arm: mm: hugetlb WT hack
[pandora-kernel.git] / arch / arm / mm / mmu.c
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19
20 #include <asm/cputype.h>
21 #include <asm/sections.h>
22 #include <asm/cachetype.h>
23 #include <asm/setup.h>
24 #include <asm/sizes.h>
25 #include <asm/smp_plat.h>
26 #include <asm/tlb.h>
27 #include <asm/highmem.h>
28 #include <asm/traps.h>
29
30 #include <asm/mach/arch.h>
31 #include <asm/mach/map.h>
32
33 #include "mm.h"
34
35 /*
36  * empty_zero_page is a special page that is used for
37  * zero-initialized data and COW.
38  */
39 struct page *empty_zero_page;
40 EXPORT_SYMBOL(empty_zero_page);
41
42 /*
43  * The pmd table for the upper-most set of pages.
44  */
45 pmd_t *top_pmd;
46
47 #define CPOLICY_UNCACHED        0
48 #define CPOLICY_BUFFERED        1
49 #define CPOLICY_WRITETHROUGH    2
50 #define CPOLICY_WRITEBACK       3
51 #define CPOLICY_WRITEALLOC      4
52
53 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
54 static unsigned int ecc_mask __initdata = 0;
55 pgprot_t pgprot_user;
56 pgprot_t pgprot_kernel;
57
58 EXPORT_SYMBOL(pgprot_user);
59 EXPORT_SYMBOL(pgprot_kernel);
60
61 struct cachepolicy {
62         const char      policy[16];
63         unsigned int    cr_mask;
64         pmdval_t        pmd;
65         pteval_t        pte;
66 };
67
68 static struct cachepolicy cache_policies[] __initdata = {
69         {
70                 .policy         = "uncached",
71                 .cr_mask        = CR_W|CR_C,
72                 .pmd            = PMD_SECT_UNCACHED,
73                 .pte            = L_PTE_MT_UNCACHED,
74         }, {
75                 .policy         = "buffered",
76                 .cr_mask        = CR_C,
77                 .pmd            = PMD_SECT_BUFFERED,
78                 .pte            = L_PTE_MT_BUFFERABLE,
79         }, {
80                 .policy         = "writethrough",
81                 .cr_mask        = 0,
82                 .pmd            = PMD_SECT_WT,
83                 .pte            = L_PTE_MT_WRITETHROUGH,
84         }, {
85                 .policy         = "writeback",
86                 .cr_mask        = 0,
87                 .pmd            = PMD_SECT_WB,
88                 .pte            = L_PTE_MT_WRITEBACK,
89         }, {
90                 .policy         = "writealloc",
91                 .cr_mask        = 0,
92                 .pmd            = PMD_SECT_WBWA,
93                 .pte            = L_PTE_MT_WRITEALLOC,
94         }
95 };
96
97 /*
98  * These are useful for identifying cache coherency
99  * problems by allowing the cache or the cache and
100  * writebuffer to be turned off.  (Note: the write
101  * buffer should not be on and the cache off).
102  */
103 static int __init early_cachepolicy(char *p)
104 {
105         int i;
106
107         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
108                 int len = strlen(cache_policies[i].policy);
109
110                 if (memcmp(p, cache_policies[i].policy, len) == 0) {
111                         cachepolicy = i;
112                         cr_alignment &= ~cache_policies[i].cr_mask;
113                         cr_no_alignment &= ~cache_policies[i].cr_mask;
114                         break;
115                 }
116         }
117         if (i == ARRAY_SIZE(cache_policies))
118                 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
119         /*
120          * This restriction is partly to do with the way we boot; it is
121          * unpredictable to have memory mapped using two different sets of
122          * memory attributes (shared, type, and cache attribs).  We can not
123          * change these attributes once the initial assembly has setup the
124          * page tables.
