Merge git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6
[pandora-kernel.git] / arch / arm / mm / mmu.c
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18
19 #include <asm/cputype.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/setup.h>
23 #include <asm/sizes.h>
24 #include <asm/smp_plat.h>
25 #include <asm/tlb.h>
26 #include <asm/highmem.h>
27
28 #include <asm/mach/arch.h>
29 #include <asm/mach/map.h>
30
31 #include "mm.h"
32
33 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
34
35 /*
36  * empty_zero_page is a special page that is used for
37  * zero-initialized data and COW.
38  */
39 struct page *empty_zero_page;
40 EXPORT_SYMBOL(empty_zero_page);
41
42 /*
43  * The pmd table for the upper-most set of pages.
44  */
45 pmd_t *top_pmd;
46
47 #define CPOLICY_UNCACHED        0
48 #define CPOLICY_BUFFERED        1
49 #define CPOLICY_WRITETHROUGH    2
50 #define CPOLICY_WRITEBACK       3
51 #define CPOLICY_WRITEALLOC      4
52
53 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
54 static unsigned int ecc_mask __initdata = 0;
55 pgprot_t pgprot_user;
56 pgprot_t pgprot_kernel;
57
58 EXPORT_SYMBOL(pgprot_user);
59 EXPORT_SYMBOL(pgprot_kernel);
60
61 struct cachepolicy {
62         const char      policy[16];
63         unsigned int    cr_mask;
64         unsigned int    pmd;
65         unsigned int    pte;
66 };
67
68 static struct cachepolicy cache_policies[] __initdata = {
69         {
70                 .policy         = "uncached",
71                 .cr_mask        = CR_W|CR_C,
72                 .pmd            = PMD_SECT_UNCACHED,
73                 .pte            = L_PTE_MT_UNCACHED,
74         }, {
75                 .policy         = "buffered",
76                 .cr_mask        = CR_C,
77                 .pmd            = PMD_SECT_BUFFERED,
78                 .pte            = L_PTE_MT_BUFFERABLE,
79         }, {
80                 .policy         = "writethrough",
81                 .cr_mask        = 0,
82                 .pmd            = PMD_SECT_WT,
83                 .pte            = L_PTE_MT_WRITETHROUGH,
84         }, {
85                 .policy         = "writeback",
86                 .cr_mask        = 0,
87                 .pmd            = PMD_SECT_WB,
88                 .pte            = L_PTE_MT_WRITEBACK,
89         }, {
90                 .policy         = "writealloc",
91                 .cr_mask        = 0,
92                 .pmd            = PMD_SECT_WBWA,
93                 .pte            = L_PTE_MT_WRITEALLOC,
94         }
95 };
96
97 /*
98  * These are useful for identifying cache coherency
99  * problems by allowing the cache or the cache and
100  * writebuffer to be turned off.  (Note: the write
101  * buffer should not be on and the cache off).
102  */
103 static int __init early_cachepolicy(char *p)
104 {
105         int i;
106
107         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
108                 int len = strlen(cache_policies[i].policy);
109
110                 if (memcmp(p, cache_policies[i].policy, len) == 0) {
111                         cachepolicy = i;
112                         cr_alignment &= ~cache_policies[i].cr_mask;
113                         cr_no_alignment &= ~cache_policies[i].cr_mask;
114                         break;
115                 }
116         }
117         if (i == ARRAY_SIZE(cache_policies))
118                 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
119         /*
120          * This restriction is partly to do with the way we boot; it is
121          * unpredictable to have memory mapped using two different sets of
122          * memory attributes (shared, type, and cache attribs).  We can not
123          * change these attributes once the initial assembly has setup the
124          * page tables.
