ARM: LPAE: MMU setup for the 3-level page table format
[pandora-kernel.git] / arch / arm / mm / mmu.c
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18
19 #include <asm/cputype.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/setup.h>
23 #include <asm/sizes.h>
24 #include <asm/smp_plat.h>
25 #include <asm/tlb.h>
26 #include <asm/highmem.h>
27 #include <asm/traps.h>
28
29 #include <asm/mach/arch.h>
30 #include <asm/mach/map.h>
31
32 #include "mm.h"
33
34 /*
35  * empty_zero_page is a special page that is used for
36  * zero-initialized data and COW.
37  */
38 struct page *empty_zero_page;
39 EXPORT_SYMBOL(empty_zero_page);
40
41 /*
42  * The pmd table for the upper-most set of pages.
43  */
44 pmd_t *top_pmd;
45
46 #define CPOLICY_UNCACHED        0
47 #define CPOLICY_BUFFERED        1
48 #define CPOLICY_WRITETHROUGH    2
49 #define CPOLICY_WRITEBACK       3
50 #define CPOLICY_WRITEALLOC      4
51
52 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
53 static unsigned int ecc_mask __initdata = 0;
54 pgprot_t pgprot_user;
55 pgprot_t pgprot_kernel;
56
57 EXPORT_SYMBOL(pgprot_user);
58 EXPORT_SYMBOL(pgprot_kernel);
59
60 struct cachepolicy {
61         const char      policy[16];
62         unsigned int    cr_mask;
63         pmdval_t        pmd;
64         pteval_t        pte;
65 };
66
67 static struct cachepolicy cache_policies[] __initdata = {
68         {
69                 .policy         = "uncached",
70                 .cr_mask        = CR_W|CR_C,
71                 .pmd            = PMD_SECT_UNCACHED,
72                 .pte            = L_PTE_MT_UNCACHED,
73         }, {
74                 .policy         = "buffered",
75                 .cr_mask        = CR_C,
76                 .pmd            = PMD_SECT_BUFFERED,
77                 .pte            = L_PTE_MT_BUFFERABLE,
78         }, {
79                 .policy         = "writethrough",
80                 .cr_mask        = 0,
81                 .pmd            = PMD_SECT_WT,
82                 .pte            = L_PTE_MT_WRITETHROUGH,
83         }, {
84                 .policy         = "writeback",
85                 .cr_mask        = 0,
86                 .pmd            = PMD_SECT_WB,
87                 .pte            = L_PTE_MT_WRITEBACK,
88         }, {
89                 .policy         = "writealloc",
90                 .cr_mask        = 0,
91                 .pmd            = PMD_SECT_WBWA,
92                 .pte            = L_PTE_MT_WRITEALLOC,
93         }
94 };
95
96 /*
97  * These are useful for identifying cache coherency
98  * problems by allowing the cache or the cache and
99  * writebuffer to be turned off.  (Note: the write
100  * buffer should not be on and the cache off).
101  */
102 static int __init early_cachepolicy(char *p)
103 {
104         int i;
105
106         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
107                 int len = strlen(cache_policies[i].policy);
108
109                 if (memcmp(p, cache_policies[i].policy, len) == 0) {
110                         cachepolicy = i;
111                         cr_alignment &= ~cache_policies[i].cr_mask;
112                         cr_no_alignment &= ~cache_policies[i].cr_mask;
113                         break;
114                 }
115         }
116         if (i == ARRAY_SIZE(cache_policies))
117                 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
118         /*
119          * This restriction is partly to do with the way we boot; it is
120          * unpredictable to have memory mapped using two different sets of
121          * memory attributes (shared, type, and cache attribs).  We can not
122          * change these attributes once the initial assembly has setup the
123          * page tables.
