pre_handler,
1301 };
1302
1303 static struct test_probe test_after_probe = {
1304         .kprobe.pre_handler     = test_after_pre_handler,
1305 };
1306
1307 static struct test_probe test_after2_probe = {
1308         .kprobe.pre_handler     = test_after_pre_handler,
1309 };
1310
1311 static void test_case_cleanup(void)
1312 {
1313         unregister_test_probe(&test_before_probe);
1314         unregister_test_probe(&test_case_probe);
1315         unregister_test_probe(&test_after_probe);
1316         unregister_test_probe(&test_after2_probe);
1317 }
1318
1319 static void print_registers(struct pt_regs *regs)
1320 {
1321         pr_err("r0  %08lx | r1  %08lx | r2  %08lx | r3  %08lx\n",
1322                 regs->ARM_r0, regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
1323         pr_err("r4  %08lx | r5  %08lx | r6  %08lx | r7  %08lx\n",
1324                 regs->ARM_r4, regs->ARM_r5, regs->ARM_r6, regs->ARM_r7);
1325         pr_err("r8  %08lx | r9  %08lx | r10 %08lx | r11 %08lx\n",
1326                 regs->ARM_r8, regs->ARM_r9, regs->ARM_r10, regs->ARM_fp);
1327         pr_err("r12 %08lx | sp  %08lx | lr  %08lx | pc  %08lx\n",
1328                 regs->ARM_ip, regs->ARM_sp, regs->ARM_lr, regs->ARM_pc);
1329         pr_err("cpsr %08lx\n", regs->ARM_cpsr);
1330 }
1331
1332 static void print_memory(u32 *mem, size_t size)
1333 {
1334         int i;
1335         for (i = 0; i < size / sizeof(u32); i += 4)
1336                 pr_err("%08x %08x %08x %08x\n", mem[i], mem[i+1],
1337                                                 mem[i+2], mem[i+3]);
1338 }
1339
1340 static size_t expected_memory_size(u32 *sp)
1341 {
1342         size_t size = sizeof(expected_memory);
1343         int offset = (uintptr_t)sp - (uintptr_t)current_stack;
1344         if (offset > 0)
1345                 size -= offset;
1346         return size;
1347 }
1348
1349 static void test_case_failed(const char *message)
1350 {
1351         test_case_cleanup();
1352
1353         pr_err("FAIL: %s\n", message);
1354         pr_err("FAIL: Test %s\n", current_title);
1355         pr_err("FAIL: Scenario %d\n", test_case_run_count >> 1);
1356 }
1357
1358 static unsigned long next_instruction(unsigned long pc)
1359 {
1360 #ifdef CONFIG_THUMB2_KERNEL
1361         if ((pc & 1) &&
1362             !is_wide_instruction(__mem_to_opcode_thumb16(*(u16 *)(pc - 1))))
1363                 return pc + 2;
1364         else
1365 #endif
1366         return pc + 4;
1367 }
1368
1369 static uintptr_t __used kprobes_test_case_start(const char **title, void *stack)
1370 {
1371         struct test_arg *args;
1372         struct test_arg_end *end_arg;
1373         unsigned long test_code;
1374
1375         current_title = *title++;
1376         args = (struct test_arg *)title;
1377         current_args = args;
1378         current_stack = stack;
1379
1380         ++test_try_count;
1381
1382         while (args->type != ARG_TYPE_END)
1383                 ++args;
1384         end_arg = (struct test_arg_end *)args;
1385
1386         test_code = (unsigned long)(args + 1); /* Code starts after args */
1387
1388         test_case_is_thumb = end_arg->flags & ARG_FLAG_THUMB;
1389         if (test_case_is_thumb)
1390                 test_code |= 1;
1391
1392         current_code_start = test_code;
1393
1394         current_branch_target = 0;
1395         if (end_arg->branch_offset != end_arg->end_offset)
1396                 current_branch_target = test_code + end_arg->branch_offset;
1397
1398         test_code += end_arg->code_offset;
1399         test_before_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1400
1401         test_code = next_instruction(test_code);
1402         test_case_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1403
1404         if (test_case_is_thumb) {
1405                 u16 *p = (u16 *)(test_code & ~1);
1406                 current_instruction = __mem_to_opcode_thumb16(p[0]);
1407                 if (is_wide_instruction(current_instruction)) {
1408                         u16 instr2 = __mem_to_opcode_thumb16(p[1]);
1409                         current_instruction = __opcode_thumb32_compose(current_instruction, instr2);
1410                 }
1411         } else {
1412                 current_instruction = __mem_to_opcode_arm(*(u32 *)test_code);
1413         }
1414
1415         if (current_title[0] == '.')
