Merge branch 'upstream-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[pandora-kernel.git] / arch / arm / mm / mmu.c
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/sort.h>
18 #include <linux/fs.h>
19
20 #include <asm/cputype.h>
21 #include <asm/sections.h>
22 #include <asm/cachetype.h>
23 #include <asm/setup.h>
24 #include <asm/sizes.h>
25 #include <asm/smp_plat.h>
26 #include <asm/tlb.h>
27 #include <asm/highmem.h>
28
29 #include <asm/mach/arch.h>
30 #include <asm/mach/map.h>
31
32 #include "mm.h"
33
34 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
35
36 /*
37  * empty_zero_page is a special page that is used for
38  * zero-initialized data and COW.
39  */
40 struct page *empty_zero_page;
41 EXPORT_SYMBOL(empty_zero_page);
42
43 /*
44  * The pmd table for the upper-most set of pages.
45  */
46 pmd_t *top_pmd;
47
48 #define CPOLICY_UNCACHED        0
49 #define CPOLICY_BUFFERED        1
50 #define CPOLICY_WRITETHROUGH    2
51 #define CPOLICY_WRITEBACK       3
52 #define CPOLICY_WRITEALLOC      4
53
54 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
55 static unsigned int ecc_mask __initdata = 0;
56 pgprot_t pgprot_user;
57 pgprot_t pgprot_kernel;
58
59 EXPORT_SYMBOL(pgprot_user);
60 EXPORT_SYMBOL(pgprot_kernel);
61
62 struct cachepolicy {
63         const char      policy[16];
64         unsigned int    cr_mask;
65         unsigned int    pmd;
66         unsigned int    pte;
67 };
68
69 static struct cachepolicy cache_policies[] __initdata = {
70         {
71                 .policy         = "uncached",
72                 .cr_mask        = CR_W|CR_C,
73                 .pmd            = PMD_SECT_UNCACHED,
74                 .pte            = L_PTE_MT_UNCACHED,
75         }, {
76                 .policy         = "buffered",
77                 .cr_mask        = CR_C,
78                 .pmd            = PMD_SECT_BUFFERED,
79                 .pte            = L_PTE_MT_BUFFERABLE,
80         }, {
81                 .policy         = "writethrough",
82                 .cr_mask        = 0,
83                 .pmd            = PMD_SECT_WT,
84                 .pte            = L_PTE_MT_WRITETHROUGH,
85         }, {
86                 .policy         = "writeback",
87                 .cr_mask        = 0,
88                 .pmd            = PMD_SECT_WB,
89                 .pte            = L_PTE_MT_WRITEBACK,
90         }, {
91                 .policy         = "writealloc",
92                 .cr_mask        = 0,
93                 .pmd            = PMD_SECT_WBWA,
94                 .pte            = L_PTE_MT_WRITEALLOC,
95         }
96 };
97
98 /*
99  * These are useful for identifying cache coherency
100  * problems by allowing the cache or the cache and
101  * writebuffer to be turned off.  (Note: the write
102  * buffer should not be on and the cache off).
103  */
104 static int __init early_cachepolicy(char *p)
105 {
106         int i;
107
108         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
109                 int len = strlen(cache_policies[i].policy);
110
111                 if (memcmp(p, cache_policies[i].policy, len) == 0) {
112                         cachepolicy = i;
113                         cr_alignment &= ~cache_policies[i].cr_mask;
114                         cr_no_alignment &= ~cache_policies[i].cr_mask;
115                         break;
116                 }
117         }
118         if (i == ARRAY_SIZE(cache_policies))
119                 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
120         /*
121          * This restriction is partly to do with the way we boot; it is
122          * unpredictable to have memory mapped using two different sets of
123          * memory attributes (shared, type, and cache attribs).  We can not
124          * change these attributes once the initial assembly has setup the
125          * page tables.