125          */
126         if (cpu_architecture() >= CPU_ARCH_ARMv6) {
127                 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
128                 cachepolicy = CPOLICY_WRITEBACK;
129         }
130         flush_cache_all();
131         set_cr(cr_alignment);
132         return 0;
133 }
134 early_param("cachepolicy", early_cachepolicy);
135
136 static int __init early_nocache(char *__unused)
137 {
138         char *p = "buffered";
139         printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
140         early_cachepolicy(p);
141         return 0;
142 }
143 early_param("nocache", early_nocache);
144
145 static int __init early_nowrite(char *__unused)
146 {
147         char *p = "uncached";
148         printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
149         early_cachepolicy(p);
150         return 0;
151 }
152 early_param("nowb", early_nowrite);
153
154 static int __init early_ecc(char *p)
155 {
156         if (memcmp(p, "on", 2) == 0)
157                 ecc_mask = PMD_PROTECTION;
158         else if (memcmp(p, "off", 3) == 0)
159                 ecc_mask = 0;
160         return 0;
161 }
162 early_param("ecc", early_ecc);
163
164 static int __init noalign_setup(char *__unused)
165 {
166         cr_alignment &= ~CR_A;
167         cr_no_alignment &= ~CR_A;
168         set_cr(cr_alignment);
169         return 1;
170 }
171 __setup("noalign", noalign_setup);
172
173 #ifndef CONFIG_SMP
174 void adjust_cr(unsigned long mask, unsigned long set)
175 {
176         unsigned long flags;
177
178         mask &= ~CR_A;
179
180         set &= mask;
181
182         local_irq_save(flags);
183
184         cr_no_alignment = (cr_no_alignment & ~mask) | set;
185         cr_alignment = (cr_alignment & ~mask) | set;
186
187         set_cr((get_cr() & ~mask) | set);
188
189         local_irq_restore(flags);
190 }
191 #endif
192
193 #define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
194 #define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
195
196 static struct mem_type mem_types[] = {
197         [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
198                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
199                                   L_PTE_SHARED,
200                 .prot_l1        = PMD_TYPE_TABLE,
201                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
202                 .domain         = DOMAIN_IO,
203         },
204         [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
205                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
206                 .prot_l1        = PMD_TYPE_TABLE,
207                 .prot_sect      = PROT_SECT_DEVICE,
208                 .domain         = DOMAIN_IO,
209         },
210         [MT_DEVICE_CACHED] = {    /* ioremap_cached */
211                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
212                 .prot_l1        = PMD_TYPE_TABLE,
213                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
214                 .domain         = DOMAIN_IO,
215         },      
216         [MT_DEVICE_WC] = {      /* ioremap_wc */
217                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
218                 .prot_l1        = PMD_TYPE_TABLE,
219                 .prot_sect      = PROT_SECT_DEVICE,
220                 .domain         = DOMAIN_IO,
221         },
222         [MT_UNCACHED] = {
223                 .prot_pte       = PROT_PTE_DEVICE,
224                 .prot_l1        = PMD_TYPE_TABLE,
225                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
226                 .domain         = DOMAIN_IO,
227         },
228         [MT_CACHECLEAN] = {
229                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
230                 .domain    = DOMAIN_KERNEL,
231         },
232         [MT_MINICLEAN] = {
233                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
234                 .domain    = DOMAIN_KERNEL,
235         },
236         [MT_LOW_VECTORS] = {
237                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
238                                 L_PTE_EXEC,
239                 .prot_l1   = PMD_TYPE_TABLE,
240                 .domain    = DOMAIN_USER,
241         },
242         [MT_HIGH_VECTORS] = {
243                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244                                 L_PTE_USER | L_PTE_EXEC,
245                 .prot_l1   = PMD_TYPE_TABLE,
246                 .domain    = DOMAIN_USER,
247         },
248         [MT_MEMORY] = {
249                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
250                                 L_PTE_WRITE | L_PTE_EXEC,
251                 .prot_l1   = PMD_TYPE_TABLE,
252                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
253                 .domain    = DOMAIN_KERNEL,
254         },
255         [MT_ROM] = {
256                 .prot_sect = PMD_TYPE_SECT,
257                 .domain    = DOMAIN_KERNEL,
258         },
259         [MT_MEMORY_NONCACHED] = {
260                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
261                                 L_PTE_WRITE | L_PTE_EXEC | L_PTE_MT_BUFFERABLE,
262                 .prot_l1   = PMD_TYPE_TABLE,
263                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
264                 .domain    = DOMAIN_KERNEL,
265         },
266         [MT_MEMORY_DTCM] = {
267                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
268                                 L_PTE_WRITE,
269                 .prot_l1   = PMD_TYPE_TABLE,
270                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
271                 .domain    = DOMAIN_KERNEL,
272         },
273         [MT_MEMORY_ITCM] = {
274                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
275                                 L_PTE_WRITE | L_PTE_EXEC,
276                 .prot_l1   = PMD_TYPE_TABLE,
277                 .domain    = DOMAIN_KERNEL,
278         },
279 };
280
281 const struct mem_type *get_mem_type(unsigned int type)
282 {
283         return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
284 }
285 EXPORT_SYMBOL(get_mem_type);
286
287 /*
288  * Adjust the PMD section entries according to the CPU in use.