1416                 verbose("%s\n", current_title);
1417         else
1418                 verbose("%s\t@ %0*x\n", current_title,
1419                                         test_case_is_thumb ? 4 : 8,
1420                                         current_instruction);
1421
1422         test_code = next_instruction(test_code);
1423         test_after_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1424
1425         if (kprobe_test_flags & TEST_FLAG_NARROW_INSTR) {
1426                 if (!test_case_is_thumb ||
1427                         is_wide_instruction(current_instruction)) {
1428                                 test_case_failed("expected 16-bit instruction");
1429                                 goto fail;
1430                 }
1431         } else {
1432                 if (test_case_is_thumb &&
1433                         !is_wide_instruction(current_instruction)) {
1434                                 test_case_failed("expected 32-bit instruction");
1435                                 goto fail;
1436                 }
1437         }
1438
1439         coverage_add(current_instruction);
1440
1441         if (end_arg->flags & ARG_FLAG_UNSUPPORTED) {
1442                 if (register_test_probe(&test_case_probe) < 0)
1443                         goto pass;
1444                 test_case_failed("registered probe for unsupported instruction");
1445                 goto fail;
1446         }
1447
1448         if (end_arg->flags & ARG_FLAG_SUPPORTED) {
1449                 if (register_test_probe(&test_case_probe) >= 0)
1450                         goto pass;
1451                 test_case_failed("couldn't register probe for supported instruction");
1452                 goto fail;
1453         }
1454
1455         if (register_test_probe(&test_before_probe) < 0) {
1456                 test_case_failed("register test_before_probe failed");
1457                 goto fail;
1458         }
1459         if (register_test_probe(&test_after_probe) < 0) {
1460                 test_case_failed("register test_after_probe failed");
1461                 goto fail;
1462         }
1463         if (current_branch_target) {
1464                 test_after2_probe.kprobe.addr =
1465                                 (kprobe_opcode_t *)current_branch_target;
1466                 if (register_test_probe(&test_after2_probe) < 0) {
1467                         test_case_failed("register test_after2_probe failed");
1468                         goto fail;
1469                 }
1470         }
1471
1472         /* Start first run of test case */
1473         test_case_run_count = 0;
1474         ++test_instance;
1475         return current_code_start;
1476 pass:
1477         test_case_run_count = TEST_CASE_PASSED;
1478         return (uintptr_t)test_after_probe.kprobe.addr;
1479 fail:
1480         test_case_run_count = TEST_CASE_FAILED;
1481         return (uintptr_t)test_after_probe.kprobe.addr;
1482 }
1483
1484 static bool check_test_results(void)
1485 {
1486         size_t mem_size = 0;
1487         u32 *mem = 0;
1488
1489         if (memcmp(&expected_regs, &result_regs, sizeof(expected_regs))) {
1490                 test_case_failed("registers differ");
1491                 goto fail;
1492         }
1493
1494         if (memory_needs_checking) {
1495                 mem = (u32 *)result_regs.ARM_sp;
1496                 mem_size = expected_memory_size(mem);
1497                 if (memcmp(expected_memory, mem, mem_size)) {
1498                         test_case_failed("test memory differs");
1499                         goto fail;
1500                 }
1501         }
1502
1503         return true;
1504
1505 fail:
1506         pr_err("initial_regs:\n");
1507         print_registers(&initial_regs);
1508         pr_err("expected_regs:\n");
1509         print_registers(&expected_regs);
1510         pr_err("result_regs:\n");
1511         print_registers(&result_regs);
1512
1513         if (mem) {
1514                 pr_err("current_stack=%p\n", current_stack);
1515                 pr_err("expected_memory:\n");
1516                 print_memory(expected_memory, mem_size);
1517                 pr_err("result_memory:\n");
1518                 print_memory(mem, mem_size);
1519         }
1520
1521         return false;
1522 }
1523
1524 static uintptr_t __used kprobes_test_case_end(void)
1525 {
1526         if (test_case_run_count < 0) {
1527                 if (test_case_run_count == TEST_CASE_PASSED)
1528                         /* kprobes_test_case_start did all the needed testing */
1529                         goto pass;
1530                 else
1531                         /* kprobes_test_case_start failed */
1532                         goto fail;
1533         }
1534
1535         if (test_before_probe.hit != test_instance) {
1536                 test_case_failed("test_before_handler not run");
1537                 goto fail;
1538         }
1539
1540         if (test_after_probe.hit != test_instance &&
1541                                 test_after2_probe.hit != test_instance) {
1542                 test_case_failed("test_after_handler not run");
1543                 goto fail;
1544         }
1545
1546         /*
1547          * Even numbered test runs ran without a probe on the test case so
1548          * we can gather reference results. The subsequent odd numbered run
1549          * will have the probe inserted.
