Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs...
[pandora-kernel.git] / arch / arm / mm / mmu.c
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18
19 #include <asm/cputype.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/setup.h>
23 #include <asm/sizes.h>
24 #include <asm/smp_plat.h>
25 #include <asm/tlb.h>
26 #include <asm/highmem.h>
27 #include <asm/traps.h>
28
29 #include <asm/mach/arch.h>
30 #include <asm/mach/map.h>
31
32 #include "mm.h"
33
34 /*
35  * empty_zero_page is a special page that is used for
36  * zero-initialized data and COW.
37  */
38 struct page *empty_zero_page;
39 EXPORT_SYMBOL(empty_zero_page);
40
41 /*
42  * The pmd table for the upper-most set of pages.
43  */
44 pmd_t *top_pmd;
45
46 #define CPOLICY_UNCACHED        0
47 #define CPOLICY_BUFFERED        1
48 #define CPOLICY_WRITETHROUGH    2
49 #define CPOLICY_WRITEBACK       3
50 #define CPOLICY_WRITEALLOC      4
51
52 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
53 static unsigned int ecc_mask __initdata = 0;
54 pgprot_t pgprot_user;
55 pgprot_t pgprot_kernel;
56
57 EXPORT_SYMBOL(pgprot_user);
58 EXPORT_SYMBOL(pgprot_kernel);
59
60 struct cachepolicy {
61         const char      policy[16];
62         unsigned int    cr_mask;
63         unsigned int    pmd;
64         pteval_t        pte;
65 };
66
67 static struct cachepolicy cache_policies[] __initdata = {
68         {
69                 .policy         = "uncached",
70                 .cr_mask        = CR_W|CR_C,
71                 .pmd            = PMD_SECT_UNCACHED,
72                 .pte            = L_PTE_MT_UNCACHED,
73         }, {
74                 .policy         = "buffered",
75                 .cr_mask        = CR_C,
76                 .pmd            = PMD_SECT_BUFFERED,
77                 .pte            = L_PTE_MT_BUFFERABLE,
78         }, {
79                 .policy         = "writethrough",
80                 .cr_mask        = 0,
81                 .pmd            = PMD_SECT_WT,
82                 .pte            = L_PTE_MT_WRITETHROUGH,
83         }, {
84                 .policy         = "writeback",
85                 .cr_mask        = 0,
86                 .pmd            = PMD_SECT_WB,
87                 .pte            = L_PTE_MT_WRITEBACK,
88         }, {
89                 .policy         = "writealloc",
90                 .cr_mask        = 0,
91                 .pmd            = PMD_SECT_WBWA,
92                 .pte            = L_PTE_MT_WRITEALLOC,
93         }
94 };
95
96 /*
97  * These are useful for identifying cache coherency
98  * problems by allowing the cache or the cache and
99  * writebuffer to be turned off.  (Note: the write
100  * buffer should not be on and the cache off).
101  */
102 static int __init early_cachepolicy(char *p)
103 {
104         int i;
105
106         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
107                 int len = strlen(cache_policies[i].policy);
108
109                 if (memcmp(p, cache_policies[i].policy, len) == 0) {
110                         cachepolicy = i;
111                         cr_alignment &= ~cache_policies[i].cr_mask;
112                         cr_no_alignment &= ~cache_policies[i].cr_mask;
113                         break;
114                 }
115         }
116         if (i == ARRAY_SIZE(cache_policies))
117                 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
118         /*
119          * This restriction is partly to do with the way we boot; it is
120          * unpredictable to have memory mapped using two different sets of
121          * memory attributes (shared, type, and cache attribs).  We can not
122          * change these attributes once the initial assembly has setup the
123          * page tables.