126          */
127         if (cpu_architecture() >= CPU_ARCH_ARMv6) {
128                 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
129                 cachepolicy = CPOLICY_WRITEBACK;
130         }
131         flush_cache_all();
132         set_cr(cr_alignment);
133         return 0;
134 }
135 early_param("cachepolicy", early_cachepolicy);
136
137 static int __init early_nocache(char *__unused)
138 {
139         char *p = "buffered";
140         printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
141         early_cachepolicy(p);
142         return 0;
143 }
144 early_param("nocache", early_nocache);
145
146 static int __init early_nowrite(char *__unused)
147 {
148         char *p = "uncached";
149         printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
150         early_cachepolicy(p);
151         return 0;
152 }
153 early_param("nowb", early_nowrite);
154
155 static int __init early_ecc(char *p)
156 {
157         if (memcmp(p, "on", 2) == 0)
158                 ecc_mask = PMD_PROTECTION;
159         else if (memcmp(p, "off", 3) == 0)
160                 ecc_mask = 0;
161         return 0;
162 }
163 early_param("ecc", early_ecc);
164
165 static int __init noalign_setup(char *__unused)
166 {
167         cr_alignment &= ~CR_A;
168         cr_no_alignment &= ~CR_A;
169         set_cr(cr_alignment);
170         return 1;
171 }
172 __setup("noalign", noalign_setup);
173
174 #ifndef CONFIG_SMP
175 void adjust_cr(unsigned long mask, unsigned long set)
176 {
177         unsigned long flags;
178
179         mask &= ~CR_A;
180
181         set &= mask;
182
183         local_irq_save(flags);
184
185         cr_no_alignment = (cr_no_alignment & ~mask) | set;
186         cr_alignment = (cr_alignment & ~mask) | set;
187
188         set_cr((get_cr() & ~mask) | set);
189
190         local_irq_restore(flags);
191 }
192 #endif
193
194 #define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
195 #define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
196
197 static struct mem_type mem_types[] = {
198         [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
199                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
200                                   L_PTE_SHARED,
201                 .prot_l1        = PMD_TYPE_TABLE,
202                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
203                 .domain         = DOMAIN_IO,
204         },
205         [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
206                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
207                 .prot_l1        = PMD_TYPE_TABLE,
208                 .prot_sect      = PROT_SECT_DEVICE,
209                 .domain         = DOMAIN_IO,
210         },
211         [MT_DEVICE_CACHED] = {    /* ioremap_cached */
212                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
213                 .prot_l1        = PMD_TYPE_TABLE,
214                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
215                 .domain         = DOMAIN_IO,
216         },      
217         [MT_DEVICE_WC] = {      /* ioremap_wc */
218                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
219                 .prot_l1        = PMD_TYPE_TABLE,
220                 .prot_sect      = PROT_SECT_DEVICE,
221                 .domain         = DOMAIN_IO,
222         },
223         [MT_UNCACHED] = {
224                 .prot_pte       = PROT_PTE_DEVICE,
225                 .prot_l1        = PMD_TYPE_TABLE,
226                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
227                 .domain         = DOMAIN_IO,
228         },
229         [MT_CACHECLEAN] = {
230                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
231                 .domain    = DOMAIN_KERNEL,
232         },
233         [MT_MINICLEAN] = {
234                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
235                 .domain    = DOMAIN_KERNEL,
236         },
237         [MT_LOW_VECTORS] = {
238                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
239                                 L_PTE_EXEC,
240                 .prot_l1   = PMD_TYPE_TABLE,
241                 .domain    = DOMAIN_USER,
242         },
243         [MT_HIGH_VECTORS] = {
244                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
245                                 L_PTE_USER | L_PTE_EXEC,
246                 .prot_l1   = PMD_TYPE_TABLE,
247                 .domain    = DOMAIN_USER,
248         },
249         [MT_MEMORY] = {
250                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
251                                 L_PTE_WRITE | L_PTE_EXEC,
252                 .prot_l1   = PMD_TYPE_TABLE,
253                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
254                 .domain    = DOMAIN_KERNEL,
255         },
256         [MT_ROM] = {
257                 .prot_sect = PMD_TYPE_SECT,
258                 .domain    = DOMAIN_KERNEL,
259         },
260         [MT_MEMORY_NONCACHED] = {
261                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
262                                 L_PTE_WRITE | L_PTE_EXEC | L_PTE_MT_BUFFERABLE,
263                 .prot_l1   = PMD_TYPE_TABLE,
264                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
265                 .domain    = DOMAIN_KERNEL,
266         },
267         [MT_MEMORY_DTCM] = {
268                 .prot_pte       = L_PTE_PRESENT | L_PTE_YOUNG |
269                                   L_PTE_DIRTY | L_PTE_WRITE,
270                 .prot_l1        = PMD_TYPE_TABLE,
271                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
272                 .domain         = DOMAIN_KERNEL,
273         },
274         [MT_MEMORY_ITCM] = {
275                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
276                                 L_PTE_USER | L_PTE_EXEC,
277                 .prot_l1   = PMD_TYPE_TABLE,
278                 .domain    = DOMAIN_IO,
279         },
280 };
281
282 const struct mem_type *get_mem_type(unsigned int type)
283 {
284         return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
285 }
286 EXPORT_SYMBOL(get_mem_type);
287
288 /*
289  * Adjust the PMD section entries according to the CPU in use.