124          */
125         if (cpu_architecture() >= CPU_ARCH_ARMv6) {
126                 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
127                 cachepolicy = CPOLICY_WRITEBACK;
128         }
129         flush_cache_all();
130         set_cr(cr_alignment);
131         return 0;
132 }
133 early_param("cachepolicy", early_cachepolicy);
134
135 static int __init early_nocache(char *__unused)
136 {
137         char *p = "buffered";
138         printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
139         early_cachepolicy(p);
140         return 0;
141 }
142 early_param("nocache", early_nocache);
143
144 static int __init early_nowrite(char *__unused)
145 {
146         char *p = "uncached";
147         printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
148         early_cachepolicy(p);
149         return 0;
150 }
151 early_param("nowb", early_nowrite);
152
153 #ifndef CONFIG_ARM_LPAE
154 static int __init early_ecc(char *p)
155 {
156         if (memcmp(p, "on", 2) == 0)
157                 ecc_mask = PMD_PROTECTION;
158         else if (memcmp(p, "off", 3) == 0)
159                 ecc_mask = 0;
160         return 0;
161 }
162 early_param("ecc", early_ecc);
163 #endif
164
165 static int __init noalign_setup(char *__unused)
166 {
167         cr_alignment &= ~CR_A;
168         cr_no_alignment &= ~CR_A;
169         set_cr(cr_alignment);
170         return 1;
171 }
172 __setup("noalign", noalign_setup);
173
174 #ifndef CONFIG_SMP
175 void adjust_cr(unsigned long mask, unsigned long set)
176 {
177         unsigned long flags;
178
179         mask &= ~CR_A;
180
181         set &= mask;
182
183         local_irq_save(flags);
184
185         cr_no_alignment = (cr_no_alignment & ~mask) | set;
186         cr_alignment = (cr_alignment & ~mask) | set;
187
188         set_cr((get_cr() & ~mask) | set);
189
190         local_irq_restore(flags);
191 }
192 #endif
193
194 #define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
195 #define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
196
197 static struct mem_type mem_types[] = {
198         [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
199                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
200                                   L_PTE_SHARED,
201                 .prot_l1        = PMD_TYPE_TABLE,
202                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
203                 .domain         = DOMAIN_IO,
204         },
205         [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
206                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
207                 .prot_l1        = PMD_TYPE_TABLE,
208                 .prot_sect      = PROT_SECT_DEVICE,
209                 .domain         = DOMAIN_IO,
210         },
211         [MT_DEVICE_CACHED] = {    /* ioremap_cached */
212                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
213                 .prot_l1        = PMD_TYPE_TABLE,
214                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
215                 .domain         = DOMAIN_IO,
216         },      
217         [MT_DEVICE_WC] = {      /* ioremap_wc */
218                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
219                 .prot_l1        = PMD_TYPE_TABLE,
220                 .prot_sect      = PROT_SECT_DEVICE,
221                 .domain         = DOMAIN_IO,
222         },
223         [MT_UNCACHED] = {
224                 .prot_pte       = PROT_PTE_DEVICE,
225                 .prot_l1        = PMD_TYPE_TABLE,
226                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
227                 .domain         = DOMAIN_IO,
228         },
229         [MT_CACHECLEAN] = {
230                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
231                 .domain    = DOMAIN_KERNEL,
232         },
233 #ifndef CONFIG_ARM_LPAE
234         [MT_MINICLEAN] = {
235                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
236                 .domain    = DOMAIN_KERNEL,
237         },
238 #endif
239         [MT_LOW_VECTORS] = {
240                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
241                                 L_PTE_RDONLY,
242                 .prot_l1   = PMD_TYPE_TABLE,
243                 .domain    = DOMAIN_USER,
244         },
245         [MT_HIGH_VECTORS] = {
246                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
247                                 L_PTE_USER | L_PTE_RDONLY,
248                 .prot_l1   = PMD_TYPE_TABLE,
249                 .domain    = DOMAIN_USER,
250         },
251         [MT_MEMORY] = {
252                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
253                 .prot_l1   = PMD_TYPE_TABLE,
254                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
255                 .domain    = DOMAIN_KERNEL,
256         },
257         [MT_ROM] = {
258                 .prot_sect = PMD_TYPE_SECT,
259                 .domain    = DOMAIN_KERNEL,
260         },
261         [MT_MEMORY_NONCACHED] = {
262                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
263                                 L_PTE_MT_BUFFERABLE,
264                 .prot_l1   = PMD_TYPE_TABLE,
265                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
266                 .domain    = DOMAIN_KERNEL,
267         },
268         [MT_MEMORY_DTCM] = {
269                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
270                                 L_PTE_XN,
271                 .prot_l1   = PMD_TYPE_TABLE,
272                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
273                 .domain    = DOMAIN_KERNEL,
274         },
275         [MT_MEMORY_ITCM] = {
276                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
277                 .prot_l1   = PMD_TYPE_TABLE,
278                 .domain    = DOMAIN_KERNEL,
279         },
280         [MT_MEMORY_SO] = {
281                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
282                                 L_PTE_MT_UNCACHED,
283                 .prot_l1   = PMD_TYPE_TABLE,
284                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
285                                 PMD_SECT_UNCACHED | PMD_SECT_XN,
286                 .domain    = DOMAIN_KERNEL,
287         },
288 };
289
290 const struct mem_type *get_mem_type(unsigned int type)
291 {
292         return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
293 }
294 EXPORT_SYMBOL(get_mem_type);
295
296 /*
297  * Adjust the PMD section entries according to the CPU in use.