124          */
125         if (cpu_architecture() >= CPU_ARCH_ARMv6) {
126                 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
127                 cachepolicy = CPOLICY_WRITEBACK;
128         }
129         flush_cache_all();
130         set_cr(cr_alignment);
131         return 0;
132 }
133 early_param("cachepolicy", early_cachepolicy);
134
135 static int __init early_nocache(char *__unused)
136 {
137         char *p = "buffered";
138         printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
139         early_cachepolicy(p);
140         return 0;
141 }
142 early_param("nocache", early_nocache);
143
144 static int __init early_nowrite(char *__unused)
145 {
146         char *p = "uncached";
147         printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
148         early_cachepolicy(p);
149         return 0;
150 }
151 early_param("nowb", early_nowrite);
152
153 static int __init early_ecc(char *p)
154 {
155         if (memcmp(p, "on", 2) == 0)
156                 ecc_mask = PMD_PROTECTION;
157         else if (memcmp(p, "off", 3) == 0)
158                 ecc_mask = 0;
159         return 0;
160 }
161 early_param("ecc", early_ecc);
162
163 static int __init noalign_setup(char *__unused)
164 {
165         cr_alignment &= ~CR_A;
166         cr_no_alignment &= ~CR_A;
167         set_cr(cr_alignment);
168         return 1;
169 }
170 __setup("noalign", noalign_setup);
171
172 #ifndef CONFIG_SMP
173 void adjust_cr(unsigned long mask, unsigned long set)
174 {
175         unsigned long flags;
176
177         mask &= ~CR_A;
178
179         set &= mask;
180
181         local_irq_save(flags);
182
183         cr_no_alignment = (cr_no_alignment & ~mask) | set;
184         cr_alignment = (cr_alignment & ~mask) | set;
185
186         set_cr((get_cr() & ~mask) | set);
187
188         local_irq_restore(flags);
189 }
190 #endif
191
192 #define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
193 #define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
194
195 static struct mem_type mem_types[] = {
196         [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
197                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
198                                   L_PTE_SHARED,
199                 .prot_l1        = PMD_TYPE_TABLE,
200                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
201                 .domain         = DOMAIN_IO,
202         },
203         [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
204                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
205                 .prot_l1        = PMD_TYPE_TABLE,
206                 .prot_sect      = PROT_SECT_DEVICE,
207                 .domain         = DOMAIN_IO,
208         },
209         [MT_DEVICE_CACHED] = {    /* ioremap_cached */
210                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
211                 .prot_l1        = PMD_TYPE_TABLE,
212                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
213                 .domain         = DOMAIN_IO,
214         },      
215         [MT_DEVICE_WC] = {      /* ioremap_wc */
216                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
217                 .prot_l1        = PMD_TYPE_TABLE,
218                 .prot_sect      = PROT_SECT_DEVICE,
219                 .domain         = DOMAIN_IO,
220         },
221         [MT_UNCACHED] = {
222                 .prot_pte       = PROT_PTE_DEVICE,
223                 .prot_l1        = PMD_TYPE_TABLE,
224                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
225                 .domain         = DOMAIN_IO,
226         },
227         [MT_CACHECLEAN] = {
228                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
229                 .domain    = DOMAIN_KERNEL,
230         },
231         [MT_MINICLEAN] = {
232                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
233                 .domain    = DOMAIN_KERNEL,
234         },
235         [MT_LOW_VECTORS] = {
236                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
237                                 L_PTE_RDONLY,
238                 .prot_l1   = PMD_TYPE_TABLE,
239                 .domain    = DOMAIN_USER,
240         },
241         [MT_HIGH_VECTORS] = {
242                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
243                                 L_PTE_USER | L_PTE_RDONLY,
244                 .prot_l1   = PMD_TYPE_TABLE,
245                 .domain    = DOMAIN_USER,
246         },
247         [MT_MEMORY] = {
248                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
249                 .prot_l1   = PMD_TYPE_TABLE,
250                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
251                 .domain    = DOMAIN_KERNEL,
252         },
253         [MT_ROM] = {
254                 .prot_sect = PMD_TYPE_SECT,
255                 .domain    = DOMAIN_KERNEL,
256         },
257         [MT_MEMORY_NONCACHED] = {
258                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
259                                 L_PTE_MT_BUFFERABLE,
260                 .prot_l1   = PMD_TYPE_TABLE,
261                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
262                 .domain    = DOMAIN_KERNEL,
263         },
264         [MT_MEMORY_DTCM] = {
265                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
266                                 L_PTE_XN,
267                 .prot_l1   = PMD_TYPE_TABLE,
268                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
269                 .domain    = DOMAIN_KERNEL,
270         },
271         [MT_MEMORY_ITCM] = {
272                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
273                 .prot_l1   = PMD_TYPE_TABLE,
274                 .domain    = DOMAIN_KERNEL,
275         },
276 };
277
278 const struct mem_type *get_mem_type(unsigned int type)
279 {
280         return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
281 }
282 EXPORT_SYMBOL(get_mem_type);
283
284 /*
285  * Adjust the PMD section entries according to the CPU in use.