289  */
290 static void __init build_mem_type_table(void)
291 {
292         struct cachepolicy *cp;
293         unsigned int cr = get_cr();
294         unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
295         int cpu_arch = cpu_architecture();
296         int i;
297
298         if (cpu_arch < CPU_ARCH_ARMv6) {
299 #if defined(CONFIG_CPU_DCACHE_DISABLE)
300                 if (cachepolicy > CPOLICY_BUFFERED)
301                         cachepolicy = CPOLICY_BUFFERED;
302 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
303                 if (cachepolicy > CPOLICY_WRITETHROUGH)
304                         cachepolicy = CPOLICY_WRITETHROUGH;
305 #endif
306         }
307         if (cpu_arch < CPU_ARCH_ARMv5) {
308                 if (cachepolicy >= CPOLICY_WRITEALLOC)
309                         cachepolicy = CPOLICY_WRITEBACK;
310                 ecc_mask = 0;
311         }
312         if (is_smp())
313                 cachepolicy = CPOLICY_WRITEALLOC;
314
315         /*
316          * Strip out features not present on earlier architectures.
317          * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
318          * without extended page tables don't have the 'Shared' bit.
319          */
320         if (cpu_arch < CPU_ARCH_ARMv5)
321                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
322                         mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
323         if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
324                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
325                         mem_types[i].prot_sect &= ~PMD_SECT_S;
326
327         /*
328          * ARMv5 and lower, bit 4 must be set for page tables (was: cache
329          * "update-able on write" bit on ARM610).  However, Xscale and
330          * Xscale3 require this bit to be cleared.
331          */
332         if (cpu_is_xscale() || cpu_is_xsc3()) {
333                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
334                         mem_types[i].prot_sect &= ~PMD_BIT4;
335                         mem_types[i].prot_l1 &= ~PMD_BIT4;
336                 }
337         } else if (cpu_arch < CPU_ARCH_ARMv6) {
338                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
339                         if (mem_types[i].prot_l1)
340                                 mem_types[i].prot_l1 |= PMD_BIT4;
341                         if (mem_types[i].prot_sect)
342                                 mem_types[i].prot_sect |= PMD_BIT4;
343                 }
344         }
345
346         /*
347          * Mark the device areas according to the CPU/architecture.
348          */
349         if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
350                 if (!cpu_is_xsc3()) {
351                         /*
352                          * Mark device regions on ARMv6+ as execute-never
353                          * to prevent speculative instruction fetches.
354                          */
355                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
356                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
357                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
358                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
359                 }
360                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
361                         /*
362                          * For ARMv7 with TEX remapping,
363                          * - shared device is SXCB=1100
364                          * - nonshared device is SXCB=0100
365                          * - write combine device mem is SXCB=0001
366                          * (Uncached Normal memory)
367                          */
368                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
369                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
370                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
371                 } else if (cpu_is_xsc3()) {
372                         /*
373                          * For Xscale3,
374                          * - shared device is TEXCB=00101
375                          * - nonshared device is TEXCB=01000
376                          * - write combine device mem is TEXCB=00100
377                          * (Inner/Outer Uncacheable in xsc3 parlance)
378                          */
379                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
380                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
381                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
382                 } else {
383                         /*
384                          * For ARMv6 and ARMv7 without TEX remapping,
385                          * - shared device is TEXCB=00001
386                          * - nonshared device is TEXCB=01000
387                          * - write combine device mem is TEXCB=00100
388                          * (Uncached Normal in ARMv6 parlance).