298  */
299 static void __init build_mem_type_table(void)
300 {
301         struct cachepolicy *cp;
302         unsigned int cr = get_cr();
303         pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
304         int cpu_arch = cpu_architecture();
305         int i;
306
307         if (cpu_arch < CPU_ARCH_ARMv6) {
308 #if defined(CONFIG_CPU_DCACHE_DISABLE)
309                 if (cachepolicy > CPOLICY_BUFFERED)
310                         cachepolicy = CPOLICY_BUFFERED;
311 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
312                 if (cachepolicy > CPOLICY_WRITETHROUGH)
313                         cachepolicy = CPOLICY_WRITETHROUGH;
314 #endif
315         }
316         if (cpu_arch < CPU_ARCH_ARMv5) {
317                 if (cachepolicy >= CPOLICY_WRITEALLOC)
318                         cachepolicy = CPOLICY_WRITEBACK;
319                 ecc_mask = 0;
320         }
321         if (is_smp())
322                 cachepolicy = CPOLICY_WRITEALLOC;
323
324         /*
325          * Strip out features not present on earlier architectures.
326          * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
327          * without extended page tables don't have the 'Shared' bit.
328          */
329         if (cpu_arch < CPU_ARCH_ARMv5)
330                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
331                         mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
332         if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
333                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
334                         mem_types[i].prot_sect &= ~PMD_SECT_S;
335
336         /*
337          * ARMv5 and lower, bit 4 must be set for page tables (was: cache
338          * "update-able on write" bit on ARM610).  However, Xscale and
339          * Xscale3 require this bit to be cleared.
340          */
341         if (cpu_is_xscale() || cpu_is_xsc3()) {
342                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
343                         mem_types[i].prot_sect &= ~PMD_BIT4;
344                         mem_types[i].prot_l1 &= ~PMD_BIT4;
345                 }
346         } else if (cpu_arch < CPU_ARCH_ARMv6) {
347                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
348                         if (mem_types[i].prot_l1)
349                                 mem_types[i].prot_l1 |= PMD_BIT4;
350                         if (mem_types[i].prot_sect)
351                                 mem_types[i].prot_sect |= PMD_BIT4;
352                 }
353         }
354
355         /*
356          * Mark the device areas according to the CPU/architecture.
357          */
358         if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
359                 if (!cpu_is_xsc3()) {
360                         /*
361                          * Mark device regions on ARMv6+ as execute-never
362                          * to prevent speculative instruction fetches.
363                          */
364                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
365                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
366                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
367                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
368                 }
369                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
370                         /*
371                          * For ARMv7 with TEX remapping,
372                          * - shared device is SXCB=1100
373                          * - nonshared device is SXCB=0100
374                          * - write combine device mem is SXCB=0001
375                          * (Uncached Normal memory)
376                          */
377                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
378                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
379                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
380                 } else if (cpu_is_xsc3()) {
381                         /*
382                          * For Xscale3,
383                          * - shared device is TEXCB=00101
384                          * - nonshared device is TEXCB=01000
385                          * - write combine device mem is TEXCB=00100
386                          * (Inner/Outer Uncacheable in xsc3 parlance)
387                          */
388                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
389                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
390                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
391                 } else {
392                         /*
393                          * For ARMv6 and ARMv7 without TEX remapping,
394                          * - shared device is TEXCB=00001
395                          * - nonshared device is TEXCB=01000
396                          * - write combine device mem is TEXCB=00100
397                          * (Uncached Normal in ARMv6 parlance).