286  */
287 static void __init build_mem_type_table(void)
288 {
289         struct cachepolicy *cp;
290         unsigned int cr = get_cr();
291         unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
292         int cpu_arch = cpu_architecture();
293         int i;
294
295         if (cpu_arch < CPU_ARCH_ARMv6) {
296 #if defined(CONFIG_CPU_DCACHE_DISABLE)
297                 if (cachepolicy > CPOLICY_BUFFERED)
298                         cachepolicy = CPOLICY_BUFFERED;
299 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
300                 if (cachepolicy > CPOLICY_WRITETHROUGH)
301                         cachepolicy = CPOLICY_WRITETHROUGH;
302 #endif
303         }
304         if (cpu_arch < CPU_ARCH_ARMv5) {
305                 if (cachepolicy >= CPOLICY_WRITEALLOC)
306                         cachepolicy = CPOLICY_WRITEBACK;
307                 ecc_mask = 0;
308         }
309         if (is_smp())
310                 cachepolicy = CPOLICY_WRITEALLOC;
311
312         /*
313          * Strip out features not present on earlier architectures.
314          * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
315          * without extended page tables don't have the 'Shared' bit.
316          */
317         if (cpu_arch < CPU_ARCH_ARMv5)
318                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
319                         mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
320         if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
321                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
322                         mem_types[i].prot_sect &= ~PMD_SECT_S;
323
324         /*
325          * ARMv5 and lower, bit 4 must be set for page tables (was: cache
326          * "update-able on write" bit on ARM610).  However, Xscale and
327          * Xscale3 require this bit to be cleared.
328          */
329         if (cpu_is_xscale() || cpu_is_xsc3()) {
330                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
331                         mem_types[i].prot_sect &= ~PMD_BIT4;
332                         mem_types[i].prot_l1 &= ~PMD_BIT4;
333                 }
334         } else if (cpu_arch < CPU_ARCH_ARMv6) {
335                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
336                         if (mem_types[i].prot_l1)
337                                 mem_types[i].prot_l1 |= PMD_BIT4;
338                         if (mem_types[i].prot_sect)
339                                 mem_types[i].prot_sect |= PMD_BIT4;
340                 }
341         }
342
343         /*
344          * Mark the device areas according to the CPU/architecture.
345          */
346         if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
347                 if (!cpu_is_xsc3()) {
348                         /*
349                          * Mark device regions on ARMv6+ as execute-never
350                          * to prevent speculative instruction fetches.
351                          */
352                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
353                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
354                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
355                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
356                 }
357                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
358                         /*
359                          * For ARMv7 with TEX remapping,
360                          * - shared device is SXCB=1100
361                          * - nonshared device is SXCB=0100
362                          * - write combine device mem is SXCB=0001
363                          * (Uncached Normal memory)
364                          */
365                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
366                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
367                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
368                 } else if (cpu_is_xsc3()) {
369                         /*
370                          * For Xscale3,
371                          * - shared device is TEXCB=00101
372                          * - nonshared device is TEXCB=01000
373                          * - write combine device mem is TEXCB=00100
374                          * (Inner/Outer Uncacheable in xsc3 parlance)
375                          */
376                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
377                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
378                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
379                 } else {
380                         /*
381                          * For ARMv6 and ARMv7 without TEX remapping,
382                          * - shared device is TEXCB=00001
383                          * - nonshared device is TEXCB=01000
384                          * - write combine device mem is TEXCB=00100
385                          * (Uncached Normal in ARMv6 parlance).