389                          */
390                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
391                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
392                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
393                 }
394         } else {
395                 /*
396                  * On others, write combining is "Uncached/Buffered"
397                  */
398                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
399         }
400
401         /*
402          * Now deal with the memory-type mappings
403          */
404         cp = &cache_policies[cachepolicy];
405         vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
406
407         /*
408          * Only use write-through for non-SMP systems
409          */
410         if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
411                 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
412
413         /*
414          * Enable CPU-specific coherency if supported.
415          * (Only available on XSC3 at the moment.)
416          */
417         if (arch_is_coherent() && cpu_is_xsc3()) {
418                 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
419                 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
420                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
421                 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
422         }
423         /*
424          * ARMv6 and above have extended page tables.
425          */
426         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
427                 /*
428                  * Mark cache clean areas and XIP ROM read only
429                  * from SVC mode and no access from userspace.
430                  */
431                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
432                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
433                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
434
435                 if (is_smp()) {
436                         /*
437                          * Mark memory with the "shared" attribute
438                          * for SMP systems
439                          */
440                         user_pgprot |= L_PTE_SHARED;
441                         kern_pgprot |= L_PTE_SHARED;
442                         vecs_pgprot |= L_PTE_SHARED;
443                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
444                         mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
445                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
446                         mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
447                         mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
448                         mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
449                         mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
450                         mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
451                 }
452         }
453
454         /*
455          * Non-cacheable Normal - intended for memory areas that must
456          * not cause dirty cache line writebacks when used
457          */
458         if (cpu_arch >= CPU_ARCH_ARMv6) {
459                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
460                         /* Non-cacheable Normal is XCB = 001 */
461                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
462                                 PMD_SECT_BUFFERED;
463                 } else {
464                         /* For both ARMv6 and non-TEX-remapping ARMv7 */
465                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
466                                 PMD_SECT_TEX(1);
467                 }
468         } else {
469                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
470         }
471
472         for (i = 0; i < 16; i++) {
473                 unsigned long v = pgprot_val(protection_map[i]);
474                 protection_map[i] = __pgprot(v | user_pgprot);
475         }
476
477         mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
478         mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
479
480         pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
481         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
482                                  L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot);
483
484         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
485         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
486         mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
487         mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
488         mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
489         mem_types[MT_ROM].prot_sect |= cp->pmd;
490
491         switch (cp->pmd) {
492         case PMD_SECT_WT:
493                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
494                 break;
495         case PMD_SECT_WB:
496         case PMD_SECT_WBWA:
497                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
498                 break;
499         }
500         printk("Memory policy: ECC %sabled, Data cache %s\n",
501                 ecc_mask ? "en" : "dis", cp->policy);
502
503         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
504                 struct mem_type *t = &mem_types[i];
505                 if (t->prot_l1)
506                         t->prot_l1 |= PMD_DOMAIN(t->domain);
507                 if (t->prot_sect)
508                         t->prot_sect |= PMD_DOMAIN(t->domain);
509         }
510 }
511
512 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
513 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
514                               unsigned long size, pgprot_t vma_prot)
515 {
516         if (!pfn_valid(pfn))
517                 return pgprot_noncached(vma_prot);
518         else if (file->f_flags & O_SYNC)
519                 return pgprot_writecombine(vma_prot);
520         return vma_prot;
521 }
522 EXPORT_SYMBOL(phys_mem_access_prot);
523 #endif
524
525 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
526
527 static void __init *early_alloc(unsigned long sz)
528 {
529         void *ptr = __va(memblock_alloc(sz, sz));
530         memset(ptr, 0, sz);
531         return ptr;
532 }
533
534 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
535 {
536         if (pmd_none(*pmd)) {
537                 pte_t *pte = early_alloc(2 * PTRS_PER_PTE * sizeof(pte_t));
538                 __pmd_populate(pmd, __pa(pte) | prot);
539         }
540         BUG_ON(pmd_bad(*pmd));
541         return pte_offset_kernel(pmd, addr);
542 }
543
544 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
545                                   unsigned long end, unsigned long pfn,
546                                   const struct mem_type *type)
547 {
548         pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
549         do {
550                 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
551                 pfn++;
552         } while (pte++, addr += PAGE_SIZE, addr != end);
553 }
554
555 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
556                                       unsigned long end, unsigned long phys,
557                                       const struct mem_type *type)
558 {
559         pmd_t *pmd = pmd_offset(pgd, addr);
560
561         /*
562          * Try a section mapping - end, addr and phys must all be aligned
563          * to a section boundary.  Note that PMDs refer to the individual
564          * L1 entries, whereas PGDs refer to a group of L1 entries making
565          * up one logical pointer to an L2 table.