398                          */
399                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
400                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
401                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
402                 }
403         } else {
404                 /*
405                  * On others, write combining is "Uncached/Buffered"
406                  */
407                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
408         }
409
410         /*
411          * Now deal with the memory-type mappings
412          */
413         cp = &cache_policies[cachepolicy];
414         vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
415
416         /*
417          * Only use write-through for non-SMP systems
418          */
419         if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
420                 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
421
422         /*
423          * Enable CPU-specific coherency if supported.
424          * (Only available on XSC3 at the moment.)
425          */
426         if (arch_is_coherent() && cpu_is_xsc3()) {
427                 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
428                 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
429                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
430                 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
431         }
432         /*
433          * ARMv6 and above have extended page tables.
434          */
435         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
436 #ifndef CONFIG_ARM_LPAE
437                 /*
438                  * Mark cache clean areas and XIP ROM read only
439                  * from SVC mode and no access from userspace.
440                  */
441                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
442                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
443                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
444 #endif
445
446                 if (is_smp()) {
447                         /*
448                          * Mark memory with the "shared" attribute
449                          * for SMP systems
450                          */
451                         user_pgprot |= L_PTE_SHARED;
452                         kern_pgprot |= L_PTE_SHARED;
453                         vecs_pgprot |= L_PTE_SHARED;
454                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
455                         mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
456                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
457                         mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
458                         mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
459                         mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
460                         mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
461                         mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
462                 }
463         }
464
465         /*
466          * Non-cacheable Normal - intended for memory areas that must
467          * not cause dirty cache line writebacks when used
468          */
469         if (cpu_arch >= CPU_ARCH_ARMv6) {
470                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
471                         /* Non-cacheable Normal is XCB = 001 */
472                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
473                                 PMD_SECT_BUFFERED;
474                 } else {
475                         /* For both ARMv6 and non-TEX-remapping ARMv7 */
476                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
477                                 PMD_SECT_TEX(1);
478                 }
479         } else {
480                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
481         }
482
483 #ifdef CONFIG_ARM_LPAE
484         /*
485          * Do not generate access flag faults for the kernel mappings.
486          */
487         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
488                 mem_types[i].prot_pte |= PTE_EXT_AF;
489                 mem_types[i].prot_sect |= PMD_SECT_AF;
490         }
491         kern_pgprot |= PTE_EXT_AF;
492         vecs_pgprot |= PTE_EXT_AF;
493 #endif
494
495         for (i = 0; i < 16; i++) {
496                 pteval_t v = pgprot_val(protection_map[i]);
497                 protection_map[i] = __pgprot(v | user_pgprot);
498         }
499
500         mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
501         mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
502
503         pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
504         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
505                                  L_PTE_DIRTY | kern_pgprot);
506
507         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
508         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
509         mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
510         mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
511         mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
512         mem_types[MT_ROM].prot_sect |= cp->pmd;
513
514         switch (cp->pmd) {
515         case PMD_SECT_WT:
516                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
517                 break;
518         case PMD_SECT_WB:
519         case PMD_SECT_WBWA:
520                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
521                 break;
522         }
523         printk("Memory policy: ECC %sabled, Data cache %s\n",
524                 ecc_mask ? "en" : "dis", cp->policy);
525
526         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
527                 struct mem_type *t = &mem_types[i];
528                 if (t->prot_l1)
529                         t->prot_l1 |= PMD_DOMAIN(t->domain);
530                 if (t->prot_sect)
531                         t->prot_sect |= PMD_DOMAIN(t->domain);
532         }
533 }
534
535 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
536 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
537                               unsigned long size, pgprot_t vma_prot)
538 {
539         if (!pfn_valid(pfn))
540                 return pgprot_noncached(vma_prot);
541         else if (file->f_flags & O_SYNC)
542                 return pgprot_writecombine(vma_prot);
543         return vma_prot;
544 }
545 EXPORT_SYMBOL(phys_mem_access_prot);
546 #endif
547
548 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
549
550 static void __init *early_alloc(unsigned long sz)
551 {
552         void *ptr = __va(memblock_alloc(sz, sz));
553         memset(ptr, 0, sz);
554         return ptr;
555 }
556
557 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
558 {
559         if (pmd_none(*pmd)) {
560                 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
561                 __pmd_populate(pmd, __pa(pte), prot);
562         }
563         BUG_ON(pmd_bad(*pmd));
564         return pte_offset_kernel(pmd, addr);
565 }
566
567 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
568                                   unsigned long end, unsigned long pfn,
569                                   const struct mem_type *type)
570 {
571         pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
572         do {
573                 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
574                 pfn++;
575         } while (pte++, addr += PAGE_SIZE, addr != end);
576 }
577
578 static void __init alloc_init_section(pud_t *pud, unsigned long addr,
579                                       unsigned long end, phys_addr_t phys,
580                                       const struct mem_type *type)
581 {
582         pmd_t *pmd = pmd_offset(pud, addr);
583
584         /*
585          * Try a section mapping - end, addr and phys must all be aligned
586          * to a section boundary.  Note that PMDs refer to the individual
587          * L1 entries, whereas PGDs refer to a group of L1 entries making
588          * up one logical pointer to an L2 table.