386                          */
387                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
388                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
389                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
390                 }
391         } else {
392                 /*
393                  * On others, write combining is "Uncached/Buffered"
394                  */
395                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
396         }
397
398         /*
399          * Now deal with the memory-type mappings
400          */
401         cp = &cache_policies[cachepolicy];
402         vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
403
404         /*
405          * Only use write-through for non-SMP systems
406          */
407         if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
408                 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
409
410         /*
411          * Enable CPU-specific coherency if supported.
412          * (Only available on XSC3 at the moment.)
413          */
414         if (arch_is_coherent() && cpu_is_xsc3()) {
415                 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
416                 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
417                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
418                 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
419         }
420         /*
421          * ARMv6 and above have extended page tables.
422          */
423         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
424                 /*
425                  * Mark cache clean areas and XIP ROM read only
426                  * from SVC mode and no access from userspace.
427                  */
428                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
429                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
430                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
431
432                 if (is_smp()) {
433                         /*
434                          * Mark memory with the "shared" attribute
435                          * for SMP systems
436                          */
437                         user_pgprot |= L_PTE_SHARED;
438                         kern_pgprot |= L_PTE_SHARED;
439                         vecs_pgprot |= L_PTE_SHARED;
440                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
441                         mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
442                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
443                         mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
444                         mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
445                         mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
446                         mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
447                         mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
448                 }
449         }
450
451         /*
452          * Non-cacheable Normal - intended for memory areas that must
453          * not cause dirty cache line writebacks when used
454          */
455         if (cpu_arch >= CPU_ARCH_ARMv6) {
456                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
457                         /* Non-cacheable Normal is XCB = 001 */
458                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
459                                 PMD_SECT_BUFFERED;
460                 } else {
461                         /* For both ARMv6 and non-TEX-remapping ARMv7 */
462                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
463                                 PMD_SECT_TEX(1);
464                 }
465         } else {
466                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
467         }
468
469         for (i = 0; i < 16; i++) {
470                 unsigned long v = pgprot_val(protection_map[i]);
471                 protection_map[i] = __pgprot(v | user_pgprot);
472         }
473
474         mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
475         mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
476
477         pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
478         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
479                                  L_PTE_DIRTY | kern_pgprot);
480
481         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
482         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
483         mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
484         mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
485         mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
486         mem_types[MT_ROM].prot_sect |= cp->pmd;
487
488         switch (cp->pmd) {
489         case PMD_SECT_WT:
490                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
491                 break;
492         case PMD_SECT_WB:
493         case PMD_SECT_WBWA:
494                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
495                 break;
496         }
497         printk("Memory policy: ECC %sabled, Data cache %s\n",
498                 ecc_mask ? "en" : "dis", cp->policy);
499
500         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
501                 struct mem_type *t = &mem_types[i];
502                 if (t->prot_l1)
503                         t->prot_l1 |= PMD_DOMAIN(t->domain);
504                 if (t->prot_sect)
505                         t->prot_sect |= PMD_DOMAIN(t->domain);
506         }
507 }
508
509 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
510 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
511                               unsigned long size, pgprot_t vma_prot)
512 {
513         if (!pfn_valid(pfn))
514                 return pgprot_noncached(vma_prot);
515         else if (file->f_flags & O_SYNC)
516                 return pgprot_writecombine(vma_prot);
517         return vma_prot;
518 }
519 EXPORT_SYMBOL(phys_mem_access_prot);
520 #endif
521
522 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
523
524 static void __init *early_alloc(unsigned long sz)
525 {
526         void *ptr = __va(memblock_alloc(sz, sz));
527         memset(ptr, 0, sz);
528         return ptr;
529 }
530
531 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
532 {
533         if (pmd_none(*pmd)) {
534                 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
535                 __pmd_populate(pmd, __pa(pte), prot);
536         }
537         BUG_ON(pmd_bad(*pmd));
538         return pte_offset_kernel(pmd, addr);
539 }
540
541 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
542                                   unsigned long end, unsigned long pfn,
543                                   const struct mem_type *type)
544 {
545         pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
546         do {
547                 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
548                 pfn++;
549         } while (pte++, addr += PAGE_SIZE, addr != end);
550 }
551
552 static void __init alloc_init_section(pud_t *pud, unsigned long addr,
553                                       unsigned long end, phys_addr_t phys,
554                                       const struct mem_type *type)
555 {
556         pmd_t *pmd = pmd_offset(pud, addr);
557
558         /*
559          * Try a section mapping - end, addr and phys must all be aligned
560          * to a section boundary.  Note that PMDs refer to the individual
561          * L1 entries, whereas PGDs refer to a group of L1 entries making
562          * up one logical pointer to an L2 table.