125          */
126         if (cpu_architecture() >= CPU_ARCH_ARMv6) {
127                 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
128                 cachepolicy = CPOLICY_WRITEBACK;
129         }
130         flush_cache_all();
131         set_cr(cr_alignment);
132         return 0;
133 }
134 early_param("cachepolicy", early_cachepolicy);
135
136 static int __init early_nocache(char *__unused)
137 {
138         char *p = "buffered";
139         printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
140         early_cachepolicy(p);
141         return 0;
142 }
143 early_param("nocache", early_nocache);
144
145 static int __init early_nowrite(char *__unused)
146 {
147         char *p = "uncached";
148         printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
149         early_cachepolicy(p);
150         return 0;
151 }
152 early_param("nowb", early_nowrite);
153
154 #ifndef CONFIG_ARM_LPAE
155 static int __init early_ecc(char *p)
156 {
157         if (memcmp(p, "on", 2) == 0)
158                 ecc_mask = PMD_PROTECTION;
159         else if (memcmp(p, "off", 3) == 0)
160                 ecc_mask = 0;
161         return 0;
162 }
163 early_param("ecc", early_ecc);
164 #endif
165
166 static int __init noalign_setup(char *__unused)
167 {
168         cr_alignment &= ~CR_A;
169         cr_no_alignment &= ~CR_A;
170         set_cr(cr_alignment);
171         return 1;
172 }
173 __setup("noalign", noalign_setup);
174
175 #ifndef CONFIG_SMP
176 void adjust_cr(unsigned long mask, unsigned long set)
177 {
178         unsigned long flags;
179
180         mask &= ~CR_A;
181
182         set &= mask;
183
184         local_irq_save(flags);
185
186         cr_no_alignment = (cr_no_alignment & ~mask) | set;
187         cr_alignment = (cr_alignment & ~mask) | set;
188
189         set_cr((get_cr() & ~mask) | set);
190
191         local_irq_restore(flags);
192 }
193 #endif
194
195 #define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
196 #define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
197
198 static struct mem_type mem_types[] = {
199         [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
200                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
201                                   L_PTE_SHARED,
202                 .prot_l1        = PMD_TYPE_TABLE,
203                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
204                 .domain         = DOMAIN_IO,
205         },
206         [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
207                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
208                 .prot_l1        = PMD_TYPE_TABLE,
209                 .prot_sect      = PROT_SECT_DEVICE,
210                 .domain         = DOMAIN_IO,
211         },
212         [MT_DEVICE_CACHED] = {    /* ioremap_cached */
213                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
214                 .prot_l1        = PMD_TYPE_TABLE,
215                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
216                 .domain         = DOMAIN_IO,
217         },      
218         [MT_DEVICE_WC] = {      /* ioremap_wc */
219                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
220                 .prot_l1        = PMD_TYPE_TABLE,
221                 .prot_sect      = PROT_SECT_DEVICE,
222                 .domain         = DOMAIN_IO,
223         },
224         [MT_UNCACHED] = {
225                 .prot_pte       = PROT_PTE_DEVICE,
226                 .prot_l1        = PMD_TYPE_TABLE,
227                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
228                 .domain         = DOMAIN_IO,
229         },
230         [MT_CACHECLEAN] = {
231                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
232                 .domain    = DOMAIN_KERNEL,
233         },
234 #ifndef CONFIG_ARM_LPAE
235         [MT_MINICLEAN] = {
236                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
237                 .domain    = DOMAIN_KERNEL,
238         },
239 #endif
240         [MT_LOW_VECTORS] = {
241                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
242                                 L_PTE_RDONLY,
243                 .prot_l1   = PMD_TYPE_TABLE,
244                 .domain    = DOMAIN_USER,
245         },
246         [MT_HIGH_VECTORS] = {
247                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
248                                 L_PTE_USER | L_PTE_RDONLY,
249                 .prot_l1   = PMD_TYPE_TABLE,
250                 .domain    = DOMAIN_USER,
251         },
252         [MT_MEMORY] = {
253                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
254                 .prot_l1   = PMD_TYPE_TABLE,
255                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
256                 .domain    = DOMAIN_KERNEL,
257         },
258         [MT_ROM] = {
259                 .prot_sect = PMD_TYPE_SECT,
260                 .domain    = DOMAIN_KERNEL,
261         },
262         [MT_MEMORY_NONCACHED] = {
263                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
264                                 L_PTE_MT_BUFFERABLE,
265                 .prot_l1   = PMD_TYPE_TABLE,
266                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
267                 .domain    = DOMAIN_KERNEL,
268         },
269         [MT_MEMORY_DTCM] = {
270                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
271                                 L_PTE_XN,
272                 .prot_l1   = PMD_TYPE_TABLE,
273                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
274                 .domain    = DOMAIN_KERNEL,
275         },
276         [MT_MEMORY_ITCM] = {
277                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
278                 .prot_l1   = PMD_TYPE_TABLE,
279                 .domain    = DOMAIN_KERNEL,
280         },
281         [MT_MEMORY_SO] = {
282                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
283                                 L_PTE_MT_UNCACHED,
284                 .prot_l1   = PMD_TYPE_TABLE,
285                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
286                                 PMD_SECT_UNCACHED | PMD_SECT_XN,
287                 .domain    = DOMAIN_KERNEL,
288         },
289         [MT_MEMORY_DMA_READY] = {
290                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
291                 .prot_l1   = PMD_TYPE_TABLE,
292                 .domain    = DOMAIN_KERNEL,
293         },
294 };
295
296 const struct mem_type *get_mem_type(unsigned int type)
297 {
298         return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
299 }
300 EXPORT_SYMBOL(get_mem_type);
301
302 /*
303  * If the system supports huge pages and we are running with short descriptors,
304  * then compute the pmd and linux pte prot values for a huge page.