589          */
590         if (((addr | end | phys) & ~SECTION_MASK) == 0) {
591                 pmd_t *p = pmd;
592
593 #ifndef CONFIG_ARM_LPAE
594                 if (addr & SECTION_SIZE)
595                         pmd++;
596 #endif
597
598                 do {
599                         *pmd = __pmd(phys | type->prot_sect);
600                         phys += SECTION_SIZE;
601                 } while (pmd++, addr += SECTION_SIZE, addr != end);
602
603                 flush_pmd_entry(p);
604         } else {
605                 /*
606                  * No need to loop; pte's aren't interested in the
607                  * individual L1 entries.
608                  */
609                 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
610         }
611 }
612
613 static void alloc_init_pud(pgd_t *pgd, unsigned long addr, unsigned long end,
614         unsigned long phys, const struct mem_type *type)
615 {
616         pud_t *pud = pud_offset(pgd, addr);
617         unsigned long next;
618
619         do {
620                 next = pud_addr_end(addr, end);
621                 alloc_init_section(pud, addr, next, phys, type);
622                 phys += next - addr;
623         } while (pud++, addr = next, addr != end);
624 }
625
626 #ifndef CONFIG_ARM_LPAE
627 static void __init create_36bit_mapping(struct map_desc *md,
628                                         const struct mem_type *type)
629 {
630         unsigned long addr, length, end;
631         phys_addr_t phys;
632         pgd_t *pgd;
633
634         addr = md->virtual;
635         phys = __pfn_to_phys(md->pfn);
636         length = PAGE_ALIGN(md->length);
637
638         if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
639                 printk(KERN_ERR "MM: CPU does not support supersection "
640                        "mapping for 0x%08llx at 0x%08lx\n",
641                        (long long)__pfn_to_phys((u64)md->pfn), addr);
642                 return;
643         }
644
645         /* N.B. ARMv6 supersections are only defined to work with domain 0.
646          *      Since domain assignments can in fact be arbitrary, the
647          *      'domain == 0' check below is required to insure that ARMv6
648          *      supersections are only allocated for domain 0 regardless
649          *      of the actual domain assignments in use.
650          */
651         if (type->domain) {
652                 printk(KERN_ERR "MM: invalid domain in supersection "
653                        "mapping for 0x%08llx at 0x%08lx\n",
654                        (long long)__pfn_to_phys((u64)md->pfn), addr);
655                 return;
656         }
657
658         if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
659                 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
660                        " at 0x%08lx invalid alignment\n",
661                        (long long)__pfn_to_phys((u64)md->pfn), addr);
662                 return;
663         }
664
665         /*
666          * Shift bits [35:32] of address into bits [23:20] of PMD
667          * (See ARMv6 spec).
668          */
669         phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
670
671         pgd = pgd_offset_k(addr);
672         end = addr + length;
673         do {
674                 pud_t *pud = pud_offset(pgd, addr);
675                 pmd_t *pmd = pmd_offset(pud, addr);
676                 int i;
677
678                 for (i = 0; i < 16; i++)
679                         *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
680
681                 addr += SUPERSECTION_SIZE;
682                 phys += SUPERSECTION_SIZE;
683                 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
684         } while (addr != end);
685 }
686 #endif  /* !CONFIG_ARM_LPAE */
687
688 /*
689  * Create the page directory entries and any necessary
690  * page tables for the mapping specified by `md'.  We
691  * are able to cope here with varying sizes and address
692  * offsets, and we take full advantage of sections and
693  * supersections.