290  */
291 static void __init build_mem_type_table(void)
292 {
293         struct cachepolicy *cp;
294         unsigned int cr = get_cr();
295         unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
296         int cpu_arch = cpu_architecture();
297         int i;
298
299         if (cpu_arch < CPU_ARCH_ARMv6) {
300 #if defined(CONFIG_CPU_DCACHE_DISABLE)
301                 if (cachepolicy > CPOLICY_BUFFERED)
302                         cachepolicy = CPOLICY_BUFFERED;
303 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
304                 if (cachepolicy > CPOLICY_WRITETHROUGH)
305                         cachepolicy = CPOLICY_WRITETHROUGH;
306 #endif
307         }
308         if (cpu_arch < CPU_ARCH_ARMv5) {
309                 if (cachepolicy >= CPOLICY_WRITEALLOC)
310                         cachepolicy = CPOLICY_WRITEBACK;
311                 ecc_mask = 0;
312         }
313 #ifdef CONFIG_SMP
314         cachepolicy = CPOLICY_WRITEALLOC;
315 #endif
316
317         /*
318          * Strip out features not present on earlier architectures.
319          * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
320          * without extended page tables don't have the 'Shared' bit.
321          */
322         if (cpu_arch < CPU_ARCH_ARMv5)
323                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
324                         mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
325         if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
326                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
327                         mem_types[i].prot_sect &= ~PMD_SECT_S;
328
329         /*
330          * ARMv5 and lower, bit 4 must be set for page tables (was: cache
331          * "update-able on write" bit on ARM610).  However, Xscale and
332          * Xscale3 require this bit to be cleared.
333          */
334         if (cpu_is_xscale() || cpu_is_xsc3()) {
335                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
336                         mem_types[i].prot_sect &= ~PMD_BIT4;
337                         mem_types[i].prot_l1 &= ~PMD_BIT4;
338                 }
339         } else if (cpu_arch < CPU_ARCH_ARMv6) {
340                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
341                         if (mem_types[i].prot_l1)
342                                 mem_types[i].prot_l1 |= PMD_BIT4;
343                         if (mem_types[i].prot_sect)
344                                 mem_types[i].prot_sect |= PMD_BIT4;
345                 }
346         }
347
348         /*
349          * Mark the device areas according to the CPU/architecture.
350          */
351         if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
352                 if (!cpu_is_xsc3()) {
353                         /*
354                          * Mark device regions on ARMv6+ as execute-never
355                          * to prevent speculative instruction fetches.
356                          */
357                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
358                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
359                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
360                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
361                 }
362                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
363                         /*
364                          * For ARMv7 with TEX remapping,
365                          * - shared device is SXCB=1100
366                          * - nonshared device is SXCB=0100
367                          * - write combine device mem is SXCB=0001
368                          * (Uncached Normal memory)
369                          */
370                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
371                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
372                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
373                 } else if (cpu_is_xsc3()) {
374                         /*
375                          * For Xscale3,
376                          * - shared device is TEXCB=00101
377                          * - nonshared device is TEXCB=01000
378                          * - write combine device mem is TEXCB=00100
379                          * (Inner/Outer Uncacheable in xsc3 parlance)
380                          */
381                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
382                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
383                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
384                 } else {
385                         /*
386                          * For ARMv6 and ARMv7 without TEX remapping,
387                          * - shared device is TEXCB=00001
388                          * - nonshared device is TEXCB=01000
389                          * - write combine device mem is TEXCB=00100
390                          * (Uncached Normal in ARMv6 parlance).