305  *
306  * These values are used by both the HugeTLB and THP code.
307  */
308 #if defined(CONFIG_SYS_SUPPORTS_HUGETLBFS) && !defined(CONFIG_ARM_LPAE)
309 pmdval_t arm_hugepmdprotval;
310 EXPORT_SYMBOL(arm_hugepmdprotval);
311
312 pteval_t arm_hugepteprotval;
313 EXPORT_SYMBOL(arm_hugepteprotval);
314 #endif
315
316
317 /*
318  * Adjust the PMD section entries according to the CPU in use.
319  */
320 static void __init build_mem_type_table(void)
321 {
322         struct cachepolicy *cp;
323         unsigned int cr = get_cr();
324         pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
325         int cpu_arch = cpu_architecture();
326         int i;
327
328         if (cpu_arch < CPU_ARCH_ARMv6) {
329 #if defined(CONFIG_CPU_DCACHE_DISABLE)
330                 if (cachepolicy > CPOLICY_BUFFERED)
331                         cachepolicy = CPOLICY_BUFFERED;
332 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
333                 if (cachepolicy > CPOLICY_WRITETHROUGH)
334                         cachepolicy = CPOLICY_WRITETHROUGH;
335 #endif
336         }
337         if (cpu_arch < CPU_ARCH_ARMv5) {
338                 if (cachepolicy >= CPOLICY_WRITEALLOC)
339                         cachepolicy = CPOLICY_WRITEBACK;
340                 ecc_mask = 0;
341         }
342         if (is_smp())
343                 cachepolicy = CPOLICY_WRITEALLOC;
344
345         /*
346          * Strip out features not present on earlier architectures.
347          * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
348          * without extended page tables don't have the 'Shared' bit.
349          */
350         if (cpu_arch < CPU_ARCH_ARMv5)
351                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
352                         mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
353         if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
354                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
355                         mem_types[i].prot_sect &= ~PMD_SECT_S;
356
357         /*
358          * ARMv5 and lower, bit 4 must be set for page tables (was: cache
359          * "update-able on write" bit on ARM610).  However, Xscale and
360          * Xscale3 require this bit to be cleared.
361          */
362         if (cpu_is_xscale() || cpu_is_xsc3()) {
363                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
364                         mem_types[i].prot_sect &= ~PMD_BIT4;
365                         mem_types[i].prot_l1 &= ~PMD_BIT4;
366                 }
367         } else if (cpu_arch < CPU_ARCH_ARMv6) {
368                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
369                         if (mem_types[i].prot_l1)
370                                 mem_types[i].prot_l1 |= PMD_BIT4;
371                         if (mem_types[i].prot_sect)
372                                 mem_types[i].prot_sect |= PMD_BIT4;
373                 }
374         }
375
376         /*
377          * Mark the device areas according to the CPU/architecture.
378          */
379         if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
380                 if (!cpu_is_xsc3()) {
381                         /*
382                          * Mark device regions on ARMv6+ as execute-never
383                          * to prevent speculative instruction fetches.
384                          */
385                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
386                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
387                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
388                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
389                 }
390                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
391                         /*
392                          * For ARMv7 with TEX remapping,
393                          * - shared device is SXCB=1100
394                          * - nonshared device is SXCB=0100
395                          * - write combine device mem is SXCB=0001
396                          * (Uncached Normal memory)
397                          */
398                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
399                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
400                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
401                 } else if (cpu_is_xsc3()) {
402                         /*
403                          * For Xscale3,
404                          * - shared device is TEXCB=00101
405                          * - nonshared device is TEXCB=01000
406                          * - write combine device mem is TEXCB=00100
407                          * (Inner/Outer Uncacheable in xsc3 parlance)
408                          */
409                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
410                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
411                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
412                 } else {
413                         /*
414                          * For ARMv6 and ARMv7 without TEX remapping,
415                          * - shared device is TEXCB=00001
416                          * - nonshared device is TEXCB=01000
417                          * - write combine device mem is TEXCB=00100
418                          * (Uncached Normal in ARMv6 parlance).
419                          */
420                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
421                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
422                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
423                 }
424         } else {
425                 /*
426                  * On others, write combining is "Uncached/Buffered"
427                  */
428                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
429         }
430
431         /*
432          * Now deal with the memory-type mappings
433          */
434         cp = &cache_policies[cachepolicy];
435         vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
436
437         /*
438          * Only use write-through for non-SMP systems
439          */
440         if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
441                 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
442
443         /*
444          * Enable CPU-specific coherency if supported.