694  */
695 static void __init create_mapping(struct map_desc *md)
696 {
697         unsigned long addr, length, end;
698         phys_addr_t phys;
699         const struct mem_type *type;
700         pgd_t *pgd;
701
702         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
703                 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
704                        " at 0x%08lx in user region\n",
705                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
706                 return;
707         }
708
709         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
710             md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
711                 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
712                        " at 0x%08lx overlaps vmalloc space\n",
713                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
714         }
715
716         type = &mem_types[md->type];
717
718 #ifndef CONFIG_ARM_LPAE
719         /*
720          * Catch 36-bit addresses
721          */
722         if (md->pfn >= 0x100000) {
723                 create_36bit_mapping(md, type);
724                 return;
725         }
726 #endif
727
728         addr = md->virtual & PAGE_MASK;
729         phys = __pfn_to_phys(md->pfn);
730         length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
731
732         if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
733                 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
734                        "be mapped using pages, ignoring.\n",
735                        (long long)__pfn_to_phys(md->pfn), addr);
736                 return;
737         }
738
739         pgd = pgd_offset_k(addr);
740         end = addr + length;
741         do {
742                 unsigned long next = pgd_addr_end(addr, end);
743
744                 alloc_init_pud(pgd, addr, next, phys, type);
745
746                 phys += next - addr;
747                 addr = next;
748         } while (pgd++, addr != end);
749 }
750
751 /*
752  * Create the architecture specific mappings
753  */
754 void __init iotable_init(struct map_desc *io_desc, int nr)
755 {
756         int i;
757
758         for (i = 0; i < nr; i++)
759                 create_mapping(io_desc + i);
760 }
761
762 static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
763
764 /*
765  * vmalloc=size forces the vmalloc area to be exactly 'size'
766  * bytes. This can be used to increase (or decrease) the vmalloc
767  * area - the default is 128m.
768  */
769 static int __init early_vmalloc(char *arg)
770 {
771         unsigned long vmalloc_reserve = memparse(arg, NULL);
772
773         if (vmalloc_reserve < SZ_16M) {
774                 vmalloc_reserve = SZ_16M;
775                 printk(KERN_WARNING
776                         "vmalloc area too small, limiting to %luMB\n",
777                         vmalloc_reserve >> 20);
778         }
779
780         if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
781                 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
782                 printk(KERN_WARNING
783                         "vmalloc area is too big, limiting to %luMB\n",
784                         vmalloc_reserve >> 20);
785         }
786
787         vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
788         return 0;
789 }
790 early_param("vmalloc", early_vmalloc);
791
792 static phys_addr_t lowmem_limit __initdata = 0;
793
794 void __init sanity_check_meminfo(void)
795 {
796         int i, j, highmem = 0;
797
798         for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
799                 struct membank *bank = &meminfo.bank[j];
800                 *bank = meminfo.bank[i];
801
802 #ifdef CONFIG_HIGHMEM
803                 if (__va(bank->start) >= vmalloc_min ||
804                     __va(bank->start) < (void *)PAGE_OFFSET)
805                         highmem = 1;
806
807                 bank->highmem = highmem;
808
809                 /*
810                  * Split those memory banks which are partially overlapping
811                  * the vmalloc area greatly simplifying things later.
812                  */
813                 if (__va(bank->start) < vmalloc_min &&
814                     bank->size > vmalloc_min - __va(bank->start)) {
815                         if (meminfo.nr_banks >= NR_BANKS) {
816                                 printk(KERN_CRIT "NR_BANKS too low, "
817                                                  "ignoring high memory\n");
818                         } else {
819                                 memmove(bank + 1, bank,
820                                         (meminfo.nr_banks - i) * sizeof(*bank));
821                                 meminfo.nr_banks++;
822                                 i++;
823                                 bank[1].size -= vmalloc_min - __va(bank->start);
824                                 bank[1].start = __pa(vmalloc_min - 1) + 1;
825                                 bank[1].highmem = highmem = 1;
826                                 j++;
827                         }
828                         bank->size = vmalloc_min - __va(bank->start);
829                 }
830 #else
831                 bank->highmem = highmem;
832
833                 /*
834                  * Check whether this memory bank would entirely overlap
835                  * the vmalloc area.