563          */
564         if (((addr | end | phys) & ~SECTION_MASK) == 0) {
565                 pmd_t *p = pmd;
566
567                 if (addr & SECTION_SIZE)
568                         pmd++;
569
570                 do {
571                         *pmd = __pmd(phys | type->prot_sect);
572                         phys += SECTION_SIZE;
573                 } while (pmd++, addr += SECTION_SIZE, addr != end);
574
575                 flush_pmd_entry(p);
576         } else {
577                 /*
578                  * No need to loop; pte's aren't interested in the
579                  * individual L1 entries.
580                  */
581                 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
582         }
583 }
584
585 static void alloc_init_pud(pgd_t *pgd, unsigned long addr, unsigned long end,
586         unsigned long phys, const struct mem_type *type)
587 {
588         pud_t *pud = pud_offset(pgd, addr);
589         unsigned long next;
590
591         do {
592                 next = pud_addr_end(addr, end);
593                 alloc_init_section(pud, addr, next, phys, type);
594                 phys += next - addr;
595         } while (pud++, addr = next, addr != end);
596 }
597
598 static void __init create_36bit_mapping(struct map_desc *md,
599                                         const struct mem_type *type)
600 {
601         unsigned long addr, length, end;
602         phys_addr_t phys;
603         pgd_t *pgd;
604
605         addr = md->virtual;
606         phys = __pfn_to_phys(md->pfn);
607         length = PAGE_ALIGN(md->length);
608
609         if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
610                 printk(KERN_ERR "MM: CPU does not support supersection "
611                        "mapping for 0x%08llx at 0x%08lx\n",
612                        (long long)__pfn_to_phys((u64)md->pfn), addr);
613                 return;
614         }
615
616         /* N.B. ARMv6 supersections are only defined to work with domain 0.
617          *      Since domain assignments can in fact be arbitrary, the
618          *      'domain == 0' check below is required to insure that ARMv6
619          *      supersections are only allocated for domain 0 regardless
620          *      of the actual domain assignments in use.
621          */
622         if (type->domain) {
623                 printk(KERN_ERR "MM: invalid domain in supersection "
624                        "mapping for 0x%08llx at 0x%08lx\n",
625                        (long long)__pfn_to_phys((u64)md->pfn), addr);
626                 return;
627         }
628
629         if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
630                 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
631                        " at 0x%08lx invalid alignment\n",
632                        (long long)__pfn_to_phys((u64)md->pfn), addr);
633                 return;
634         }
635
636         /*
637          * Shift bits [35:32] of address into bits [23:20] of PMD
638          * (See ARMv6 spec).
639          */
640         phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
641
642         pgd = pgd_offset_k(addr);
643         end = addr + length;
644         do {
645                 pud_t *pud = pud_offset(pgd, addr);
646                 pmd_t *pmd = pmd_offset(pud, addr);
647                 int i;
648
649                 for (i = 0; i < 16; i++)
650                         *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
651
652                 addr += SUPERSECTION_SIZE;
653                 phys += SUPERSECTION_SIZE;
654                 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
655         } while (addr != end);
656 }
657
658 /*
659  * Create the page directory entries and any necessary
660  * page tables for the mapping specified by `md'.  We
661  * are able to cope here with varying sizes and address
662  * offsets, and we take full advantage of sections and
663  * supersections.