445          * (Only available on XSC3 at the moment.)
446          */
447         if (arch_is_coherent() && cpu_is_xsc3()) {
448                 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
449                 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
450                 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
451                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
452                 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
453         }
454         /*
455          * ARMv6 and above have extended page tables.
456          */
457         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
458 #ifndef CONFIG_ARM_LPAE
459                 /*
460                  * Mark cache clean areas and XIP ROM read only
461                  * from SVC mode and no access from userspace.
462                  */
463                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
464                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
465                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
466 #endif
467
468                 if (is_smp()) {
469                         /*
470                          * Mark memory with the "shared" attribute
471                          * for SMP systems
472                          */
473                         user_pgprot |= L_PTE_SHARED;
474                         kern_pgprot |= L_PTE_SHARED;
475                         vecs_pgprot |= L_PTE_SHARED;
476                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
477                         mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
478                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
479                         mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
480                         mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
481                         mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
482                         mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
483                         mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
484                         mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
485                 }
486         }
487
488         /*
489          * Non-cacheable Normal - intended for memory areas that must
490          * not cause dirty cache line writebacks when used
491          */
492         if (cpu_arch >= CPU_ARCH_ARMv6) {
493                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
494                         /* Non-cacheable Normal is XCB = 001 */
495                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
496                                 PMD_SECT_BUFFERED;
497                 } else {
498                         /* For both ARMv6 and non-TEX-remapping ARMv7 */
499                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
500                                 PMD_SECT_TEX(1);
501                 }
502         } else {
503                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
504         }
505
506 #ifdef CONFIG_ARM_LPAE
507         /*
508          * Do not generate access flag faults for the kernel mappings.
509          */
510         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
511                 mem_types[i].prot_pte |= PTE_EXT_AF;
512                 mem_types[i].prot_sect |= PMD_SECT_AF;
513         }
514         kern_pgprot |= PTE_EXT_AF;
515         vecs_pgprot |= PTE_EXT_AF;
516 #endif
517
518         for (i = 0; i < 16; i++) {
519                 pteval_t v = pgprot_val(protection_map[i]);
520                 protection_map[i] = __pgprot(v | user_pgprot);
521         }
522
523         mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
524         mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
525
526         pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
527         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
528                                  L_PTE_DIRTY | kern_pgprot);
529
530         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
531         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
532         mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
533         mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
534         mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
535         mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
536         mem_types[MT_ROM].prot_sect |= cp->pmd;
537
538         switch (cp->pmd) {
539         case PMD_SECT_WT:
540                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
541                 break;
542         case PMD_SECT_WB:
543         case PMD_SECT_WBWA:
544                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
545                 break;
546         }
547         printk("Memory policy: ECC %sabled, Data cache %s\n",
548                 ecc_mask ? "en" : "dis", cp->policy);
549
550         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
551                 struct mem_type *t = &mem_types[i];
552                 if (t->prot_l1)
553                         t->prot_l1 |= PMD_DOMAIN(t->domain);
554                 if (t->prot_sect)
555                         t->prot_sect |= PMD_DOMAIN(t->domain);
556         }
557
558 #if defined(CONFIG_SYS_SUPPORTS_HUGETLBFS) && !defined(CONFIG_ARM_LPAE)
559         /*
560          * we assume all huge pages are user pages and that hardware access
561          * flag updates are disabled (i.e. SCTLR.AFE == 0b).
562          */
563         arm_hugepteprotval = mem_types[MT_MEMORY].prot_pte | L_PTE_USER | L_PTE_VALID;
564
565         arm_hugepmdprotval = mem_types[MT_MEMORY].prot_sect | PMD_SECT_AP_READ
566                                 | PMD_SECT_nG;
567
568         /* HACK: make huge pages WT
569          * XXX: mm will not know nothing about this..