391                          */
392                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
393                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
394                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
395                 }
396         } else {
397                 /*
398                  * On others, write combining is "Uncached/Buffered"
399                  */
400                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
401         }
402
403         /*
404          * Now deal with the memory-type mappings
405          */
406         cp = &cache_policies[cachepolicy];
407         vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
408
409 #ifndef CONFIG_SMP
410         /*
411          * Only use write-through for non-SMP systems
412          */
413         if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
414                 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
415 #endif
416
417         /*
418          * Enable CPU-specific coherency if supported.
419          * (Only available on XSC3 at the moment.)
420          */
421         if (arch_is_coherent() && cpu_is_xsc3()) {
422                 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
423                 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
424                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
425                 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
426         }
427         /*
428          * ARMv6 and above have extended page tables.
429          */
430         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
431                 /*
432                  * Mark cache clean areas and XIP ROM read only
433                  * from SVC mode and no access from userspace.
434                  */
435                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
436                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
437                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
438
439 #ifdef CONFIG_SMP
440                 /*
441                  * Mark memory with the "shared" attribute for SMP systems
442                  */
443                 user_pgprot |= L_PTE_SHARED;
444                 kern_pgprot |= L_PTE_SHARED;
445                 vecs_pgprot |= L_PTE_SHARED;
446                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
447                 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
448                 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
449                 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
450                 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
451                 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
452                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
453                 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
454 #endif
455         }
456
457         /*
458          * Non-cacheable Normal - intended for memory areas that must
459          * not cause dirty cache line writebacks when used
460          */
461         if (cpu_arch >= CPU_ARCH_ARMv6) {
462                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
463                         /* Non-cacheable Normal is XCB = 001 */
464                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
465                                 PMD_SECT_BUFFERED;
466                 } else {
467                         /* For both ARMv6 and non-TEX-remapping ARMv7 */
468                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
469                                 PMD_SECT_TEX(1);
470                 }
471         } else {
472                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
473         }
474
475         for (i = 0; i < 16; i++) {
476                 unsigned long v = pgprot_val(protection_map[i]);
477                 protection_map[i] = __pgprot(v | user_pgprot);
478         }
479
480         mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
481         mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
482
483         pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
484         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
485                                  L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot);
486
487         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
488         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
489         mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
490         mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
491         mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
492         mem_types[MT_ROM].prot_sect |= cp->pmd;
493
494         switch (cp->pmd) {
495         case PMD_SECT_WT:
496                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
497                 break;
498         case PMD_SECT_WB:
499         case PMD_SECT_WBWA:
500                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
501                 break;
502         }
503         printk("Memory policy: ECC %sabled, Data cache %s\n",
504                 ecc_mask ? "en" : "dis", cp->policy);
505
506         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
507                 struct mem_type *t = &mem_types[i];
508                 if (t->prot_l1)
509                         t->prot_l1 |= PMD_DOMAIN(t->domain);
510                 if (t->prot_sect)
511                         t->prot_sect |= PMD_DOMAIN(t->domain);
512         }
513 }
514
515 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
516 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
517                               unsigned long size, pgprot_t vma_prot)
518 {
519         if (!pfn_valid(pfn))
520                 return pgprot_noncached(vma_prot);
521         else if (file->f_flags & O_SYNC)
522                 return pgprot_writecombine(vma_prot);
523         return vma_prot;
524 }
525 EXPORT_SYMBOL(phys_mem_access_prot);
526 #endif
527
528 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
529
530 static void __init *early_alloc(unsigned long sz)
531 {
532         void *ptr = __va(memblock_alloc(sz, sz));
533         memset(ptr, 0, sz);
534         return ptr;
535 }
536
537 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
538 {
539         if (pmd_none(*pmd)) {
540                 pte_t *pte = early_alloc(2 * PTRS_PER_PTE * sizeof(pte_t));
541                 __pmd_populate(pmd, __pa(pte) | prot);
542         }
543         BUG_ON(pmd_bad(*pmd));
544         return pte_offset_kernel(pmd, addr);
545 }
546
547 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
548                                   unsigned long end, unsigned long pfn,
549                                   const struct mem_type *type)
550 {
551         pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
552         do {
553                 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
554                 pfn++;
555         } while (pte++, addr += PAGE_SIZE, addr != end);
556 }
557
558 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
559                                       unsigned long end, unsigned long phys,
560                                       const struct mem_type *type)
561 {
562         pmd_t *pmd = pmd_offset(pgd, addr);
563
564         /*
565          * Try a section mapping - end, addr and phys must all be aligned
566          * to a section boundary.  Note that PMDs refer to the individual
567          * L1 entries, whereas PGDs refer to a group of L1 entries making
568          * up one logical pointer to an L2 table.