566          */
567         if (((addr | end | phys) & ~SECTION_MASK) == 0) {
568                 pmd_t *p = pmd;
569
570                 if (addr & SECTION_SIZE)
571                         pmd++;
572
573                 do {
574                         *pmd = __pmd(phys | type->prot_sect);
575                         phys += SECTION_SIZE;
576                 } while (pmd++, addr += SECTION_SIZE, addr != end);
577
578                 flush_pmd_entry(p);
579         } else {
580                 /*
581                  * No need to loop; pte's aren't interested in the
582                  * individual L1 entries.
583                  */
584                 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
585         }
586 }
587
588 static void __init create_36bit_mapping(struct map_desc *md,
589                                         const struct mem_type *type)
590 {
591         unsigned long phys, addr, length, end;
592         pgd_t *pgd;
593
594         addr = md->virtual;
595         phys = (unsigned long)__pfn_to_phys(md->pfn);
596         length = PAGE_ALIGN(md->length);
597
598         if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
599                 printk(KERN_ERR "MM: CPU does not support supersection "
600                        "mapping for 0x%08llx at 0x%08lx\n",
601                        __pfn_to_phys((u64)md->pfn), addr);
602                 return;
603         }
604
605         /* N.B. ARMv6 supersections are only defined to work with domain 0.
606          *      Since domain assignments can in fact be arbitrary, the
607          *      'domain == 0' check below is required to insure that ARMv6
608          *      supersections are only allocated for domain 0 regardless
609          *      of the actual domain assignments in use.
610          */
611         if (type->domain) {
612                 printk(KERN_ERR "MM: invalid domain in supersection "
613                        "mapping for 0x%08llx at 0x%08lx\n",
614                        __pfn_to_phys((u64)md->pfn), addr);
615                 return;
616         }
617
618         if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
619                 printk(KERN_ERR "MM: cannot create mapping for "
620                        "0x%08llx at 0x%08lx invalid alignment\n",
621                        __pfn_to_phys((u64)md->pfn), addr);
622                 return;
623         }
624
625         /*
626          * Shift bits [35:32] of address into bits [23:20] of PMD
627          * (See ARMv6 spec).
628          */
629         phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
630
631         pgd = pgd_offset_k(addr);
632         end = addr + length;
633         do {
634                 pmd_t *pmd = pmd_offset(pgd, addr);
635                 int i;
636
637                 for (i = 0; i < 16; i++)
638                         *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
639
640                 addr += SUPERSECTION_SIZE;
641                 phys += SUPERSECTION_SIZE;
642                 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
643         } while (addr != end);
644 }
645
646 /*
647  * Create the page directory entries and any necessary
648  * page tables for the mapping specified by `md'.  We
649  * are able to cope here with varying sizes and address
650  * offsets, and we take full advantage of sections and
651  * supersections.