570          * FIXME: should only do it on Cortex-A8 or below */
571         arm_hugepmdprotval &= ~(PMD_SECT_WB | PMD_SECT_TEX(1));
572         arm_hugepmdprotval |= PMD_SECT_WT;
573 #endif
574
575 }
576
577 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
578 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
579                               unsigned long size, pgprot_t vma_prot)
580 {
581         if (!pfn_valid(pfn))
582                 return pgprot_noncached(vma_prot);
583         else if (file->f_flags & O_SYNC)
584                 return pgprot_writecombine(vma_prot);
585         return vma_prot;
586 }
587 EXPORT_SYMBOL(phys_mem_access_prot);
588 #endif
589
590 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
591
592 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
593 {
594         void *ptr = __va(memblock_alloc(sz, align));
595         memset(ptr, 0, sz);
596         return ptr;
597 }
598
599 static void __init *early_alloc(unsigned long sz)
600 {
601         return early_alloc_aligned(sz, sz);
602 }
603
604 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
605 {
606         if (pmd_none(*pmd)) {
607                 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
608                 __pmd_populate(pmd, __pa(pte), prot);
609         }
610         BUG_ON(pmd_bad(*pmd));
611         return pte_offset_kernel(pmd, addr);
612 }
613
614 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
615                                   unsigned long end, unsigned long pfn,
616                                   const struct mem_type *type)
617 {
618         pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
619         do {
620                 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
621                 pfn++;
622         } while (pte++, addr += PAGE_SIZE, addr != end);
623 }
624
625 static void __init alloc_init_section(pud_t *pud, unsigned long addr,
626                                       unsigned long end, phys_addr_t phys,
627                                       const struct mem_type *type)
628 {
629         pmd_t *pmd = pmd_offset(pud, addr);
630
631         /*
632          * Try a section mapping - end, addr and phys must all be aligned
633          * to a section boundary.  Note that PMDs refer to the individual
634          * L1 entries, whereas PGDs refer to a group of L1 entries making
635          * up one logical pointer to an L2 table.
636          */
637         if (type->prot_sect && ((addr | end | phys) & ~SECTION_MASK) == 0) {
638                 pmd_t *p = pmd;
639
640 #ifndef CONFIG_ARM_LPAE
641                 if (addr & SECTION_SIZE)
642                         pmd++;
643 #endif
644
645                 do {
646                         *pmd = __pmd(phys | type->prot_sect);
647                         phys += SECTION_SIZE;
648                 } while (pmd++, addr += SECTION_SIZE, addr != end);
649
650                 flush_pmd_entry(p);
651         } else {
652                 /*
653                  * No need to loop; pte's aren't interested in the
654                  * individual L1 entries.
655                  */
656                 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
657         }
658 }
659
660 static void alloc_init_pud(pgd_t *pgd, unsigned long addr, unsigned long end,
661         unsigned long phys, const struct mem_type *type)
662 {
663         pud_t *pud = pud_offset(pgd, addr);
664         unsigned long next;
665
666         do {
667                 next = pud_addr_end(addr, end);
668                 alloc_init_section(pud, addr, next, phys, type);
669                 phys += next - addr;
670         } while (pud++, addr = next, addr != end);
671 }
672
673 #ifndef CONFIG_ARM_LPAE
674 static void __init create_36bit_mapping(struct map_desc *md,
675                                         const struct mem_type *type)
676 {
677         unsigned long addr, length, end;
678         phys_addr_t phys;
679         pgd_t *pgd;
680
681         addr = md->virtual;
682         phys = __pfn_to_phys(md->pfn);
683         length = PAGE_ALIGN(md->length);
684
685         if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
686                 printk(KERN_ERR "MM: CPU does not support supersection "
687                        "mapping for 0x%08llx at 0x%08lx\n",
688                        (long long)__pfn_to_phys((u64)md->pfn), addr);
689                 return;
690         }
691
692         /* N.B. ARMv6 supersections are only defined to work with domain 0.
693          *      Since domain assignments can in fact be arbitrary, the
694          *      'domain == 0' check below is required to insure that ARMv6
695          *      supersections are only allocated for domain 0 regardless
696          *      of the actual domain assignments in use.
697          */
698         if (type->domain) {
699                 printk(KERN_ERR "MM: invalid domain in supersection "
700                        "mapping for 0x%08llx at 0x%08lx\n",
701                        (long long)__pfn_to_phys((u64)md->pfn), addr);
702                 return;
703         }
704
705         if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
706                 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
707                        " at 0x%08lx invalid alignment\n",
708                        (long long)__pfn_to_phys((u64)md->pfn), addr);
709                 return;
710         }
711
712         /*
713          * Shift bits [35:32] of address into bits [23:20] of PMD
714          * (See ARMv6 spec).
715          */
716         phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
717
718         pgd = pgd_offset_k(addr);
719         end = addr + length;
720         do {
721                 pud_t *pud = pud_offset(pgd, addr);
722                 pmd_t *pmd = pmd_offset(pud, addr);
723                 int i;
724
725                 for (i = 0; i < 16; i++)
726                         *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
727
728                 addr += SUPERSECTION_SIZE;
729                 phys += SUPERSECTION_SIZE;
730                 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
731         } while (addr != end);
732 }
733 #endif  /* !CONFIG_ARM_LPAE */
734
735 /*
736  * Create the page directory entries and any necessary
737  * page tables for the mapping specified by `md'.  We
738  * are able to cope here with varying sizes and address
739  * offsets, and we take full advantage of sections and
740  * supersections.