1550         */
1551         if ((test_case_run_count & 1) == 0) {
1552                 /* Save results from run without probe */
1553                 u32 *mem = (u32 *)result_regs.ARM_sp;
1554                 expected_regs = result_regs;
1555                 memcpy(expected_memory, mem, expected_memory_size(mem));
1556
1557                 /* Insert probe onto test case instruction */
1558                 if (register_test_probe(&test_case_probe) < 0) {
1559                         test_case_failed("register test_case_probe failed");
1560                         goto fail;
1561                 }
1562         } else {
1563                 /* Check probe ran as expected */
1564                 if (probe_should_run == 1) {
1565                         if (test_case_probe.hit != test_instance) {
1566                                 test_case_failed("test_case_handler not run");
1567                                 goto fail;
1568                         }
1569                 } else if (probe_should_run == 0) {
1570                         if (test_case_probe.hit == test_instance) {
1571                                 test_case_failed("test_case_handler ran");
1572                                 goto fail;
1573                         }
1574                 }
1575
1576                 /* Remove probe for any subsequent reference run */
1577                 unregister_test_probe(&test_case_probe);
1578
1579                 if (!check_test_results())
1580                         goto fail;
1581
1582                 if (is_last_scenario)
1583                         goto pass;
1584         }
1585
1586         /* Do next test run */
1587         ++test_case_run_count;
1588         ++test_instance;
1589         return current_code_start;
1590 fail:
1591         ++test_fail_count;
1592         goto end;
1593 pass:
1594         ++test_pass_count;
1595 end:
1596         test_case_cleanup();
1597         return 0;
1598 }
1599
1600
1601 /*
1602  * Top level test functions
1603  */
1604
1605 static int run_test_cases(void (*tests)(void), const union decode_item *table)
1606 {
1607         int ret;
1608
1609         pr_info("    Check decoding tables\n");
1610         ret = table_test(table);
1611         if (ret)
1612                 return ret;
1613
1614         pr_info("    Run test cases\n");
1615         ret = coverage_start(table);
1616         if (ret)
1617                 return ret;
1618
1619         tests();
1620
1621         coverage_end();
1622         return 0;
1623 }
1624
1625
1626 static int __init run_all_tests(void)
1627 {
1628         int ret = 0;
1629
1630         pr_info("Beginning kprobe tests...\n");
1631
1632 #ifndef CONFIG_THUMB2_KERNEL
1633
1634         pr_info("Probe ARM code\n");
1635         ret = run_api_tests(arm_func);
1636         if (ret)
1637                 goto out;
1638
1639         pr_info("ARM instruction simulation\n");
1640         ret = run_test_cases(kprobe_arm_test_cases, probes_decode_arm_table);
1641         if (ret)
1642                 goto out;
1643
1644 #else /* CONFIG_THUMB2_KERNEL */
1645
1646         pr_info("Probe 16-bit Thumb code\n");
1647         ret = run_api_tests(thumb16_func);
1648         if (ret)
1649                 goto out;
1650
1651         pr_info("Probe 32-bit Thumb code, even halfword\n");
1652         ret = run_api_tests(thumb32even_func);
1653         if (ret)
1654                 goto out;
1655
1656         pr_info("Probe 32-bit Thumb code, odd halfword\n");
1657         ret = run_api_tests(thumb32odd_func);
1658         if (ret)
1659                 goto out;
1660
1661         pr_info("16-bit Thumb instruction simulation\n");
1662         ret = run_test_cases(kprobe_thumb16_test_cases,
1663                                 probes_decode_thumb16_table);
1664         if (ret)
1665                 goto out;
1666
1667         pr_info("32-bit Thumb instruction simulation\n");
1668         ret = run_test_cases(kprobe_thumb32_test_cases,
1669                                 probes_decode_thumb32_table);
1670         if (ret)
1671                 goto out;
1672 #endif
1673
1674         pr_info("Total instruction simulation tests=%d, pass=%d fail=%d\n",
1675                 test_try_count, test_pass_count, test_fail_count);
1676         if (test_fail_count) {
1677                 ret = -EINVAL;
1678                 goto out;
1679         }
1680
1681 #if BENCHMARKING
1682         pr_info("Benchmarks\n");
1683         ret = run_benchmarks();
1684         if (ret)
1685                 goto out;
1686 #endif
1687
1688 #if __LINUX_ARM_ARCH__ >= 7
1689         /* We are able to run all test cases so coverage should be complete */
1690         if (coverage_fail) {
1691                 pr_err("FAIL: Test coverage checks failed\n");
1692                 ret = -EINVAL;
1693                 goto out;
1694         }
1695 #endif
1696
1697 out:
1698         if (ret == 0)
1699                 ret = tests_failed;
1700         if (ret == 0)
1701                 pr_info("Finished kprobe tests OK\n");
1702         else
1703                 pr_err("kprobe tests failed\n");
1704
1705         return ret;
1706 }
1707
1708
1709 /*
1710  * Module setup
1711  */
1712
1713 #ifdef MODULE
1714
1715 static void __exit kprobe_test_exit(void)
1716 {
1717 }
1718
1719 module_init(run_all_tests)
1720 module_exit(kprobe_test_exit)
1721 MODULE_LICENSE("GPL");
1722
1723 #else /* !MODULE */
1724
1725 late_initcall(run_all_tests);
1726
1727 #endif