652  */
653 static void __init create_mapping(struct map_desc *md)
654 {
655         unsigned long phys, addr, length, end;
656         const struct mem_type *type;
657         pgd_t *pgd;
658
659         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
660                 printk(KERN_WARNING "BUG: not creating mapping for "
661                        "0x%08llx at 0x%08lx in user region\n",
662                        __pfn_to_phys((u64)md->pfn), md->virtual);
663                 return;
664         }
665
666         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
667             md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
668                 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
669                        "overlaps vmalloc space\n",
670                        __pfn_to_phys((u64)md->pfn), md->virtual);
671         }
672
673         type = &mem_types[md->type];
674
675         /*
676          * Catch 36-bit addresses
677          */
678         if (md->pfn >= 0x100000) {
679                 create_36bit_mapping(md, type);
680                 return;
681         }
682
683         addr = md->virtual & PAGE_MASK;
684         phys = (unsigned long)__pfn_to_phys(md->pfn);
685         length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
686
687         if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
688                 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
689                        "be mapped using pages, ignoring.\n",
690                        __pfn_to_phys(md->pfn), addr);
691                 return;
692         }
693
694         pgd = pgd_offset_k(addr);
695         end = addr + length;
696         do {
697                 unsigned long next = pgd_addr_end(addr, end);
698
699                 alloc_init_section(pgd, addr, next, phys, type);
700
701                 phys += next - addr;
702                 addr = next;
703         } while (pgd++, addr != end);
704 }
705
706 /*
707  * Create the architecture specific mappings
708  */
709 void __init iotable_init(struct map_desc *io_desc, int nr)
710 {
711         int i;
712
713         for (i = 0; i < nr; i++)
714                 create_mapping(io_desc + i);
715 }
716
717 static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
718
719 /*
720  * vmalloc=size forces the vmalloc area to be exactly 'size'
721  * bytes. This can be used to increase (or decrease) the vmalloc
722  * area - the default is 128m.
723  */
724 static int __init early_vmalloc(char *arg)
725 {
726         unsigned long vmalloc_reserve = memparse(arg, NULL);
727
728         if (vmalloc_reserve < SZ_16M) {
729                 vmalloc_reserve = SZ_16M;
730                 printk(KERN_WARNING
731                         "vmalloc area too small, limiting to %luMB\n",
732                         vmalloc_reserve >> 20);
733         }
734
735         if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
736                 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
737                 printk(KERN_WARNING
738                         "vmalloc area is too big, limiting to %luMB\n",
739                         vmalloc_reserve >> 20);
740         }
741
742         vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
743         return 0;
744 }
745 early_param("vmalloc", early_vmalloc);
746
747 static phys_addr_t lowmem_limit __initdata = 0;
748
749 static void __init sanity_check_meminfo(void)
750 {
751         int i, j, highmem = 0;
752
753         lowmem_limit = __pa(vmalloc_min - 1) + 1;
754         memblock_set_current_limit(lowmem_limit);
755
756         for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
757                 struct membank *bank = &meminfo.bank[j];
758                 *bank = meminfo.bank[i];
759
760 #ifdef CONFIG_HIGHMEM
761                 if (__va(bank->start) > vmalloc_min ||
762                     __va(bank->start) < (void *)PAGE_OFFSET)
763                         highmem = 1;
764
765                 bank->highmem = highmem;
766
767                 /*
768                  * Split those memory banks which are partially overlapping
769                  * the vmalloc area greatly simplifying things later.
770                  */
771                 if (__va(bank->start) < vmalloc_min &&
772                     bank->size > vmalloc_min - __va(bank->start)) {
773                         if (meminfo.nr_banks >= NR_BANKS) {
774                                 printk(KERN_CRIT "NR_BANKS too low, "
775                                                  "ignoring high memory\n");
776                         } else {
777                                 memmove(bank + 1, bank,
778                                         (meminfo.nr_banks - i) * sizeof(*bank));
779                                 meminfo.nr_banks++;
780                                 i++;
781                                 bank[1].size -= vmalloc_min - __va(bank->start);
782                                 bank[1].start = __pa(vmalloc_min - 1) + 1;
783                                 bank[1].highmem = highmem = 1;
784                                 j++;
785                         }
786                         bank->size = vmalloc_min - __va(bank->start);
787                 }
788 #else
789                 bank->highmem = highmem;
790
791                 /*
792                  * Check whether this memory bank would entirely overlap
793                  * the vmalloc area.
794                  */
795                 if (__va(bank->start) >= vmalloc_min ||
796                     __va(bank->start) < (void *)PAGE_OFFSET) {
797                         printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
798                                "(vmalloc region overlap).\n",
799                                bank->start, bank->start + bank->size - 1);
800                         continue;
801                 }
802
803                 /*
804                  * Check whether this memory bank would partially overlap
805                  * the vmalloc area.