569          */
570         if (((addr | end | phys) & ~SECTION_MASK) == 0) {
571                 pmd_t *p = pmd;
572
573                 if (addr & SECTION_SIZE)
574                         pmd++;
575
576                 do {
577                         *pmd = __pmd(phys | type->prot_sect);
578                         phys += SECTION_SIZE;
579                 } while (pmd++, addr += SECTION_SIZE, addr != end);
580
581                 flush_pmd_entry(p);
582         } else {
583                 /*
584                  * No need to loop; pte's aren't interested in the
585                  * individual L1 entries.
586                  */
587                 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
588         }
589 }
590
591 static void __init create_36bit_mapping(struct map_desc *md,
592                                         const struct mem_type *type)
593 {
594         unsigned long phys, addr, length, end;
595         pgd_t *pgd;
596
597         addr = md->virtual;
598         phys = (unsigned long)__pfn_to_phys(md->pfn);
599         length = PAGE_ALIGN(md->length);
600
601         if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
602                 printk(KERN_ERR "MM: CPU does not support supersection "
603                        "mapping for 0x%08llx at 0x%08lx\n",
604                        __pfn_to_phys((u64)md->pfn), addr);
605                 return;
606         }
607
608         /* N.B. ARMv6 supersections are only defined to work with domain 0.
609          *      Since domain assignments can in fact be arbitrary, the
610          *      'domain == 0' check below is required to insure that ARMv6
611          *      supersections are only allocated for domain 0 regardless
612          *      of the actual domain assignments in use.
613          */
614         if (type->domain) {
615                 printk(KERN_ERR "MM: invalid domain in supersection "
616                        "mapping for 0x%08llx at 0x%08lx\n",
617                        __pfn_to_phys((u64)md->pfn), addr);
618                 return;
619         }
620
621         if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
622                 printk(KERN_ERR "MM: cannot create mapping for "
623                        "0x%08llx at 0x%08lx invalid alignment\n",
624                        __pfn_to_phys((u64)md->pfn), addr);
625                 return;
626         }
627
628         /*
629          * Shift bits [35:32] of address into bits [23:20] of PMD
630          * (See ARMv6 spec).
631          */
632         phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
633
634         pgd = pgd_offset_k(addr);
635         end = addr + length;
636         do {
637                 pmd_t *pmd = pmd_offset(pgd, addr);
638                 int i;
639
640                 for (i = 0; i < 16; i++)
641                         *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
642
643                 addr += SUPERSECTION_SIZE;
644                 phys += SUPERSECTION_SIZE;
645                 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
646         } while (addr != end);
647 }
648
649 /*
650  * Create the page directory entries and any necessary
651  * page tables for the mapping specified by `md'.  We
652  * are able to cope here with varying sizes and address
653  * offsets, and we take full advantage of sections and
654  * supersections.