741  */
742 static void __init create_mapping(struct map_desc *md)
743 {
744         unsigned long addr, length, end;
745         phys_addr_t phys;
746         const struct mem_type *type;
747         pgd_t *pgd;
748
749         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
750                 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
751                        " at 0x%08lx in user region\n",
752                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
753                 return;
754         }
755
756         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
757             md->virtual >= PAGE_OFFSET &&
758             (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
759                 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
760                        " at 0x%08lx out of vmalloc space\n",
761                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
762         }
763
764         type = &mem_types[md->type];
765
766 #ifndef CONFIG_ARM_LPAE
767         /*
768          * Catch 36-bit addresses
769          */
770         if (md->pfn >= 0x100000) {
771                 create_36bit_mapping(md, type);
772                 return;
773         }
774 #endif
775
776         addr = md->virtual & PAGE_MASK;
777         phys = __pfn_to_phys(md->pfn);
778         length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
779
780         if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
781                 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
782                        "be mapped using pages, ignoring.\n",
783                        (long long)__pfn_to_phys(md->pfn), addr);
784                 return;
785         }
786
787         pgd = pgd_offset_k(addr);
788         end = addr + length;
789         do {
790                 unsigned long next = pgd_addr_end(addr, end);
791
792                 alloc_init_pud(pgd, addr, next, phys, type);
793
794                 phys += next - addr;
795                 addr = next;
796         } while (pgd++, addr != end);
797 }
798
799 /*
800  * Create the architecture specific mappings
801  */
802 void __init iotable_init(struct map_desc *io_desc, int nr)
803 {
804         struct map_desc *md;
805         struct vm_struct *vm;
806
807         if (!nr)
808                 return;
809
810         vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));
811
812         for (md = io_desc; nr; md++, nr--) {
813                 create_mapping(md);
814                 vm->addr = (void *)(md->virtual & PAGE_MASK);
815                 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
816                 vm->phys_addr = __pfn_to_phys(md->pfn); 
817                 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING; 
818                 vm->flags |= VM_ARM_MTYPE(md->type);
819                 vm->caller = iotable_init;
820                 vm_area_add_early(vm++);
821         }
822 }
823
824 static void * __initdata vmalloc_min =
825         (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
826
827 /*
828  * vmalloc=size forces the vmalloc area to be exactly 'size'
829  * bytes. This can be used to increase (or decrease) the vmalloc
830  * area - the default is 240m.
831  */
832 static int __init early_vmalloc(char *arg)
833 {
834         unsigned long vmalloc_reserve = memparse(arg, NULL);
835
836         if (vmalloc_reserve < SZ_16M) {
837                 vmalloc_reserve = SZ_16M;
838                 printk(KERN_WARNING
839                         "vmalloc area too small, limiting to %luMB\n",
840                         vmalloc_reserve >> 20);
841         }
842
843         if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
844                 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
845                 printk(KERN_WARNING
846                         "vmalloc area is too big, limiting to %luMB\n",
847                         vmalloc_reserve >> 20);
848         }
849
850         vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
851         return 0;
852 }
853 early_param("vmalloc", early_vmalloc);
854
855 phys_addr_t arm_lowmem_limit __initdata = 0;
856
857 void __init sanity_check_meminfo(void)
858 {
859         int i, j, highmem = 0;
860
861         for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
862                 struct membank *bank = &meminfo.bank[j];
863                 *bank = meminfo.bank[i];
864
865                 if (bank->start > ULONG_MAX)
866                         highmem = 1;
867
868 #ifdef CONFIG_HIGHMEM
869                 if (__va(bank->start) >= vmalloc_min ||
870                     __va(bank->start) < (void *)PAGE_OFFSET)
871                         highmem = 1;
872
873                 bank->highmem = highmem;
874
875                 /*
876                  * Split those memory banks which are partially overlapping
877                  * the vmalloc area greatly simplifying things later.