806                  */
807                 if (__va(bank->start + bank->size) > vmalloc_min ||
808                     __va(bank->start + bank->size) < __va(bank->start)) {
809                         unsigned long newsize = vmalloc_min - __va(bank->start);
810                         printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
811                                "to -%.8lx (vmalloc region overlap).\n",
812                                bank->start, bank->start + bank->size - 1,
813                                bank->start + newsize - 1);
814                         bank->size = newsize;
815                 }
816 #endif
817                 j++;
818         }
819 #ifdef CONFIG_HIGHMEM
820         if (highmem) {
821                 const char *reason = NULL;
822
823                 if (cache_is_vipt_aliasing()) {
824                         /*
825                          * Interactions between kmap and other mappings
826                          * make highmem support with aliasing VIPT caches
827                          * rather difficult.
828                          */
829                         reason = "with VIPT aliasing cache";
830                 } else if (is_smp() && tlb_ops_need_broadcast()) {
831                         /*
832                          * kmap_high needs to occasionally flush TLB entries,
833                          * however, if the TLB entries need to be broadcast
834                          * we may deadlock:
835                          *  kmap_high(irqs off)->flush_all_zero_pkmaps->
836                          *  flush_tlb_kernel_range->smp_call_function_many
837                          *   (must not be called with irqs off)
838                          */
839                         reason = "without hardware TLB ops broadcasting";
840                 }
841                 if (reason) {
842                         printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
843                                 reason);
844                         while (j > 0 && meminfo.bank[j - 1].highmem)
845                                 j--;
846                 }
847         }
848 #endif
849         meminfo.nr_banks = j;
850 }
851
852 static inline void prepare_page_table(void)
853 {
854         unsigned long addr;
855         phys_addr_t end;
856
857         /*
858          * Clear out all the mappings below the kernel image.
859          */
860         for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
861                 pmd_clear(pmd_off_k(addr));
862
863 #ifdef CONFIG_XIP_KERNEL
864         /* The XIP kernel is mapped in the module area -- skip over it */
865         addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
866 #endif
867         for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
868                 pmd_clear(pmd_off_k(addr));
869
870         /*
871          * Find the end of the first block of lowmem.
872          */
873         end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
874         if (end >= lowmem_limit)
875                 end = lowmem_limit;
876
877         /*
878          * Clear out all the kernel space mappings, except for the first
879          * memory bank, up to the end of the vmalloc region.
880          */
881         for (addr = __phys_to_virt(end);
882              addr < VMALLOC_END; addr += PGDIR_SIZE)
883                 pmd_clear(pmd_off_k(addr));
884 }
885
886 /*
887  * Reserve the special regions of memory
888  */
889 void __init arm_mm_memblock_reserve(void)
890 {
891         /*
892          * Reserve the page tables.  These are already in use,
893          * and can only be in node 0.
894          */
895         memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
896
897 #ifdef CONFIG_SA1111
898         /*
899          * Because of the SA1111 DMA bug, we want to preserve our
900          * precious DMA-able memory...
901          */
902         memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
903 #endif
904 }
905
906 /*
907  * Set up device the mappings.  Since we clear out the page tables for all
908  * mappings above VMALLOC_END, we will remove any debug device mappings.
909  * This means you have to be careful how you debug this function, or any
910  * called function.  This means you can't use any function or debugging
911  * method which may touch any device, otherwise the kernel _will_ crash.
912  */
913 static void __init devicemaps_init(struct machine_desc *mdesc)
914 {
915         struct map_desc map;
916         unsigned long addr;
917         void *vectors;
918
919         /*
920          * Allocate the vector page early.
921          */
922         vectors = early_alloc(PAGE_SIZE);
923
924         for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
925                 pmd_clear(pmd_off_k(addr));
926
927         /*
928          * Map the kernel if it is XIP.
929          * It is always first in the modulearea.
930          */
931 #ifdef CONFIG_XIP_KERNEL
932         map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
933         map.virtual = MODULES_VADDR;
934         map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
935         map.type = MT_ROM;
936         create_mapping(&map);
937 #endif
938
939         /*
940          * Map the cache flushing regions.