655  */
656 static void __init create_mapping(struct map_desc *md)
657 {
658         unsigned long phys, addr, length, end;
659         const struct mem_type *type;
660         pgd_t *pgd;
661
662         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
663                 printk(KERN_WARNING "BUG: not creating mapping for "
664                        "0x%08llx at 0x%08lx in user region\n",
665                        __pfn_to_phys((u64)md->pfn), md->virtual);
666                 return;
667         }
668
669         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
670             md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
671                 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
672                        "overlaps vmalloc space\n",
673                        __pfn_to_phys((u64)md->pfn), md->virtual);
674         }
675
676         type = &mem_types[md->type];
677
678         /*
679          * Catch 36-bit addresses
680          */
681         if (md->pfn >= 0x100000) {
682                 create_36bit_mapping(md, type);
683                 return;
684         }
685
686         addr = md->virtual & PAGE_MASK;
687         phys = (unsigned long)__pfn_to_phys(md->pfn);
688         length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
689
690         if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
691                 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
692                        "be mapped using pages, ignoring.\n",
693                        __pfn_to_phys(md->pfn), addr);
694                 return;
695         }
696
697         pgd = pgd_offset_k(addr);
698         end = addr + length;
699         do {
700                 unsigned long next = pgd_addr_end(addr, end);
701
702                 alloc_init_section(pgd, addr, next, phys, type);
703
704                 phys += next - addr;
705                 addr = next;
706         } while (pgd++, addr != end);
707 }
708
709 /*
710  * Create the architecture specific mappings
711  */
712 void __init iotable_init(struct map_desc *io_desc, int nr)
713 {
714         int i;
715
716         for (i = 0; i < nr; i++)
717                 create_mapping(io_desc + i);
718 }
719
720 static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
721
722 /*
723  * vmalloc=size forces the vmalloc area to be exactly 'size'
724  * bytes. This can be used to increase (or decrease) the vmalloc
725  * area - the default is 128m.
726  */
727 static int __init early_vmalloc(char *arg)
728 {
729         unsigned long vmalloc_reserve = memparse(arg, NULL);
730
731         if (vmalloc_reserve < SZ_16M) {
732                 vmalloc_reserve = SZ_16M;
733                 printk(KERN_WARNING
734                         "vmalloc area too small, limiting to %luMB\n",
735                         vmalloc_reserve >> 20);
736         }
737
738         if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
739                 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
740                 printk(KERN_WARNING
741                         "vmalloc area is too big, limiting to %luMB\n",
742                         vmalloc_reserve >> 20);
743         }
744
745         vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
746         return 0;
747 }
748 early_param("vmalloc", early_vmalloc);
749
750 phys_addr_t lowmem_end_addr;
751
752 static void __init sanity_check_meminfo(void)
753 {
754         int i, j, highmem = 0;
755
756         lowmem_end_addr = __pa(vmalloc_min - 1) + 1;
757
758         for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
759                 struct membank *bank = &meminfo.bank[j];
760                 *bank = meminfo.bank[i];
761
762 #ifdef CONFIG_HIGHMEM
763                 if (__va(bank->start) > vmalloc_min ||
764                     __va(bank->start) < (void *)PAGE_OFFSET)
765                         highmem = 1;
766
767                 bank->highmem = highmem;
768
769                 /*
770                  * Split those memory banks which are partially overlapping
771                  * the vmalloc area greatly simplifying things later.
772                  */
773                 if (__va(bank->start) < vmalloc_min &&
774                     bank->size > vmalloc_min - __va(bank->start)) {
775                         if (meminfo.nr_banks >= NR_BANKS) {
776                                 printk(KERN_CRIT "NR_BANKS too low, "
777                                                  "ignoring high memory\n");
778                         } else {
779                                 memmove(bank + 1, bank,
780                                         (meminfo.nr_banks - i) * sizeof(*bank));
781                                 meminfo.nr_banks++;
782                                 i++;
783                                 bank[1].size -= vmalloc_min - __va(bank->start);
784                                 bank[1].start = __pa(vmalloc_min - 1) + 1;
785                                 bank[1].highmem = highmem = 1;
786                                 j++;
787                         }
788                         bank->size = vmalloc_min - __va(bank->start);
789                 }
790 #else
791                 bank->highmem = highmem;
792
793                 /*
794                  * Check whether this memory bank would entirely overlap
795                  * the vmalloc area.
796                  */
797                 if (__va(bank->start) >= vmalloc_min ||
798                     __va(bank->start) < (void *)PAGE_OFFSET) {
799                         printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
800                                "(vmalloc region overlap).\n",
801                                bank->start, bank->start + bank->size - 1);
802                         continue;
803                 }
804
805                 /*
806                  * Check whether this memory bank would partially overlap
807                  * the vmalloc area.