836                  */
837                 if (__va(bank->start) >= vmalloc_min ||
838                     __va(bank->start) < (void *)PAGE_OFFSET) {
839                         printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
840                                "(vmalloc region overlap).\n",
841                                (unsigned long long)bank->start,
842                                (unsigned long long)bank->start + bank->size - 1);
843                         continue;
844                 }
845
846                 /*
847                  * Check whether this memory bank would partially overlap
848                  * the vmalloc area.
849                  */
850                 if (__va(bank->start + bank->size) > vmalloc_min ||
851                     __va(bank->start + bank->size) < __va(bank->start)) {
852                         unsigned long newsize = vmalloc_min - __va(bank->start);
853                         printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
854                                "to -%.8llx (vmalloc region overlap).\n",
855                                (unsigned long long)bank->start,
856                                (unsigned long long)bank->start + bank->size - 1,
857                                (unsigned long long)bank->start + newsize - 1);
858                         bank->size = newsize;
859                 }
860 #endif
861                 if (!bank->highmem && bank->start + bank->size > lowmem_limit)
862                         lowmem_limit = bank->start + bank->size;
863
864                 j++;
865         }
866 #ifdef CONFIG_HIGHMEM
867         if (highmem) {
868                 const char *reason = NULL;
869
870                 if (cache_is_vipt_aliasing()) {
871                         /*
872                          * Interactions between kmap and other mappings
873                          * make highmem support with aliasing VIPT caches
874                          * rather difficult.
875                          */
876                         reason = "with VIPT aliasing cache";
877                 }
878                 if (reason) {
879                         printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
880                                 reason);
881                         while (j > 0 && meminfo.bank[j - 1].highmem)
882                                 j--;
883                 }
884         }
885 #endif
886         meminfo.nr_banks = j;
887         memblock_set_current_limit(lowmem_limit);
888 }
889
890 static inline void prepare_page_table(void)
891 {
892         unsigned long addr;
893         phys_addr_t end;
894
895         /*
896          * Clear out all the mappings below the kernel image.
897          */
898         for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
899                 pmd_clear(pmd_off_k(addr));
900
901 #ifdef CONFIG_XIP_KERNEL
902         /* The XIP kernel is mapped in the module area -- skip over it */
903         addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
904 #endif
905         for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
906                 pmd_clear(pmd_off_k(addr));
907
908         /*
909          * Find the end of the first block of lowmem.
910          */
911         end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
912         if (end >= lowmem_limit)
913                 end = lowmem_limit;
914
915         /*
916          * Clear out all the kernel space mappings, except for the first
917          * memory bank, up to the end of the vmalloc region.
918          */
919         for (addr = __phys_to_virt(end);
920              addr < VMALLOC_END; addr += PMD_SIZE)
921                 pmd_clear(pmd_off_k(addr));
922 }
923
924 #ifdef CONFIG_ARM_LPAE
925 /* the first page is reserved for pgd */
926 #define SWAPPER_PG_DIR_SIZE     (PAGE_SIZE + \
927                                  PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
928 #else
929 #define SWAPPER_PG_DIR_SIZE     (PTRS_PER_PGD * sizeof(pgd_t))
930 #endif
931
932 /*
933  * Reserve the special regions of memory
934  */
935 void __init arm_mm_memblock_reserve(void)
936 {
937         /*
938          * Reserve the page tables.  These are already in use,
939          * and can only be in node 0.
940          */
941         memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
942
943 #ifdef CONFIG_SA1111
944         /*
945          * Because of the SA1111 DMA bug, we want to preserve our
946          * precious DMA-able memory...
947          */
948         memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
949 #endif
950 }
951
952 /*
953  * Set up device the mappings.  Since we clear out the page tables for all
954  * mappings above VMALLOC_END, we will remove any debug device mappings.
955  * This means you have to be careful how you debug this function, or any
956  * called function.  This means you can't use any function or debugging
957  * method which may touch any device, otherwise the kernel _will_ crash.