664  */
665 static void __init create_mapping(struct map_desc *md)
666 {
667         unsigned long addr, length, end;
668         phys_addr_t phys;
669         const struct mem_type *type;
670         pgd_t *pgd;
671
672         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
673                 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
674                        " at 0x%08lx in user region\n",
675                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
676                 return;
677         }
678
679         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
680             md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
681                 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
682                        " at 0x%08lx overlaps vmalloc space\n",
683                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
684         }
685
686         type = &mem_types[md->type];
687
688         /*
689          * Catch 36-bit addresses
690          */
691         if (md->pfn >= 0x100000) {
692                 create_36bit_mapping(md, type);
693                 return;
694         }
695
696         addr = md->virtual & PAGE_MASK;
697         phys = __pfn_to_phys(md->pfn);
698         length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
699
700         if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
701                 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
702                        "be mapped using pages, ignoring.\n",
703                        (long long)__pfn_to_phys(md->pfn), addr);
704                 return;
705         }
706
707         pgd = pgd_offset_k(addr);
708         end = addr + length;
709         do {
710                 unsigned long next = pgd_addr_end(addr, end);
711
712                 alloc_init_pud(pgd, addr, next, phys, type);
713
714                 phys += next - addr;
715                 addr = next;
716         } while (pgd++, addr != end);
717 }
718
719 /*
720  * Create the architecture specific mappings
721  */
722 void __init iotable_init(struct map_desc *io_desc, int nr)
723 {
724         int i;
725
726         for (i = 0; i < nr; i++)
727                 create_mapping(io_desc + i);
728 }
729
730 static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
731
732 /*
733  * vmalloc=size forces the vmalloc area to be exactly 'size'
734  * bytes. This can be used to increase (or decrease) the vmalloc
735  * area - the default is 128m.
736  */
737 static int __init early_vmalloc(char *arg)
738 {
739         unsigned long vmalloc_reserve = memparse(arg, NULL);
740
741         if (vmalloc_reserve < SZ_16M) {
742                 vmalloc_reserve = SZ_16M;
743                 printk(KERN_WARNING
744                         "vmalloc area too small, limiting to %luMB\n",
745                         vmalloc_reserve >> 20);
746         }
747
748         if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
749                 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
750                 printk(KERN_WARNING
751                         "vmalloc area is too big, limiting to %luMB\n",
752                         vmalloc_reserve >> 20);
753         }
754
755         vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
756         return 0;
757 }
758 early_param("vmalloc", early_vmalloc);
759
760 static phys_addr_t lowmem_limit __initdata = 0;
761
762 static void __init sanity_check_meminfo(void)
763 {
764         int i, j, highmem = 0;
765
766         for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
767                 struct membank *bank = &meminfo.bank[j];
768                 *bank = meminfo.bank[i];
769
770 #ifdef CONFIG_HIGHMEM
771                 if (__va(bank->start) >= vmalloc_min ||
772                     __va(bank->start) < (void *)PAGE_OFFSET)
773                         highmem = 1;
774
775                 bank->highmem = highmem;
776
777                 /*
778                  * Split those memory banks which are partially overlapping
779                  * the vmalloc area greatly simplifying things later.
780                  */
781                 if (__va(bank->start) < vmalloc_min &&
782                     bank->size > vmalloc_min - __va(bank->start)) {
783                         if (meminfo.nr_banks >= NR_BANKS) {
784                                 printk(KERN_CRIT "NR_BANKS too low, "
785                                                  "ignoring high memory\n");
786                         } else {
787                                 memmove(bank + 1, bank,
788                                         (meminfo.nr_banks - i) * sizeof(*bank));
789                                 meminfo.nr_banks++;
790                                 i++;
791                                 bank[1].size -= vmalloc_min - __va(bank->start);
792                                 bank[1].start = __pa(vmalloc_min - 1) + 1;
793                                 bank[1].highmem = highmem = 1;
794                                 j++;
795                         }
796                         bank->size = vmalloc_min - __va(bank->start);
797                 }
798 #else
799                 bank->highmem = highmem;
800
801                 /*
802                  * Check whether this memory bank would entirely overlap
803                  * the vmalloc area.