808                  */
809                 if (__va(bank->start + bank->size) > vmalloc_min ||
810                     __va(bank->start + bank->size) < __va(bank->start)) {
811                         unsigned long newsize = vmalloc_min - __va(bank->start);
812                         printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
813                                "to -%.8lx (vmalloc region overlap).\n",
814                                bank->start, bank->start + bank->size - 1,
815                                bank->start + newsize - 1);
816                         bank->size = newsize;
817                 }
818 #endif
819                 j++;
820         }
821 #ifdef CONFIG_HIGHMEM
822         if (highmem) {
823                 const char *reason = NULL;
824
825                 if (cache_is_vipt_aliasing()) {
826                         /*
827                          * Interactions between kmap and other mappings
828                          * make highmem support with aliasing VIPT caches
829                          * rather difficult.
830                          */
831                         reason = "with VIPT aliasing cache";
832 #ifdef CONFIG_SMP
833                 } else if (tlb_ops_need_broadcast()) {
834                         /*
835                          * kmap_high needs to occasionally flush TLB entries,
836                          * however, if the TLB entries need to be broadcast
837                          * we may deadlock:
838                          *  kmap_high(irqs off)->flush_all_zero_pkmaps->
839                          *  flush_tlb_kernel_range->smp_call_function_many
840                          *   (must not be called with irqs off)
841                          */
842                         reason = "without hardware TLB ops broadcasting";
843 #endif
844                 }
845                 if (reason) {
846                         printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
847                                 reason);
848                         while (j > 0 && meminfo.bank[j - 1].highmem)
849                                 j--;
850                 }
851         }
852 #endif
853         meminfo.nr_banks = j;
854 }
855
856 static inline void prepare_page_table(void)
857 {
858         unsigned long addr;
859
860         /*
861          * Clear out all the mappings below the kernel image.
862          */
863         for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
864                 pmd_clear(pmd_off_k(addr));
865
866 #ifdef CONFIG_XIP_KERNEL
867         /* The XIP kernel is mapped in the module area -- skip over it */
868         addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
869 #endif
870         for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
871                 pmd_clear(pmd_off_k(addr));
872
873         /*
874          * Clear out all the kernel space mappings, except for the first
875          * memory bank, up to the end of the vmalloc region.
876          */
877         for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
878              addr < VMALLOC_END; addr += PGDIR_SIZE)
879                 pmd_clear(pmd_off_k(addr));
880 }
881
882 /*
883  * Reserve the special regions of memory
884  */
885 void __init arm_mm_memblock_reserve(void)
886 {
887         /*
888          * Reserve the page tables.  These are already in use,
889          * and can only be in node 0.
890          */
891         memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
892
893 #ifdef CONFIG_SA1111
894         /*
895          * Because of the SA1111 DMA bug, we want to preserve our
896          * precious DMA-able memory...
897          */
898         memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
899 #endif
900 }
901
902 /*
903  * Set up device the mappings.  Since we clear out the page tables for all
904  * mappings above VMALLOC_END, we will remove any debug device mappings.
905  * This means you have to be careful how you debug this function, or any
906  * called function.  This means you can't use any function or debugging
907  * method which may touch any device, otherwise the kernel _will_ crash.
908  */
909 static void __init devicemaps_init(struct machine_desc *mdesc)
910 {
911         struct map_desc map;
912         unsigned long addr;
913         void *vectors;
914
915         /*
916          * Allocate the vector page early.
917          */
918         vectors = early_alloc(PAGE_SIZE);
919
920         for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
921                 pmd_clear(pmd_off_k(addr));
922
923         /*
924          * Map the kernel if it is XIP.
925          * It is always first in the modulearea.
926          */
927 #ifdef CONFIG_XIP_KERNEL
928         map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
929         map.virtual = MODULES_VADDR;
930         map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
931         map.type = MT_ROM;
932         create_mapping(&map);
933 #endif
934
935         /*
936          * Map the cache flushing regions.
937          */
938 #ifdef FLUSH_BASE
939         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
940         map.virtual = FLUSH_BASE;
941         map.length = SZ_1M;
942         map.type = MT_CACHECLEAN;
943         create_mapping(&map);
944 #endif
945 #ifdef FLUSH_BASE_MINICACHE
946         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
947         map.virtual = FLUSH_BASE_MINICACHE;
948         map.length = SZ_1M;
949         map.type = MT_MINICLEAN;
950         create_mapping(&map);
951 #endif
952
953         /*
954          * Create a mapping for the machine vectors at the high-vectors
955          * location (0xffff0000).  If we aren't using high-vectors, also
956          * create a mapping at the low-vectors virtual address.