878                  */
879                 if (!highmem && __va(bank->start) < vmalloc_min &&
880                     bank->size > vmalloc_min - __va(bank->start)) {
881                         if (meminfo.nr_banks >= NR_BANKS) {
882                                 printk(KERN_CRIT "NR_BANKS too low, "
883                                                  "ignoring high memory\n");
884                         } else {
885                                 memmove(bank + 1, bank,
886                                         (meminfo.nr_banks - i) * sizeof(*bank));
887                                 meminfo.nr_banks++;
888                                 i++;
889                                 bank[1].size -= vmalloc_min - __va(bank->start);
890                                 bank[1].start = __pa(vmalloc_min - 1) + 1;
891                                 bank[1].highmem = highmem = 1;
892                                 j++;
893                         }
894                         bank->size = vmalloc_min - __va(bank->start);
895                 }
896 #else
897                 bank->highmem = highmem;
898
899                 /*
900                  * Highmem banks not allowed with !CONFIG_HIGHMEM.
901                  */
902                 if (highmem) {
903                         printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
904                                "(!CONFIG_HIGHMEM).\n",
905                                (unsigned long long)bank->start,
906                                (unsigned long long)bank->start + bank->size - 1);
907                         continue;
908                 }
909
910                 /*
911                  * Check whether this memory bank would entirely overlap
912                  * the vmalloc area.
913                  */
914                 if (__va(bank->start) >= vmalloc_min ||
915                     __va(bank->start) < (void *)PAGE_OFFSET) {
916                         printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
917                                "(vmalloc region overlap).\n",
918                                (unsigned long long)bank->start,
919                                (unsigned long long)bank->start + bank->size - 1);
920                         continue;
921                 }
922
923                 /*
924                  * Check whether this memory bank would partially overlap
925                  * the vmalloc area.
926                  */
927                 if (__va(bank->start + bank->size) > vmalloc_min ||
928                     __va(bank->start + bank->size) < __va(bank->start)) {
929                         unsigned long newsize = vmalloc_min - __va(bank->start);
930                         printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
931                                "to -%.8llx (vmalloc region overlap).\n",
932                                (unsigned long long)bank->start,
933                                (unsigned long long)bank->start + bank->size - 1,
934                                (unsigned long long)bank->start + newsize - 1);
935                         bank->size = newsize;
936                 }
937 #endif
938                 if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)
939                         arm_lowmem_limit = bank->start + bank->size;
940
941                 j++;
942         }
943 #ifdef CONFIG_HIGHMEM
944         if (highmem) {
945                 const char *reason = NULL;
946
947                 if (cache_is_vipt_aliasing()) {
948                         /*
949                          * Interactions between kmap and other mappings
950                          * make highmem support with aliasing VIPT caches
951                          * rather difficult.
952                          */
953                         reason = "with VIPT aliasing cache";
954                 }
955                 if (reason) {
956                         printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
957                                 reason);
958                         while (j > 0 && meminfo.bank[j - 1].highmem)
959                                 j--;
960                 }
961         }
962 #endif
963         meminfo.nr_banks = j;
964         high_memory = __va(arm_lowmem_limit - 1) + 1;
965         memblock_set_current_limit(arm_lowmem_limit);
966 }
967
968 static inline void prepare_page_table(void)
969 {
970         unsigned long addr;
971         phys_addr_t end;
972
973         /*
974          * Clear out all the mappings below the kernel image.
975          */
976         for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
977                 pmd_clear(pmd_off_k(addr));
978
979 #ifdef CONFIG_XIP_KERNEL
980         /* The XIP kernel is mapped in the module area -- skip over it */
981         addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
982 #endif
983         for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
984                 pmd_clear(pmd_off_k(addr));
985
986         /*
987          * Find the end of the first block of lowmem.
988          */
989         end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
990         if (end >= arm_lowmem_limit)
991                 end = arm_lowmem_limit;
992
993         /*
994          * Clear out all the kernel space mappings, except for the first
995          * memory bank, up to the vmalloc region.
996          */
997         for (addr = __phys_to_virt(end);
998              addr < VMALLOC_START; addr += PMD_SIZE)
999                 pmd_clear(pmd_off_k(addr));
1000 }
1001
1002 #ifdef CONFIG_ARM_LPAE
1003 /* the first page is reserved for pgd */
1004 #define SWAPPER_PG_DIR_SIZE     (PAGE_SIZE + \
1005                                  PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1006 #else
1007 #define SWAPPER_PG_DIR_SIZE     (PTRS_PER_PGD * sizeof(pgd_t))
1008 #endif
1009
1010 /*
1011  * Reserve the special regions of memory
1012  */
1013 void __init arm_mm_memblock_reserve(void)
1014 {
1015         /*
1016          * Reserve the page tables.  These are already in use,
1017          * and can only be in node 0.
1018          */
1019         memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1020
1021 #ifdef CONFIG_SA1111
1022         /*
1023          * Because of the SA1111 DMA bug, we want to preserve our
1024          * precious DMA-able memory...