958  */
959 static void __init devicemaps_init(struct machine_desc *mdesc)
960 {
961         struct map_desc map;
962         unsigned long addr;
963
964         /*
965          * Allocate the vector page early.
966          */
967         vectors_page = early_alloc(PAGE_SIZE);
968
969         for (addr = VMALLOC_END; addr; addr += PMD_SIZE)
970                 pmd_clear(pmd_off_k(addr));
971
972         /*
973          * Map the kernel if it is XIP.
974          * It is always first in the modulearea.
975          */
976 #ifdef CONFIG_XIP_KERNEL
977         map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
978         map.virtual = MODULES_VADDR;
979         map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
980         map.type = MT_ROM;
981         create_mapping(&map);
982 #endif
983
984         /*
985          * Map the cache flushing regions.
986          */
987 #ifdef FLUSH_BASE
988         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
989         map.virtual = FLUSH_BASE;
990         map.length = SZ_1M;
991         map.type = MT_CACHECLEAN;
992         create_mapping(&map);
993 #endif
994 #ifdef FLUSH_BASE_MINICACHE
995         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
996         map.virtual = FLUSH_BASE_MINICACHE;
997         map.length = SZ_1M;
998         map.type = MT_MINICLEAN;
999         create_mapping(&map);
1000 #endif
1001
1002         /*
1003          * Create a mapping for the machine vectors at the high-vectors
1004          * location (0xffff0000).  If we aren't using high-vectors, also
1005          * create a mapping at the low-vectors virtual address.
1006          */
1007         map.pfn = __phys_to_pfn(virt_to_phys(vectors_page));
1008         map.virtual = 0xffff0000;
1009         map.length = PAGE_SIZE;
1010         map.type = MT_HIGH_VECTORS;
1011         create_mapping(&map);
1012
1013         if (!vectors_high()) {
1014                 map.virtual = 0;
1015                 map.type = MT_LOW_VECTORS;
1016                 create_mapping(&map);
1017         }
1018
1019         /*
1020          * Ask the machine support to map in the statically mapped devices.
1021          */
1022         if (mdesc->map_io)
1023                 mdesc->map_io();
1024
1025         /*
1026          * Finally flush the caches and tlb to ensure that we're in a
1027          * consistent state wrt the writebuffer.  This also ensures that
1028          * any write-allocated cache lines in the vector page are written
1029          * back.  After this point, we can start to touch devices again.
1030          */
1031         local_flush_tlb_all();
1032         flush_cache_all();
1033 }
1034
1035 static void __init kmap_init(void)
1036 {
1037 #ifdef CONFIG_HIGHMEM
1038         pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1039                 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1040 #endif
1041 }
1042
1043 static void __init map_lowmem(void)
1044 {
1045         struct memblock_region *reg;
1046
1047         /* Map all the lowmem memory banks. */
1048         for_each_memblock(memory, reg) {
1049                 phys_addr_t start = reg->base;
1050                 phys_addr_t end = start + reg->size;
1051                 struct map_desc map;
1052
1053                 if (end > lowmem_limit)
1054                         end = lowmem_limit;
1055                 if (start >= end)
1056                         break;
1057
1058                 map.pfn = __phys_to_pfn(start);
1059                 map.virtual = __phys_to_virt(start);
1060                 map.length = end - start;
1061                 map.type = MT_MEMORY;
1062
1063                 create_mapping(&map);
1064         }
1065 }
1066
1067 /*
1068  * paging_init() sets up the page tables, initialises the zone memory
1069  * maps, and sets up the zero page, bad page and bad page tables.
1070  */
1071 void __init paging_init(struct machine_desc *mdesc)
1072 {
1073         void *zero_page;
1074
1075         memblock_set_current_limit(lowmem_limit);
1076
1077         build_mem_type_table();
1078         prepare_page_table();
1079         map_lowmem();
1080         devicemaps_init(mdesc);
1081         kmap_init();
1082
1083         top_pmd = pmd_off_k(0xffff0000);
1084
1085         /* allocate the zero page. */
1086         zero_page = early_alloc(PAGE_SIZE);
1087
1088         bootmem_init();
1089
1090         empty_zero_page = virt_to_page(zero_page);
1091         __flush_dcache_page(NULL, empty_zero_page);
1092 }