957          */
958         map.pfn = __phys_to_pfn(virt_to_phys(vectors));
959         map.virtual = 0xffff0000;
960         map.length = PAGE_SIZE;
961         map.type = MT_HIGH_VECTORS;
962         create_mapping(&map);
963
964         if (!vectors_high()) {
965                 map.virtual = 0;
966                 map.type = MT_LOW_VECTORS;
967                 create_mapping(&map);
968         }
969
970         /*
971          * Ask the machine support to map in the statically mapped devices.
972          */
973         if (mdesc->map_io)
974                 mdesc->map_io();
975
976         /*
977          * Finally flush the caches and tlb to ensure that we're in a
978          * consistent state wrt the writebuffer.  This also ensures that
979          * any write-allocated cache lines in the vector page are written
980          * back.  After this point, we can start to touch devices again.
981          */
982         local_flush_tlb_all();
983         flush_cache_all();
984 }
985
986 static void __init kmap_init(void)
987 {
988 #ifdef CONFIG_HIGHMEM
989         pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
990                 PKMAP_BASE, _PAGE_KERNEL_TABLE);
991 #endif
992 }
993
994 static inline void map_memory_bank(struct membank *bank)
995 {
996         struct map_desc map;
997
998         map.pfn = bank_pfn_start(bank);
999         map.virtual = __phys_to_virt(bank_phys_start(bank));
1000         map.length = bank_phys_size(bank);
1001         map.type = MT_MEMORY;
1002
1003         create_mapping(&map);
1004 }
1005
1006 static void __init map_lowmem(void)
1007 {
1008         struct meminfo *mi = &meminfo;
1009         int i;
1010
1011         /* Map all the lowmem memory banks. */
1012         for (i = 0; i < mi->nr_banks; i++) {
1013                 struct membank *bank = &mi->bank[i];
1014
1015                 if (!bank->highmem)
1016                         map_memory_bank(bank);
1017         }
1018 }
1019
1020 static int __init meminfo_cmp(const void *_a, const void *_b)
1021 {
1022         const struct membank *a = _a, *b = _b;
1023         long cmp = bank_pfn_start(a) - bank_pfn_start(b);
1024         return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
1025 }
1026
1027 /*
1028  * paging_init() sets up the page tables, initialises the zone memory
1029  * maps, and sets up the zero page, bad page and bad page tables.
1030  */
1031 void __init paging_init(struct machine_desc *mdesc)
1032 {
1033         void *zero_page;
1034
1035         sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
1036
1037         build_mem_type_table();
1038         sanity_check_meminfo();
1039         prepare_page_table();
1040         map_lowmem();
1041         devicemaps_init(mdesc);
1042         kmap_init();
1043
1044         top_pmd = pmd_off_k(0xffff0000);
1045
1046         /* allocate the zero page. */
1047         zero_page = early_alloc(PAGE_SIZE);
1048
1049         bootmem_init();
1050
1051         empty_zero_page = virt_to_page(zero_page);
1052         __flush_dcache_page(NULL, empty_zero_page);
1053 }
1054
1055 /*
1056  * In order to soft-boot, we need to insert a 1:1 mapping in place of
1057  * the user-mode pages.  This will then ensure that we have predictable
1058  * results when turning the mmu off
1059  */
1060 void setup_mm_for_reboot(char mode)
1061 {
1062         unsigned long base_pmdval;
1063         pgd_t *pgd;
1064         int i;
1065
1066         /*
1067          * We need to access to user-mode page tables here. For kernel threads
1068          * we don't have any user-mode mappings so we use the context that we
1069          * "borrowed".
1070          */
1071         pgd = current->active_mm->pgd;
1072
1073         base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
1074         if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
1075                 base_pmdval |= PMD_BIT4;
1076
1077         for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
1078                 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
1079                 pmd_t *pmd;
1080
1081                 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
1082                 pmd[0] = __pmd(pmdval);
1083                 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
1084                 flush_pmd_entry(pmd);
1085         }
1086
1087         local_flush_tlb_all();
1088 }