1025          */
1026         memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1027 #endif
1028 }
1029
1030 /*
1031  * Set up the device mappings.  Since we clear out the page tables for all
1032  * mappings above VMALLOC_START, we will remove any debug device mappings.
1033  * This means you have to be careful how you debug this function, or any
1034  * called function.  This means you can't use any function or debugging
1035  * method which may touch any device, otherwise the kernel _will_ crash.
1036  */
1037 static void __init devicemaps_init(struct machine_desc *mdesc)
1038 {
1039         struct map_desc map;
1040         unsigned long addr;
1041
1042         /*
1043          * Allocate the vector page early.
1044          */
1045         vectors_page = early_alloc(PAGE_SIZE);
1046
1047         for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1048                 pmd_clear(pmd_off_k(addr));
1049
1050         /*
1051          * Map the kernel if it is XIP.
1052          * It is always first in the modulearea.
1053          */
1054 #ifdef CONFIG_XIP_KERNEL
1055         map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1056         map.virtual = MODULES_VADDR;
1057         map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1058         map.type = MT_ROM;
1059         create_mapping(&map);
1060 #endif
1061
1062         /*
1063          * Map the cache flushing regions.
1064          */
1065 #ifdef FLUSH_BASE
1066         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1067         map.virtual = FLUSH_BASE;
1068         map.length = SZ_1M;
1069         map.type = MT_CACHECLEAN;
1070         create_mapping(&map);
1071 #endif
1072 #ifdef FLUSH_BASE_MINICACHE
1073         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1074         map.virtual = FLUSH_BASE_MINICACHE;
1075         map.length = SZ_1M;
1076         map.type = MT_MINICLEAN;
1077         create_mapping(&map);
1078 #endif
1079
1080         /*
1081          * Create a mapping for the machine vectors at the high-vectors
1082          * location (0xffff0000).  If we aren't using high-vectors, also
1083          * create a mapping at the low-vectors virtual address.
1084          */
1085         map.pfn = __phys_to_pfn(virt_to_phys(vectors_page));
1086         map.virtual = 0xffff0000;
1087         map.length = PAGE_SIZE;
1088         map.type = MT_HIGH_VECTORS;
1089         create_mapping(&map);
1090
1091         if (!vectors_high()) {
1092                 map.virtual = 0;
1093                 map.type = MT_LOW_VECTORS;
1094                 create_mapping(&map);
1095         }
1096
1097         /*
1098          * Ask the machine support to map in the statically mapped devices.
1099          */
1100         if (mdesc->map_io)
1101                 mdesc->map_io();
1102
1103         /*
1104          * Finally flush the caches and tlb to ensure that we're in a
1105          * consistent state wrt the writebuffer.  This also ensures that
1106          * any write-allocated cache lines in the vector page are written
1107          * back.  After this point, we can start to touch devices again.
1108          */
1109         local_flush_tlb_all();
1110         flush_cache_all();
1111 }
1112
1113 static void __init kmap_init(void)
1114 {
1115 #ifdef CONFIG_HIGHMEM
1116         pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1117                 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1118 #endif
1119 }
1120
1121 static void __init map_lowmem(void)
1122 {
1123         struct memblock_region *reg;
1124
1125         /* Map all the lowmem memory banks. */
1126         for_each_memblock(memory, reg) {
1127                 phys_addr_t start = reg->base;
1128                 phys_addr_t end = start + reg->size;
1129                 struct map_desc map;
1130
1131                 if (end > arm_lowmem_limit)
1132                         end = arm_lowmem_limit;
1133                 if (start >= end)
1134                         break;
1135
1136                 map.pfn = __phys_to_pfn(start);
1137                 map.virtual = __phys_to_virt(start);
1138                 map.length = end - start;
1139                 map.type = MT_MEMORY;
1140
1141                 create_mapping(&map);
1142         }
1143 }
1144
1145 /*
1146  * paging_init() sets up the page tables, initialises the zone memory
1147  * maps, and sets up the zero page, bad page and bad page tables.
1148  */
1149 void __init paging_init(struct machine_desc *mdesc)
1150 {
1151         void *zero_page;
1152
1153         memblock_set_current_limit(arm_lowmem_limit);
1154
1155         build_mem_type_table();
1156         prepare_page_table();
1157         map_lowmem();
1158         dma_contiguous_remap();
1159         devicemaps_init(mdesc);
1160         kmap_init();
1161
1162         top_pmd = pmd_off_k(0xffff0000);
1163
1164         /* allocate the zero page. */
1165         zero_page = early_alloc(PAGE_SIZE);
1166
1167         bootmem_init();
1168
1169         empty_zero_page = virt_to_page(zero_page);
1170         __flush_dcache_page(NULL, empty_zero_page);
1171 }