941          */
942 #ifdef FLUSH_BASE
943         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
944         map.virtual = FLUSH_BASE;
945         map.length = SZ_1M;
946         map.type = MT_CACHECLEAN;
947         create_mapping(&map);
948 #endif
949 #ifdef FLUSH_BASE_MINICACHE
950         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
951         map.virtual = FLUSH_BASE_MINICACHE;
952         map.length = SZ_1M;
953         map.type = MT_MINICLEAN;
954         create_mapping(&map);
955 #endif
956
957         /*
958          * Create a mapping for the machine vectors at the high-vectors
959          * location (0xffff0000).  If we aren't using high-vectors, also
960          * create a mapping at the low-vectors virtual address.
961          */
962         map.pfn = __phys_to_pfn(virt_to_phys(vectors));
963         map.virtual = 0xffff0000;
964         map.length = PAGE_SIZE;
965         map.type = MT_HIGH_VECTORS;
966         create_mapping(&map);
967
968         if (!vectors_high()) {
969                 map.virtual = 0;
970                 map.type = MT_LOW_VECTORS;
971                 create_mapping(&map);
972         }
973
974         /*
975          * Ask the machine support to map in the statically mapped devices.
976          */
977         if (mdesc->map_io)
978                 mdesc->map_io();
979
980         /*
981          * Finally flush the caches and tlb to ensure that we're in a
982          * consistent state wrt the writebuffer.  This also ensures that
983          * any write-allocated cache lines in the vector page are written
984          * back.  After this point, we can start to touch devices again.
985          */
986         local_flush_tlb_all();
987         flush_cache_all();
988 }
989
990 static void __init kmap_init(void)
991 {
992 #ifdef CONFIG_HIGHMEM
993         pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
994                 PKMAP_BASE, _PAGE_KERNEL_TABLE);
995 #endif
996 }
997
998 static void __init map_lowmem(void)
999 {
1000         struct memblock_region *reg;
1001
1002         /* Map all the lowmem memory banks. */
1003         for_each_memblock(memory, reg) {
1004                 phys_addr_t start = reg->base;
1005                 phys_addr_t end = start + reg->size;
1006                 struct map_desc map;
1007
1008                 if (end > lowmem_limit)
1009                         end = lowmem_limit;
1010                 if (start >= end)
1011                         break;
1012
1013                 map.pfn = __phys_to_pfn(start);
1014                 map.virtual = __phys_to_virt(start);
1015                 map.length = end - start;
1016                 map.type = MT_MEMORY;
1017
1018                 create_mapping(&map);
1019         }
1020 }
1021
1022 /*
1023  * paging_init() sets up the page tables, initialises the zone memory
1024  * maps, and sets up the zero page, bad page and bad page tables.
1025  */
1026 void __init paging_init(struct machine_desc *mdesc)
1027 {
1028         void *zero_page;
1029
1030         build_mem_type_table();
1031         sanity_check_meminfo();
1032         prepare_page_table();
1033         map_lowmem();
1034         devicemaps_init(mdesc);
1035         kmap_init();
1036
1037         top_pmd = pmd_off_k(0xffff0000);
1038
1039         /* allocate the zero page. */
1040         zero_page = early_alloc(PAGE_SIZE);
1041
1042         bootmem_init();
1043
1044         empty_zero_page = virt_to_page(zero_page);
1045         __flush_dcache_page(NULL, empty_zero_page);
1046 }
1047
1048 /*
1049  * In order to soft-boot, we need to insert a 1:1 mapping in place of
1050  * the user-mode pages.  This will then ensure that we have predictable
1051  * results when turning the mmu off
1052  */
1053 void setup_mm_for_reboot(char mode)
1054 {
1055         unsigned long base_pmdval;
1056         pgd_t *pgd;
1057         int i;
1058
1059         /*
1060          * We need to access to user-mode page tables here. For kernel threads
1061          * we don't have any user-mode mappings so we use the context that we
1062          * "borrowed".
1063          */
1064         pgd = current->active_mm->pgd;
1065
1066         base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
1067         if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
1068                 base_pmdval |= PMD_BIT4;
1069
1070         for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
1071                 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
1072                 pmd_t *pmd;
1073
1074                 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
1075                 pmd[0] = __pmd(pmdval);
1076                 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
1077                 flush_pmd_entry(pmd);
1078         }
1079
1080         local_flush_tlb_all();
1081 }