804                  */
805                 if (__va(bank->start) >= vmalloc_min ||
806                     __va(bank->start) < (void *)PAGE_OFFSET) {
807                         printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
808                                "(vmalloc region overlap).\n",
809                                (unsigned long long)bank->start,
810                                (unsigned long long)bank->start + bank->size - 1);
811                         continue;
812                 }
813
814                 /*
815                  * Check whether this memory bank would partially overlap
816                  * the vmalloc area.
817                  */
818                 if (__va(bank->start + bank->size) > vmalloc_min ||
819                     __va(bank->start + bank->size) < __va(bank->start)) {
820                         unsigned long newsize = vmalloc_min - __va(bank->start);
821                         printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
822                                "to -%.8llx (vmalloc region overlap).\n",
823                                (unsigned long long)bank->start,
824                                (unsigned long long)bank->start + bank->size - 1,
825                                (unsigned long long)bank->start + newsize - 1);
826                         bank->size = newsize;
827                 }
828 #endif
829                 if (!bank->highmem && bank->start + bank->size > lowmem_limit)
830                         lowmem_limit = bank->start + bank->size;
831
832                 j++;
833         }
834 #ifdef CONFIG_HIGHMEM
835         if (highmem) {
836                 const char *reason = NULL;
837
838                 if (cache_is_vipt_aliasing()) {
839                         /*
840                          * Interactions between kmap and other mappings
841                          * make highmem support with aliasing VIPT caches
842                          * rather difficult.
843                          */
844                         reason = "with VIPT aliasing cache";
845                 }
846                 if (reason) {
847                         printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
848                                 reason);
849                         while (j > 0 && meminfo.bank[j - 1].highmem)
850                                 j--;
851                 }
852         }
853 #endif
854         meminfo.nr_banks = j;
855         memblock_set_current_limit(lowmem_limit);
856 }
857
858 static inline void prepare_page_table(void)
859 {
860         unsigned long addr;
861         phys_addr_t end;
862
863         /*
864          * Clear out all the mappings below the kernel image.
865          */
866         for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
867                 pmd_clear(pmd_off_k(addr));
868
869 #ifdef CONFIG_XIP_KERNEL
870         /* The XIP kernel is mapped in the module area -- skip over it */
871         addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
872 #endif
873         for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
874                 pmd_clear(pmd_off_k(addr));
875
876         /*
877          * Find the end of the first block of lowmem.
878          */
879         end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
880         if (end >= lowmem_limit)
881                 end = lowmem_limit;
882
883         /*
884          * Clear out all the kernel space mappings, except for the first
885          * memory bank, up to the end of the vmalloc region.
886          */
887         for (addr = __phys_to_virt(end);
888              addr < VMALLOC_END; addr += PGDIR_SIZE)
889                 pmd_clear(pmd_off_k(addr));
890 }
891
892 /*
893  * Reserve the special regions of memory
894  */
895 void __init arm_mm_memblock_reserve(void)
896 {
897         /*
898          * Reserve the page tables.  These are already in use,
899          * and can only be in node 0.
900          */
901         memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
902
903 #ifdef CONFIG_SA1111
904         /*
905          * Because of the SA1111 DMA bug, we want to preserve our
906          * precious DMA-able memory...
907          */
908         memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
909 #endif
910 }
911
912 /*
913  * Set up device the mappings.  Since we clear out the page tables for all
914  * mappings above VMALLOC_END, we will remove any debug device mappings.
915  * This means you have to be careful how you debug this function, or any
916  * called function.  This means you can't use any function or debugging
917  * method which may touch any device, otherwise the kernel _will_ crash.
918  */
919 static void __init devicemaps_init(struct machine_desc *mdesc)
920 {
921         struct map_desc map;
922         unsigned long addr;
923
924         /*
925          * Allocate the vector page early.
926          */
927         vectors_page = early_alloc(PAGE_SIZE);
928
929         for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
930                 pmd_clear(pmd_off_k(addr));
931
932         /*
933          * Map the kernel if it is XIP.
934          * It is always first in the modulearea.
935          */
936 #ifdef CONFIG_XIP_KERNEL
937         map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
938         map.virtual = MODULES_VADDR;
939         map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
940         map.type = MT_ROM;
941         create_mapping(&map);
942 #endif
943
944         /*
945          * Map the cache flushing regions.
946          */
947 #ifdef FLUSH_BASE
948         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
949         map.virtual = FLUSH_BASE;
950         map.length = SZ_1M;
951         map.type = MT_CACHECLEAN;
952         create_mapping(&map);
953 #endif
954 #ifdef FLUSH_BASE_MINICACHE
955         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
956         map.virtual = FLUSH_BASE_MINICACHE;
957         map.length = SZ_1M;
958         map.type = MT_MINICLEAN;
959         create_mapping(&map);
960 #endif
961
962         /*
963          * Create a mapping for the machine vectors at the high-vectors
964          * location (0xffff0000).  If we aren't using high-vectors, also
965          * create a mapping at the low-vectors virtual address.
966          */
967         map.pfn = __phys_to_pfn(virt_to_phys(vectors_page));
968         map.virtual = 0xffff0000;
969         map.length = PAGE_SIZE;
970         map.type = MT_HIGH_VECTORS;
971         create_mapping(&map);
972
973         if (!vectors_high()) {
974                 map.virtual = 0;
975                 map.type = MT_LOW_VECTORS;
976                 create_mapping(&map);
977         }
978
979         /*
980          * Ask the machine support to map in the statically mapped devices.
981          */
982         if (mdesc->map_io)
983                 mdesc->map_io();
984
985         /*
986          * Finally flush the caches and tlb to ensure that we're in a
987          * consistent state wrt the writebuffer.  This also ensures that
988          * any write-allocated cache lines in the vector page are written
989          * back.  After this point, we can start to touch devices again.
990          */
991         local_flush_tlb_all();
992         flush_cache_all();
993 }
994
995 static void __init kmap_init(void)
996 {
997 #ifdef CONFIG_HIGHMEM
998         pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
999                 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1000 #endif
1001 }
1002
1003 static void __init map_lowmem(void)
1004 {
1005         struct memblock_region *reg;
1006
1007         /* Map all the lowmem memory banks. */
1008         for_each_memblock(memory, reg) {
1009                 phys_addr_t start = reg->base;
1010                 phys_addr_t end = start + reg->size;
1011                 struct map_desc map;
1012
1013                 if (end > lowmem_limit)
1014                         end = lowmem_limit;
1015                 if (start >= end)
1016                         break;
1017
1018                 map.pfn = __phys_to_pfn(start);
1019                 map.virtual = __phys_to_virt(start);
1020                 map.length = end - start;
1021                 map.type = MT_MEMORY;
1022
1023                 create_mapping(&map);
1024         }
1025 }
1026
1027 /*
1028  * paging_init() sets up the page tables, initialises the zone memory
1029  * maps, and sets up the zero page, bad page and bad page tables.
1030  */
1031 void __init paging_init(struct machine_desc *mdesc)
1032 {
1033         void *zero_page;
1034
1035         build_mem_type_table();
1036         sanity_check_meminfo();
1037         prepare_page_table();
1038         map_lowmem();
1039         devicemaps_init(mdesc);
1040         kmap_init();
1041
1042         top_pmd = pmd_off_k(0xffff0000);
1043
1044         /* allocate the zero page. */
1045         zero_page = early_alloc(PAGE_SIZE);
1046
1047         bootmem_init();
1048
1049         empty_zero_page = virt_to_page(zero_page);
1050         __flush_dcache_page(NULL, empty_zero_page);
1051 }